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Human immunodeficiency virus (HIV) Nef is a membrane-associated protein decreasing surface expression
of CD4, CD28, and major histocompatibility complex class I on infected cells. We report that Nef strongly
down-modulates surface expression of the B-chain of the CD8«af receptor by accelerated endocytosis, while
CD8 a-chain expression is less affected. By mutational analysis of the cytoplasmic tail of the CD8 3-chain, an
FMK amino acid motif was shown to be critical for Nef-induced endocytosis. Although independent of CD4,
endocytosis of the CD8 3-chain was abrogated by the same mutations in Nef that affect CD4 down-regulation,
suggesting common molecular interactions. The ability to down-regulate the human CD8 f-chain was con-
served in HIV-1, HIV-2, and simian immunodeficiency virus SIVmac239 Nef and required an intact AP-2
complex. The Nef-mediated internalization of receptors, such as CD4, major histocompatibility complex class
I, CD28, and CD8«f3, may contribute to the subversion of the host immune system and progression towards

AIDS.

The human immunodeficiency virus type 1 (HIV-1) Nef
protein is a 27-kDa protein that is abundantly produced during
the early phase of viral gene expression (28, 54). Nef is post-
translationally modified by phosphorylation and due to irre-
versible attachment of myristic acid to its N terminus, it is
targeted to the cellular membrane. Nef has multiple distinct
functions: it modulates cell surface molecules, such as CD4
(21), CD28 (63), major histocompatibility complex (MHC)
class I (59), MHC class I and MHC class II-associated invari-
ant chain (Ii, CD74) (62), interferes with signal transduction
pathways (reviewed by Tolstrup et al. [65]), T-cell generation
(61, 67), and enhances virion infectivity and viral replication
(reviewed by Fackler and Baur [17]). The molecular mecha-
nisms of most of these effects and their contribution to patho-
genesis are only partially understood.

To modulate cell surface receptor expression, Nef utilizes
several strategies, linked to distinct regions within the Nef
protein. Like many other pathogenic viruses, HIV-1 down-
regulates the cell surface expression of MHC class I and cir-
cumvents in this way the attack by cytotoxic T lymphocytes
(59). Another profoundly investigated Nef-mediated effect is
down-regulation of the CD4 receptor (21, 1), due to acceler-
ated endocytosis via clathrin-coated pits followed by lysosomal
degradation (51). In addition, CD4 down-regulation by HIV-1
and simian immunodeficiency virus (SIV) Nef proteins also
involves intracellular retention mechanisms (55). As Nef has
been shown to interact with the CD4 receptor as well as with
the adaptor protein (AP) complex, either AP-1 (8, 16, 33),
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AP-2 (16, 22, 26), or AP-3 (33), it may act as a connector
between components of the cellular endocytic machinery and
the cytoplasmic tail of CD4 (13, 41, 42). A Nef dileucine
sequence was found to be required for accelerated internaliza-
tion of CD4 and CD28 from the cell surface to endosomes and
lysosomes (8, 13, 25), rendering Nef the only nontransmem-
brane protein known to traffic via a dileucine-based motif (35).

The T-cell CDS coreceptor exists as an aa homodimer,
found on intestinal T cells, vy T cells, thymic T-cell precursors,
and NK cells, and an of heterodimer, most commonly ex-
pressed on thymocytes and on peripheral T cells (19, 31). The
surface expression of the CDS§ B-chain is dependent on expres-
sion of the CD8 a-chain, to which it becomes covalently linked
in the endoplasmic reticulum (24). The cytoplasmic tail of
CD8a comprises 30 amino acids and contains a motif of two
vicinal cysteines for interaction with the Src kinase p56'* by
means of a zinc chelate complex (68).

Although the tail of CD8p consists of only 19 residues and
contains no known protein binding motifs, studies in mice
indicated a role for CD8B and its cytoplasmic tail in thymic
development and in activation of CD8" T cells (3, 4, 5, 32).
Pathological conditions in which CD8a*p'*™ and CD8aa T-
cell receptor a3 T cells increase in the periphery include Wis-
kott-Aldrich syndrome, where peripheral blood CD8" T-cell
receptor afy T cells mostly express CD8aa homodimers (34),
and HIV infection in which the appearance of a major CD8
subpopulation with reduced CD8B chains may occur (58).

Here, we report that HIV-1 as well as HIV-2 and STVmac239
Nef down-regulate cell surface expression of the human
CD8af receptor. The CDS8 B-chain cytoplasmic tail contains
an FMK amino acid sequence that allows Nef-mediated mod-
ulation. Based on our results we suggest Nef is using clathrin-
mediated endocytosis, requiring AP-2, for accelerated down-
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regulation of CD8af and CD4. As a subset of CD8" T cells
have been shown to be infected by HIV (39), down-regulation
of CD8aB might harm CDS8 lymphocyte function and contrib-
ute in this way to HIV-mediated subversion of the immune
system.

MATERIALS AND METHODS

Plasmid constructions. All retroviral nef constructs were made as previously
described (61). The deletion mutant Del 3 was provided by J Zack (2), and
SIVmac239 and HIV-2 Rod were obtained from J. Skowronski and R. Benarous,
respectively. The CD8a (GenBank accession number NM_001768) gene, kindly
provided by S. Bonatti, was subcloned in the LZRS vector, in which the internal
ribosome entry site (IRES)-enhanced green fluorescent protein (EGFP) cassette
was deleted by Notl digestion. The CD8B (GenBank accession number
NM_004931) gene, also provided by S. Bonatti, was tagged with hemagglutinin
(HA) for confocal imaging and was subcloned in the BamHI and EcoRI sites in
LZRS-IRES-EGFP or BamHI and NotI sites in LZRS-IRES-ANGFR. In all
experiments, control transductions were done with the parental LZRS vectors
expressing only the marker gene.

The CD8a(EC-TM)-CD8B(IC) chimera was constructed using the primer
pair CD8a S (BamHI): 5'-TATTGGATCCATGGCCTTACC-3'; CD8a EC+
TM AS (Sall): 5'-CTTACGTCGACGTGATAACCAGTGACAG-3' and CD8B
IC S (Sall): 5'-CTTACGTCGACACACCTGTGCTGC-3"; CD8B AS (NotI):
5'-ACTATAGCGGCCGCTTATTTGTAAAATTG-3'. The CD8«a(EC-TM)-
CD8a(IC) was constructed as a control, using the primers CD8a IC S (Sall):
5'-CTTACGTCGACACTTTACTGCAAC-3'; CD8« AS (Notl): 5'-TTTATAG
CGGCCGCTTAGACGTATC-3' for amplification of the CD8« cytoplasmic tail.
For both constructs, the two PCR fragments were Sall digested and ligated. In
the next step the CD8ap and CD8aa chimers were amplified by PCR, BamHI-
Notl digested, and ligated in the LZRS-IRES-ANGFR vector.

For confocal microscopy, LZRS-Nef. EGFP-N2 fusion protein constructs were
designed. The EGFP-N2 gene was isolated from the pEGFP-N2 vector (Clon-
tech, Palo Alto, CA) by BamHI-NotI digestion and cloned into the LZRS vector,
in which the IRES-EGFP cassette was excised by Notl digestion. In a next step
the nef genes NA-7 wild-type, PPAA, and LLAA were amplified by PCR, and
BamHI-BamHI inserted 5" of the EGFP sequence. The RNAIi probes were
BglII-HindIII cloned into the pSUPER vector (9) containing an extra EcoRI
restriction site 3’ of the cloning site, further referred to as pSUPER(EcoRI).

To construct the 19-nucleotide hairpin short interfering RNA cassettes, two
c¢DNA oligonucleotides were chemically synthesized (Invitrogen, Merelbeke,
Belgium), annealed, and inserted immediately downstream of the H1 promoter:
5'-GATCCCC-19-TTCAAGAGA-19-TTTTTGGAAA-3" and 5'-AGCTTTTCC
AAAAA-19-TCTCTTGAA-19-GGG-3'. The target sequences for each of the
genes were as follows: AP-2 p2 subunit (GenBank accession number
NM_004068), 5'-GTGGATGCCTTTCGGGTCA-3" (47), clathrin heavy chain
(GenBank accession number NM_004859), 5'-TATCTCGCTTGCTCAGCGT-
3’, and dynamin-2 (GenBank accession number NM_004945), 5'-GACATGAT
CCTGCAGTTCA-3'. The control short interfering RNA was a functional oli-
gonucleotide with p53 as the target sequence and described elsewhere (9).

Lentiviral packaging plasmid p8.91 and vesicular stomatitis virus envelope
plasmid (pMD.G) were kindly provided by D. Trono (Université de Geneve,
Geneva, Switzerland); transfer vector TRIPAU3-CMV-EGFP was kindly pro-
vided by P. Charneau (Hopital Necker, Paris, France). A PCR-amplified WPRE
cassette (GenBank accession number J04514, nucleotides 1093 to 1685) (69) was
inserted into plasmid TRIPAU3-CMV-EGFP at the unique Xhol site down-
stream of the EGFP stop codon, resulting in TRIPAU3-CMV-GFP-WPRE.
Next, the HI RNA interference (RNAi) cassettes were EcoRI-EcoRI trans-
ferred from the pSUPER(EcoRI) vector into the EcoRI-digested TRIPAU3-
CMV-EGFP-WPRE vector. Sequencing (ABI, Perkin Elmer, Foster City, CA)
confirmed the integrity of all constructs.

Production of retroviral and lentiviral supernatants. The Phoenix-Ampho-
tropic packaging cell line was transfected with the different retroviral constructs
as previously described (61). For lentivirus production, 293T cells were seeded
24 h before transfection. Transfection of the three plasmids was done using a
calcium phosphate transfection kit (Invitrogen) and viral supernatant was har-
vested 40 h later.

Cell culture and chemical products. All cells were cultured at 37°C in a
humidified atmosphere containing 7.5% (vol/vol) CO, in air. Peripheral blood
mononuclear cells were isolated by density separation (Lymphoprep, Nyegaard,
Oslo, Norway) of buffy coats or whole blood. SupT1 (AIDS Research and
Reference Reagent Program, National Institutes of Health, Bethesda, MD),
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Daudi, 293T, and other cells were cultured as described previously (61). Freshly
isolated peripheral blood mononuclear cells were stimulated at day 0 with phy-
tohemagglutinin (2 pg/ml) and interleukin-2 (50 TU/ml), and fresh interleukin-2
was added every 3 days of culture. 4-Hydroxytamoxifen was purchased from
Sigma-Aldrich (Bornem, Belgium) and ikarugamycin was obtained from LKT
Laboratories (St. Paul, MN).

Viral gene transfer. For retroviral transduction of cell lines and peripheral
blood mononuclear cells, cells were mixed with viral supernatant which was
incubated for 10 min with Dotap (Roche Diagnostics, Penzberg, Germany). To
increase transduction efficiency, cells were spun (90 min, 2500 rpm, 32°C). Len-
tiviral transductions were carried out in the presence of Polybrene (4 pg/ml;
Sigma-Aldrich). Transduction efficiency was evaluated by flow cytometry 48 to
72 h after transduction and varied between 20 and 50% with retroviral superna-
tant and between 50 and 100% with lentiviral supernatant. The degree of Nef-
mediated down- or up-regulation of a receptor was evaluated by measurement of
the surface level expression of the receptor at day 2 after transduction. The
fraction of down- (or up-) regulation of a receptor was calculated by subtracting
the mean fluorescence intensity (MFT) of cells with a fixed range of high marker
gene expression (EGFP or ANGFR) from the MFI value of the cells lacking the
marker gene and then dividing this result by the MFI of the cells lacking the
marker gene (62).

Monoclonal antibodies, flow cytometry, and cell isolation methods. Mouse
anti-human monoclonal antibodies used were CD28 (Leu-28; phycoerythrin;
Becton Dickinson Immunocytometry Systems [BDIS], Mountain View, CA),
CD4 (Leu-3a phycoerythrin or allophycocyanin; BDIS), CD8a (SK1 phyco-
erythrin or allophycocyanin; BDIS), CD8«f (2ST8.5H7 phycoerythrin; Coulter,
Miami, FL), CD74 (LN2; Immucor, Heppignies, Belgium), HLA-DR (L1243
allophycocyanin; BDIS), HLA-A, B, and C (G46-2.6 phycoerythrin; BDIS), and
nerve growth factor receptor (NGFR) low-affinity receptor (ME20.4 phyco-
erythrin or allophycocyanin; Chromaprobe, Maryland Heights, MO).

CD74 was detected through a phycoerythrin-conjugated goat anti-mouse
F(ab’), antibody (Jackson ImmunoResearch Laboratories, West Grove, PA).
The cells were analyzed on a FACSCalibur flow cytometer (BDIS), as previously
described (66). Daudi cells transduced with CD8B-IRES-ANGFR or CD8a con-
structs were purified by positive selection using a phycoerythrin-conjugated
monoclonal antibody assigned to NGFR and CDS8a, respectively, followed by
anti-phycoerythrin superparamagnetic microbeads (MACS; Miltenyi Biotec,
Bergisch Gladbach, Germany). SupT1 cells, transduced with (mutant) Nef-
IRES-EGFP constructs, were sorted using a FACSVantage (BDIS).

Endocytosis assays. The fluorescence-activated cell sorting-based endocytosis
assay (10), using a phycoerythrin-conjugated monoclonal antibody to CD8«f,
CD4, or CD28, was performed as described previously (50). For the calculation
of internalization, a region was set on the EGFP-positive cells. The fraction of
receptor internalized was calculated by subtracting the MFI of the background
signal (the initial time zero acid wash) from all MFI values obtained and then
dividing this result by the MFT of the total bound antibody (41).

Immunoblotting. Transduced SupT1 cells, sorted to homogeneity, were lysed
in Laemmli sample buffer and equal amounts of proteins were run on 8 or 12%
Novex Tris-glycine-polyacrylamide gels (Invitrogen) as previously described (61).
Primary monoclonal antibodies used included mouse anti-Nef EH-1 (AIDS
Research and Reference Reagent Program) (11), mouse anti-AP50 (Transduc-
tion Laboratories, Lexington, KY), mouse anti-clathrin heavy chain (Covance,
Berkeley, CA), and rabbit anti-dynamin-2 (Affinity Bioreagents, Golden, CO).

Confocal microscopy. Transduced or transfected 293T cells were cultured on
coverslips, fixed in methanol for 15 min at —20°C, and dried at room tempera-
ture. After a 10-min rehydration in phosphate-buffered saline, cells were blocked
for 30 min at room temperature (0.4% fish skin gelatin [Sigma-Aldrich] in
phosphate-buffered saline), followed by incubation for 60 min with a mouse
anti-human CD8B primary antibody (SF2 [15], Serotec, Oxford, United King-
dom) or mouse anti-HA antibody (HA.11, Covance), both 1:100 diluted in
blocking solution. After washing in phosphate-buffered saline, cells were stained
with Alexa-Fluor 594-conjugated goat anti-mouse immunoglobulin G secondary
antibody (Molecular Probes Inc, Eugene, OR) for 1 h (1:100 diluted in blocking
solution). After a fourfold wash step, nuclei were counterstained with 4’,6'-
diamidino-2-phenylindole (DAPI)/methanol for 5 min, and after a final wash,
coverslips were mounted onto glass slides using Vectashield (Vector Laborato-
ries Inc, Burlingame, CA). Confocal images were collected with a blue diode
Bio-Rad Radiance 2100 confocal laser scanning system (Bio-Rad) and were
processed using the Confocal Assistant (CAS) program (Bio-Rad) and Adobe
Photoshop (Adobe, San Jose, CA).
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FIG. 1. Flow cytometric evaluation of Nef-mediated CD8 down-regulation in retrovirally transduced cells. (A) Bivariate dot plots (CD8a-
allophycocyanin, CD8a-phycoerythrin versus EGFP) of flow cytometric measurement of Nef™ (control) and Nef" (NA-7 allele) transduced
peripheral blood mononuclear cells, gated on CD8" cells, at day 3 after transduction. (B) Bivariate dot plots of flow cytometric measurement
(CD8a-allophycocyanin, CD8ap-phycoerythrin versus EGFP) of Nef NA-7 wild-type and NA-7 LLAA transduced SupT1 cells (left) and SupT1
cells overexpressing CD8a (right), at day 2 after transduction. (C) The solid and open histograms show the CD8af expression profile of SupT1
CD8a* cells and SupT1 CD8a™ cells (CD8a-transduced population), respectively, gated as shown in the inset. (D) Daudi CD8a« cells and Daudi
CD8af cells were transduced with control, HIV-1 (NL4-3, LAI and NA-7), SIV (mac239), and HIV-2 (Rod) Nef. Percent down-regulation is
shown with white bars for CD8« in Daudi CD8a«, with gray bars for CD8« in Daudi CD8af, and with black bars for CD8«f in Daudi CD8«f.
All percentages were calculated, as described in Materials and Methods, using the ranges E— and E+, as indicated in A.

RESULTS

Nef induces a decrease in CD8«f3 surface expression in
peripheral blood mononuclear cells and cell lines. A Nef-
induced decrease in CD8«a3 surface levels has been reported
by our group in fetal thymic organ culture experiments, using
human primary T-cell precursors (61, 67). In order to investi-
gate whether this observation was conserved between primary
cells, peripheral blood mononuclear cells were retrovirally
transduced with bicistronic constructs expressing HIV-1 Nef
and EGFP as a reporter protein. For flow cytometric analysis,
cells were stained with a monoclonal antibody directed against
the CD8a heterodimer or an anti-CD8a, the latter recogniz-
ing both af and aoa dimers. Surface staining of CD8af re-
vealed a dose-dependent decrease in the steady-state expres-
sion levels of this receptor with increasing Nef expression
(alleles NA-7 [Fig. 1A], LAI, and NL4-3 [data not shown]),
resulting in a 79% down-regulation in mean fluorescence in-
tensity compared to nontransduced cells, whereas the decrease
in CD8u staining was less pronounced.

We also verified this observation in cell lines. In the
CD8aB ™ T-cell line SupT1, expression of Nef evoked a similar
decrease in CD8af surface levels (Fig. 1B, left panels). How-

ever, since Nef down-regulates several surface markers on T
cells, decreased CD8af expression could be the consequence
of Nef-mediated internalization of another surface molecule,
such as CD4 or CD28, in close proximity to the CD8 receptor.
Therefore, we generated Daudi B-cell lines stably expressing
the CD8aa or CD8af receptor after retroviral gene transfer of
only CD8a or both CDS8 chains, further referred to as Daudi
CD8aa and CD8af, respectively.

Figure 1D gives an overview of the ability of different wild-
type HIV-1, HIV-2, and SIVmac239 Nef alleles to down-mod-
ulate CDS8 in Daudi cells. Wild-type Nef-transduced cells are
characterized by a strong decrease in CD8af3 surface expres-
sion levels, i.e., an 8- to 13-fold decrease in MFI for HIV-1 and
SIVmac239. A lower functional activity was found with HIV-2
Rod Nef (a twofold decrease), an observation that was also
made for other surface marker modulations (data not shown
and (57)). These observations in the Daudi B-cell line demon-
strate that down-regulation is independent of the presence of
neighboring T-cell surface molecules that are known Nef tar-
gets. Nef-mediated down-modulation of the CD8 a-chain was
three- to fourfold lower than that of the B-chain in Daudi
CD8ap cells (Fig. 1B). In the Daudi CD8aa cell line, NL4-3-
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and HIV-2-mediated CD8a down-regulation did not differ sig-
nificantly from control transduced cells, while LAI, NA-7, and
SIVmac239 Nef caused CD8a down-regulation to a degree
comparable to that observed in the Daudi CD8af cells (Fig.
1B).

An intriguing finding in Nef-transduced SupT1 cells was
that, besides staining with CD8af monoclonal antibody, CD8«
monoclonal antibody staining also showed a prominent de-
crease in surface staining (88% and 71% down-regulation,
respectively) (Fig. 1B, left panels). Additional transduction of
these cells with the CD8a chain resulted in a distinct popula-
tion with a higher CD8a staining profile (Fig. 1C). However,
only a slight increase in CD8af surface staining could be
observed in these cells (Fig. 1C and 1B, right panels), suggest-
ing that the amount of CDS8 in these cells limits the formation
of CD8af heterodimers, the excess of CD8a likely giving rise
to CDS8aa homodimer expression. Whereas this CD8qMeh
population showed a weakened down-regulatory response
(33%), Nef-mediated down-regulation of the CD8af3 receptor
remained strong (65%) (Fig. 1B, right panels). In conclusion,
these data suggest that Nef strongly reduces CD8af3 surface
receptor expression, while it reduces the CDS8 a-chain surface
expression only to a lower degree.

Concordance between CD8«3 down-regulation and Nef-me-
diated down-/up-regulation of other surface receptors. Retro-
viral transduction of SupT1 and Daudi cells with wild-type and
mutant Nefs, aligned in Fig. 2A, was performed to assess their
ability to down-regulate cell surface expression of CD4, MHC
class I, CD28, CD8af (SupT1), and HLA-DR (Daudi) (Fig.
2B) or to up-regulate CD74 (Daudi) (Fig. 2C). As judged from
Western blotting (Fig. 2D), all constructs were correctly ex-
pressed, their expression levels correlating with the mean flu-
orescence intensity of the sorted SupT1 cells (data not shown).
Mutations within Nef that diminished its modulating capacity
more than 50%, compared to the respective wild-type Nef, are
underlined in Fig. 2B and 2C. The results indicate that the
same mutations within Nef that abrogate down-regulation of
CD4 also abolish down-regulation of CD8af.

Structurally, these can be divided into three groups: the
N-terminal anchor region (G2A and Del3), the W57L58 se-
quence (WLAA), known as the binding site for the CD4 re-
ceptor (42), and the flexible loop harboring a dileucine (LLAA
and LLGG) and E/D174D175 (EDAA and DDGA) sequence.
With regard to Nef-mediated CD28 down-regulation, we
found one more mutant (E4A) capable of disturbing the wild-
type Nef effect. Of note, up-regulation of CD74 in Daudi cells
can be prevented by the same mutations, with the exception of
Del3, as those affecting down-regulation of CD4/CD8af.
HLA-DR down-regulation was a rather weak effect, only ab-
rogated by the G2A mutant, while the MHC class I down-
regulating capacity of the panel of Nef mutants showed no
resemblance to the other receptor modulations. In conclusion,
these data suggest that down-regulation of CD4, CD28, and
CD8ap and the up-regulation of CD74 result from related
functions of Nef.

Nef induces accelerated internalization of the CD8af} re-
ceptor resulting in a down-regulated steady state surface ex-
pression. To explore the mechanism of down-regulation, a
comparison of Nef-mediated CD4 and CD8af3 down-regula-
tion was done in transduced SupT1 cells in function of time.
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Therefore, we used an inducible NA-7 Nef. ER fusion protein
(61), activated at time zero of the experiment by adding 1 uM
4-hydroxytamoxifen to the cells. As shown in Fig. 3A, Nef-
mediated down-regulation kinetics of both receptors were
comparable: within 2 h, half of the steady-state level (reached
after approximately 10 h) of down-regulation is achieved.
These fast kinetics are due to accelerated internalization of cell
surface receptors, as shown with a fluorescence-activated cell
sorting-based assay using the inducible Nef. ER (Fig. 3B). Nef
induced an acceleration of the endogenous internalization of
CD4, CD8aB, and CD28. The basal (Nef-negative) and Nef-
mediated (Nef-positive) internalization kinetics for CD4 and
CD8af were almost identical, while those measured for CD28
were both higher.

Mutational analysis of the CD8f3 cytoplasmic tail. In other
known Nef-targeted surface receptors, essential residues in the
cytoplasmic tail have been identified. To determine these res-
idues in the cytoplasmic tail of the CD8 B-chain, series of
Daudi cells, coexpressing CD8« and a CD8@ deletion mutant,
were transduced with wild-type Nef to evaluate the steady-
state down-regulation levels (Fig. 4A and 4C) and internaliza-
tion kinetics (Fig. 4B and 4D) of the CD8af receptors. In the
absence of Nef, both wild-type and mutant CD8«3 showed low
levels of down-regulation (Fig. 4C) and internalization kinetics
(wild-type Nef-negative in Fig. 4B and data not shown). How-
ever, in the presence of Nef, truncation of the CD8 B-chain at
amino acid 206 weakened down-regulation and internalization
by Nef (Fig. 4A and 4B). Deletion of three more amino acids
further decreased the steady state down-regulation *2-fold,
suggesting that amino acids 204 to 206 were important for this
Nef effect. Further truncating the CD8p tail did not have any
additional effect. Remarkably, deletion of the complete cyto-
plasmic B-tail could not entirely block CD8af3 down-regula-
tion.

In a next step, we generated targeted amino acid substitu-
tions in this particular cytoplasmic region and performed
down-regulation and internalization experiments. As shown in
Fig. 4C and 4D, the weakest down-regulation and internaliza-
tion potential of Nef was observed with the mutant 204/5/6 Ala,
followed by the mutants 204/5/6 Ser, 204/6 Ser, and 204 Ala,
suggesting an important function for residue 204. Interestingly,
for reasons that are unclear, the 206A mutant showed an even
higher internalization rate than wild-type CD8pB. However, this
was not reflected by its Nef-induced down-regulation, which
was lower than the control. In summary, our mutational anal-
ysis of the CD8B cytoplasmic tail revealed a C-terminal motif
(FMK) implicated in Nef-mediated internalization, in which
phenylalanine residue 204 seemed to be the most important.
The residual down-regulation (approximately 20%) and inter-
nalization potential observed suggest some role for the CD8«
cytoplasmic tail.

CD8a cytoplasmic tail is not required for Nef-mediated
down-regulation of the CD8 B-chain. To investigate the role of
the CD8a cytoplasmic tail in Nef-mediated down-regulation,
we designed a CD8a(EC+TM)-CD8B(IC) chimera and stably
expressed this molecule in Daudi cells. The CD8af chimeric
receptor and the CD8aa chimeric control receptor showed
comparable high expression levels, as judged by MFTI (Fig. 5,
control). In contrast to the construct with the CD8a cytoplas-
mic tail, which was only moderately affected by HIV-1 Nef or
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SIVmac239 Nef, down-regulation of the chimeric CD8af3 sur-
face marker was very pronounced following Nef expression
(Fig. 5). Indeed, by combining two CD8B cytoplasmic tails (in
the chimera), instead of a CD8« and a CD8B cytoplasmic tail,
the down-regulating capacity of Nef was elevated drastically,
pointing towards a preferential, direct or indirect interaction
between Nef and the short cytoplasmic CD8B tail. We con-
clude that, while the CD8a cytoplasmic tail is dispensable for
Nef-mediated CD8af down-regulation, the CD8P cytoplasmic
tail harbors a potent target sequence for down-regulation.

Colocalization of Nef and CD8 -chain. To gain more in-
sight into the intracellular localization of CD8af in Nef ex-
pressing cells, 293T cells expressing both CD8af and
Nef. EGFP fusion protein were examined by confocal micros-
copy. Nef was localized in the cytoplasm and at the cellular
membrane. In the absence of Nef, the CDS8 B-chain was found
at the cellular membrane and showed some cytoplasmic stain-
ing (Fig. 6, lower panel, Nef. EGFP-negative cells). In the pres-
ence of EGFP-tagged wild-type Nef and the PPAA Nef mu-
tant, both being able to down-regulate HA-tagged CD8p (data
not shown), the CD8 B-chain was localized in submembranous
vacuoles (Fig. 6, upper and lower panels). In contrast, mem-
branous CD8PB expression was retained in cells coexpressing
the Nef mutant LLAA, which fails to downregulate CD8p (Fig.
6, middle panel).

Repression of Nef-mediated CD8 endocytosis. Based on
strategies, used to abrogate Nef-mediated CD4 endocytosis
(37, 40, 55), repression of Nef-mediated CD8 endocytosis was
tested. A decline in Nef-mediated CD8«f internalization was
observed after addition of ikarugamycin, a macrolide antibiotic
postulated to be a general inhibitor of clathrin-coated pit-
mediated endocytosis (40), to Nef-expressing Daudi CD8af3
cultures (Fig. 7A). To block distinct steps in endocytic traffick-
ing, lentiviral RNA interference (RNAi) constructs were de-
signed, expressing EGFP as well as a short hairpin RNA, to
induce knockdown of three key molecules in clathrin-mediated
endocytosis, i.e., AP-2 complexes by n2 chain RNAi (AP-2
RNAI), clathrin heavy chain (Chc RNAIi), and dynamin-2
(Dyn-2 RNAI).

Transduction of SupT1 cells with any of these RNAi con-
structs resulted in a strong depletion of the respective proteins
(Fig. 7B), which had functional implications, as evidenced by a
more than fivefold increase of the transferrin receptor surface
expression (data not shown). Nef and control constructs were
expressed from a bicistronic construct expressing a truncated
human nerve growth factor receptor (ANGFR) as the reporter,
allowing simultaneous flow cytometric evaluation of the ex-
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pression levels of RNAi (EGFP), Nef (ANGFR), and a surface
molecule (e.g., CD4) (Fig. 7C). Loss of AP-2 complexes in
SupT1 cells markedly impaired HIV-1 or SIVmac239 Nef-
mediated down-regulation of CD4 and CD8af3 compared to
the control (p53 RNAI) (Fig. 7D). The knockdown of clathrin
heavy chain had no effect on Nef-mediated receptor endocy-
tosis. Remarkably, knocking down dynamin-2 hampered CD4
and CD8af down-regulation by HIV-1 Nef, but not by
SIVmac239 Nef. This inhibition was less pronounced with the
NA-7 allele (data not shown). In conclusion, these experiments
demonstrate a common role for the AP-2 p.2 subunit in HIV-1
and SIVmac239 Nef-mediated receptor internalization and
point to a similar mechanism used by Nef to down-modulate
CD4 and CD8ap surface expression.

DISCUSSION

In this study, we demonstrated that HIV-1, SIVmac239, and
HIV-2 Nef functionally interact with the CD8 B-chain of the
CD8af receptor, leading to an accelerated internalization of
this receptor. Mutational analysis of several HIV-1 Nef alleles
and mechanistic exploration indicated that Nef-mediated
CD8ap and CD4 endocytosis are closely related effects, sug-
gesting that Nef utilizes similar mechanisms to internalize both
receptors.

Based on our confocal images, showing colocalization of the
CDS8 B-chain with the HIV-1 Nef protein in perinuclear vacu-
oles, and our observation that the CD8 a-chain is dispensable
for the down-regulation effect, we suggest that Nef interacts
directly or indirectly with the CD8p cytoplasmic tail. Our at-
tempts to demonstrate a molecular interaction between Nef
and CD8 in mammalian cells all failed (data not shown), which
might not come as a surprise, as the interaction between Nef
and CD4, suggested to be weak and/or transient, has also only
been demonstrated in vitro and in insect cells (27, 29, 52, 56).

Although the mechanism of Nef-mediated down-regulation
of CD4, the receptor for HIV virions, has already been inten-
sively studied for more than a decade, the ability of Nef to
internalize the other T-cell coreceptor, i.e., CD8af3, was never
addressed in human cells. This can be explained by the fact that
the most convincing evidence for the susceptibility of CDS8
lymphocytes to HIV infection has been gathered only in the
last years (7, 18, 30, 39, 44, 60). Moreover, most laboratories
are using an antibody assigned to the CD8 a-chain for CD8
flow cytometric measurements instead of the 2ST8.5H7 clone,
having an epitope on the CD8af heterodimer. The use of the
CD8a monoclonal antibody clone also explains why Garcia et

FIG. 2. Flow cytometric mutational analysis of Nef-mediated down- or up-regulation of cell surface molecules in retrovirally transduced SupT1
and Daudi cells. SupT1 cells and Daudi cells were transduced with control virus or wild-type or mutant HIV-1 Nef (alleles NL4-3, LAI, and NA-7).
Percent down-regulation was calculated, as described in the Materials and Methods, using the ranges indicated in Fig. 1A. (A) Alignment of the
amino acid sequences of the HIV-1 Nef alleles LAI, NL4-3, and NA-7. Underlined amino acids represent the positions that are changed within
the indicated mutant Nef protein, and shaded amino acids in NL4-3 and NA-7 are different from the LAI sequence. (B) Comparison of the
down-regulating activity of control and Nef constructs in SupT1 cells by using monoclonal antibodies against CD4-allophycocyanin, CD28-
phycoerythrin, CD8a-allophycocyanin, and CD8af-phycoerythrin. (C) Comparison of the modulating activity of control and Nef constructs in
Daudi cells by using monoclonal antibodies CD74/goat anti-mouse-phycoerythrin and HLA-DR-allophycocyanin. The values in B and C are means
and standard deviations calculated from the data generated from three independent experiments. Mutations that abrogate the modulating capacity
of Nef for more than 50%, compared to the respective wild-type Nef, are underlined. (D) Western blot analysis of Nef expression in transduced
SupT1 cells. Lysates of sorted SupT1 cells, transduced with virus as indicated, were stained for Nef. The marker indicates the position of 31 kDa.
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FIG. 3. Flow cytometric analysis of Nef-mediated receptor down-
regulation and internalization in retrovirally transduced SupT1 cells.
SupT1 cells were transduced with an inducible NA-7.ER construct. At
time zero, 4-hydroxytamoxifen (1 wM) was added to the culture me-
dium. (A) Percent down-regulation was calculated, as described in the
Materials and Methods. CD4-allophycocyanin (solid line) and CD8-
phycoerythrin (dashed line) were measured as a function of time.
(B) The figure shows the percentage of CD4, CD8af, and CD28
molecules internalized by HIV-1 NA-7.ER, calculated as described in
Materials and Methods. In each graph, Nef-positive (EGFP expressing
Nef, solid line) and Nef-negative (EGFP not expressing Nef, dashed
line) cells are depicted. The EGFP ranges used for calculation are
indicated in Fig. 1A.
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al. claimed that Nef fails to affect the human CDS8 receptor
(20). However, our results in Daudi CD8a« cells indicate that
there is some effect on the CDS8 a-chain, suggesting a minor
interaction of Nef with the CD8a cytoplasmic tail.

Previous reports have provided insight into the mechanisms
involved in Nef-mediated CD4 down-regulation. Nef acceler-
ates normal CD4 clathrin-dependent internalization by func-
tioning as a connector between CD4 and the AP component of
the clathrin complex. In a next step, the CD4 receptor is not
recycled to the membrane, as occurs in normal conditions, but
is misrouted by Nef to the lysosomes. In contrast to the dy-
namic trafficking properties of CD4, the CD8aa and CD8af
receptors are slowly endocytosed, regardless of the presence of
p56'* or phorbol esters (6, 43). In our internalization assays 0
to 4% of CD8ap was found intracellularly in Daudi CD8af
and SupT1 cells at equilibrium (25 min), increasing to 25 to
35% in the presence of Nef.

Efficient endocytosis of cell surface glycoproteins through
clathrin-coated vesicles requires the presence of endocytosis
signals (49). Whereas the cytoplasmic tails of CD4, CD28§,
CD74, and MHC class I all contain a putative sorting signal
(35, 59, 63), this is not the case for the CD8«a and B-chain
cytoplasmic tails. However, as Nef can bring its own dileucine
sorting signal, its recruitment, directly or indirectly, to the
cytoplasmic tail may be sufficient to induce accelerated CD8o3
endocytosis, raising the question of whether a native CDS8
endocytic signal would even be involved in this process. In this
respect, mutational analysis of the CDS8p tail showed a se-
quence (FMK), close to the CD8B carboxy terminus, to be
essential for efficient Nef-mediated CD8B endocytosis.

Remarkably, we still observed a residual CD8af3 down-reg-
ulation of this mutant, as well as of the cytoplasmic tail-deleted
CDS8 B-chain mutant, probably reflecting the modulating ca-
pacity of Nef on the CD8 a-chain. The FMK sequence is to our
knowledge not part of a known endocytic consensus sequence
and, remarkably, is present in all membrane-associated splice
variants of CD8@ which, through alternative splicing, only start
to differ immediately C-terminal of this sequence (48). Based
on information from secondary-structure prediction methods
(45), this FMK sequence would be part of a helix structure
which comprises almost the complete CD8B cytoplasmic tail.
Similarly, residues in the cytoplasmic tail of CD4, necessary for
Nef-mediated CD4 down-regulation, are located within the
helical part of the CD4 cytoplasmic tail. Based on mutational
studies, a correlation was demonstrated between the presence
of an a-helix in CD4 and its susceptibility to down-regulation
by Nef (53), which might also be the case for Nef-mediated
CD8ap down-regulation.

Our results demonstrate that at least three sites within Nef
are required for CD8af3 down-regulation, the myristoylation
signal and N-terminal anchor regions, the C-terminal flexible
loop, and amino acid positions 57 to 58. Consistent with all
reported Nef functions, the myristoylation signal was found to
be essential for CD8a down-modulation. The flexible loop
contains a dileucine-based internalization motif, which is
flanked by acidic clusters (***EEXgLLX;DD'”), and is in-
volved in enhanced internalization of the Nef-CD4 complex
(23). This dileucine sequence, located at amino acid positions
164 to 165 of the Nef molecule, is involved in the association of
HIV-1 Nef with the AP complex (8). Consequently, mutations
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FIG. 4. Mutations in the CD8 B-chain and their effect on endocytosis and down-regulation. Daudi cells were cotransduced with CD8aq,
wild-type or mutant CD8B, and control or wild-type Nef. (A and C) Alignment of amino acid sequences of wild-type (210*) and mutant CD8
B-chain cytoplasmic tails. An asterisk indicates a stop codon. (A) The bar chart shows the percent down-regulation of (mutant) CD8«f by HIV-1
Nef alleles NA-7, LAI, and NL4-3. In both B and D the percentage of (mutant) CD8af molecules internalized by wild-type HIV-1 NA-7 is shown,
including in both the same data for a Nef-negative construct as a control (wild-type Nef—). (C) The bar chart represents the percentage of (mutant)
CD8af down-regulation after transduction with either control virus or wild-type Nef NL4-3. Each bar represents a (mutant) CD8 B-chain, as
indicated by the changed amino acid sequence compared with CD8«f. Percent down-regulation and internalization were calculated as described
in Materials and Methods, using the ranges indicated in Fig. 1A. In A, B, and D, mean values are shown and standard deviations are calculated
from the data generated from three independent experiments. In B the results for NL4-3 are representative of the results with HIV-1 alleles NA-7

and LAIL

in the flexible loop at these dileucine sequences or at acidic
positions 174 to 175 drastically changed the modulating capac-
ities of Nef, preserving only MHC class I down-regulation (Fig.
2B) (57).

Mutation of amino acid positions 57 to 58, denoted the CD4
interaction site, abolished the capacity of Nef to modulate
CD8af as well as CD4 surface expression. Furthermore, we
found this sequence to be required for CD74 upregulation and,
in agreement with Swigut and coworkers, for CD28 internal-
ization (63). How Nef can use the same acceptor site (or
overlapping sites) to form a complex with both CD4 and CD28,
as well as the CD8 B-chain and CD74, even when the target
sequences within these receptors are different, remains an
open question. Even more intriguing is our observation that
Nef apparently can use the same mechanism to down-regulate
and to up-regulate (CD74) receptor surface expression levels.

A number of studies demonstrate that most if not all Nef
functions are genetically separable (57). However, based on
the results of our structure-function analysis, we could not
genetically separate the ability of HIV-1 Nef to down-regulate
CD8ap and CD4. Mutation of the complete acidic cluster at
amino acid positions 62 to 66 separated the effect of HIV-1 Nef

CONTROL HIV-1 Nef

SIV Nef

o cyt.
tail

CD8u

B cyt.

tail

EGFP

FIG. 5. Chimeric constructs. Daudi cells were retrovirally trans-
duced with the CD8a(EC-TM)-CD8a(IC) chimera (cyt tail) or a
CD8a(EC-TM)-CD8B(IC) chimera (cyt tail), using bicistronic con-
structs with ANGFR as the reporter. Bivariate dot plots are gated on
ANGFR-positive cells, at day 2 after transduction of these cells with
control virus, HIV-1 Nef (NA-7 allele), and SIV Nef (mac239), using
bicistronic constructs with EGFP as the reporter. CD8a-phycoerythrin
versus EGFP expression is shown.
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FIG. 6. Confocal images of 293T cells. Nef. EGFP was detected by direct fluorescence (green, left panels) and CD8B.HA or CD8B by
monoclonal antibodies as indicated in Materials and Methods (red, middle panels). Nuclei were visualized by DAPI staining (blue). Right panels
show the merged images from Nef. EGFP and CDS8p. Areas of colocalization of Nef. EGFP/CDS8B are shown in yellow. As indicated, the upper
panels show cells expressing wild-type LAI, the middle panels show the LLAA mutant, and alower panels show the PPAA mutant. Scale bars

represent 5 pm.

on CD8aR/CD4 and CD28 expression, while amino acids 41 to
49 (removed in Del3) were required for CD8ap/CD4/CD28
down-regulation but were dispensable for down-regulation of
MHC class II and up-regulation of the Ii chain. Knockdown of
the trafficking molecules AP-2, clathrin heavy chain, or dy-
namin-2 showed no profound difference in reversal of the
HIV-1 Nef effect on CD4 and CD8«f3, corroborating our re-
sults with the mutant Nef panel.

Surprisingly, Nef-mediated endocytosis could still occur af-
ter knockdown of clathrin heavy chain but not AP-2, suggesting
that trace amounts of clathrin heavy chain are sufficient for
clathrin-coated endocytosis, while AP-2 is present at rate-lim-
iting amounts. Although the LAI allele of HIV-1 Nef was
affected more strongly by dynamin-2 RNAi than the NA-7
allele (data not shown), we did not observe any effect on the
SIVmac239 Nef-mediated down-regulatory potency, pointing

to a difference between HIV-1 and SIVmac239 Nef in the need
for endocytic cargo molecules. However, we did not observe
this difference after knockdown of AP-2, suggesting a central
role for AP-2. This result is in contrast with Rose et al., who
demonstrated a stronger inhibition of SIV than of HIV-1 Nef-
mediated CD4 down-regulation (55). This dissimilarity in po-
tency can be due to the different experimental set-ups (several
electroporation steps of short interfering RNA) and cells
(HeLa) used by Rose and coworkers.

Various mechanisms for HIV entry into CD8 lymphocytes
have been proposed, with entry through a conventional CD4-
dependent pathway as the most plausible one. This infection
route can occur during intrathymic CD8 lymphocyte develop-
ment, at the CD4" CD8" double positive stage (14), or upon
activation of the mature CDS8 lymphocyte, which leads to the
coexpression of the CD4 receptor on the cell surface (18, 36).
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(IKA—) ikarugamycin (2 wM) prior to the internalization experiment. At time zero, 4-hydroxytamoxifen (1 wM) was added to NA-7.ER-
transduced Daudi cells. (B) Western blot, performed as indicated in Materials and Methods, shows protein expression levels of AP-2 p2 subunit,
clathrin heavy chain (Chc), and dynamin 2 (Dyn-2, arrowhead) in control and RNAi-transduced SupT1 cells, with equal amounts of protein loaded.
(C) Bivariate dot plots of flow cytometric measurement of SupT1 cells transduced with AP-2i and HIV-1 Nef (LAI). CD8af (phycoerythrin) versus
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Recently, several groups provided evidence that, while HIV-
infected CDS8 precursors from the thymus rarely reach the
periphery, the majority of circulating infected CD8 lympho-
cytes acquired HIV through expression of CD4 during activa-
tion (7, 12).

HIV-infected CD8" T-cell precursors have been suggested
to be depleted intrathymically. However, as previously re-
ported, CD8aB/CD4 down-regulation alone cannot explain
Nef-mediated impaired T-cell development, and other func-
tions of Nef and/or HIV are needed for its induction of thymic
depletion (61). Although CD8ap*CD4'" T lymphocytes ac-
count for a minor fraction of peripheral blood CDS8 lympho-
cytes (<5%), HIV patients were found to harbor high levels of
infection in this CDS subset, approaching those found in CD4
lymphocytes, whereas CD8a"CD4~ T lymphocytes showed
very low or even undetectable viral DNA loads (12). Possibly,
the ability of HIV to infect this activated CD8" population
may contribute to the decline in CD8 lymphocyte function
which is at present predominantly ascribed to the lack of CD4
lymphocyte help and viral escape (reviewed by McMichael and
Rowland-Jones [46]).

Remarkably, although the two chains of the CD8af recep-
tor are covalently linked, suggesting a joined internalization of
CD8a and CDS8B, Nef modulates the surface expression of
CD8a to a much lower extent than CDS8B in peripheral blood
mononuclear cells. A possible explanation may be the simul-
taneous expression of CD8aa and CD8af on the cell surface,
with Nef predominantly affecting the CD8af surface expres-
sion. Whereas CD8aa is not expressed on resting naive T cells
in the periphery (38), coexpression of CD8aa and CD8af3 on
activated conventional T cells and in T-cell leukemias has been
reported (64). Hence, in the presence of Nef, activated lym-
phocytes might get skewed towards a predominant CD8aa
receptor surface expression.

In conclusion, this work describes the down-modulation of
the CD8ap surface expression by Nef. Analysis of the mecha-
nism by which Nef down-regulates CD8af revealed an accel-
erated AP-2 complex-mediated internalization of the receptor,
closely related with the mechanism of Nef-mediated CD4
down-modulation. Further functional experiments are war-
ranted to elucidate whether Nef impairs CDS8 lymphocyte func-
tion, thus affecting the immune control of both HIV and op-
portunistic pathogens.
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