Table 2. Architectures and hyperparameters tested on the evaluation of deep learning classification models.
| Parameters | Layers information | Dropout rate |
|---|---|---|
| CNN | 1D-Conv (32, filter = 3, kernel = 0) MaxPooling (2) Flatten Dense (64) SoftMax | – |
| LSTM | LSTM (100) Dense (100) SoftMax | 0.5 |
| GRU | GRU (64) GRU (32) Dense (64) SoftMax | – |
| CNN-LSTM arch. 1 | 1D-Conv (filter = 16, kernel = 5) 2 * 1D-Conv (filter = 64, kernel = 3) MaxPooling (2) Flatten, LSTM (20) Flatten Dense (20) SoftMax | 0.5 |
| CNN-LSTM arch. 2 | 1D-Conv (filter = 64, kernel = 3) Flatten LSTM (50) Flatten SoftMax | 0.5 |