Skip to main content
. 2025 Mar 14;11:e2695. doi: 10.7717/peerj-cs.2695

Table 2. Architectures and hyperparameters tested on the evaluation of deep learning classification models.

Parameters Layers information Dropout rate
CNN 1D-Conv (32, filter = 3, kernel = 0) MaxPooling (2) Flatten Dense (64) SoftMax
LSTM LSTM (100) Dense (100) SoftMax 0.5
GRU GRU (64) GRU (32) Dense (64) SoftMax
CNN-LSTM arch. 1 1D-Conv (filter = 16, kernel = 5) 2 * 1D-Conv (filter = 64, kernel = 3) MaxPooling (2) Flatten, LSTM (20) Flatten Dense (20) SoftMax 0.5
CNN-LSTM arch. 2 1D-Conv (filter = 64, kernel = 3) Flatten LSTM (50) Flatten SoftMax 0.5