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INTRODUCTION 

To work out without formulae the results of almost any system of 
breeding long continued is a most laborious and time-consuming task. 
while a formula serves as a machine; one puts in the data and grinds 
out the results without labor . The present paper is a collection of 
formulae for the results of most of the usual systems. of breeding . The 
systems dealt with are: random mating. assortative mating of domi- 

'From the Zoological Laboratory of the Johns Hopkins University . 
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nants with dominants, recessives with recessives ; selection of dominants 
alone ; self-fertilization ; and the various systems of inbreeding (of 
which a considerable variety exists). The present formulae give the 
distribution of single characters, sex-linked or not sex-linked, in con- 
tinued breeding by such systems. A later paper will deal similarly with 
the cases where there are two or more characters, independent or linked 
together in various degrees, Most of the formulae are here presented 
for the first time; the few previously worked out are included in order 
to make as complete and systematic a collection as possible. 

Strict Mendelian heredity presents a rigid scheme; its results can be 
computed; it is a problem in arithmetic. T o  work out its numerical 
formulae does not involve taking ground on the question whether all 
inheritance actually is of this rigid character. To discover whether the 
results of inheritance are continually subject to evolutionary change, as 
some hold, it is necessary to know first what would be the results without 
such evolutionary change. The results of actual experimentation may 
then be compared with what the formulae demand, in order to determine 
whether the processes of nature are or are not equally rigid. 

The type of the formulae here set forth is the well-known I : 2 : I 
ratio observed in the second filial generation when two individuals hav- 
ing such factors as AA and aa are crossed. Recent developments in 
the study of heredity have introduced some complications into the re- 
lations ; sex-linked characters follow rules of their own, and linkage 
greatly modifies the rules of distribution before known. These taken 
with the various systems of breeding give results requiring a variety of 
formulae for their working out. 

The formulae for the first and second filial generations after making 
a cross between two parents differing in one or  a few factors are of 
course well known. PEARSON (1904) shows that the formula AA + 
9 Aa + % aa holds for any generation for the progeny by random 
mating of AA and aa, and HARDY (1908) has made the same point. 
The present writer ( JENNINGS 1912) gave a formula for the results of 
self-fertilization. PEARL (1914 a )  worked out the results of inbreeding 
of brother and sister among the progeny of AA X aa, and gave a formula 
(PEARL 1914 b) showing how the constitution of any generation can be 
derived when that of the preceding generation is known. I gave a 
general formula for the proportion of homozygotes in any generation 
in this case (JENNINGS 1914), a formula superseded by the simpler ones 
in the present paper. FISH (1914) has studied the results of inbreeding, 
both of parent by offspring and of brother by sister; he gives the per- 
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centages of homozygotes in the latter case up to 25 inbreedings.2 Other 
work of this sort is not known to me. 

The questions which the formulae are designed to answer may be il- 
lustrated as follows: Suppose that one parent has the factors AA, the 
other aa; and that after their crossing there is assortative mating (domi- 
nants with dominants, recessives with recessives) for seven generations. 
What will then be the constitution of the population; what proportion 
will be AA, what aa, what Aa? Further, if such mating is indefinitely 
continued, what are the limits to which the proportions of each of the 
three classes may finally attain? And how many generations must such 
breeding be continued before the limiting proportions are, for practical 
purposes, attained? Suppose that the parents differ, not in one pair of 
factors alone, but in several, how are these questions to be answered 
for each pair separately, and for the various possible combinations of 
them ? 

It should be emphasized of course that the results set forth in the 
formulae here given, hold with some degree of precision only if the 
experiment is carried out on an extensive scale, with many lines of 
descent. When the breeding is carried out with few lines of descent, the 
results given by the formulae are merely the most probable results. 

We shall deal in part I with a single pair of typical Mendelian factors; 
in part I1 with single sex-linked factors. 

We shall represent any single pair of alternative factors by A and a, 
in the three possible combinations AA, Ad: and aa. 

It is clear that the outcome of any system of breeding depends not 
only on the system followed, but also on the constitution of the parents 
at the beginning. For many (not all) types of breeding the beginning 
is a cross between two parents. The matings of two parents may be AA 
X AA; aa X aa; AA X oa; AA X Aa; Aa' X Aa, or Aa X aa. The first 
two matings require no consideration, since by any system of breeding 
all the progeny are like the parents. The most important differing 
parental types are AA X oa and AA X Aa; these give diverse results, 
while from other crosses the results are similar to one or the other of 
these. We shall specify in each case both the system of 'breeding fol- 
lowed and the constitution of the parents. 

When breeding is continued according to a given system for many 
generations, several types of results may be distinguished, so far as 
concerns the constitution of the population, and the formulae ex- 
pressing it : 

'FISH states, by what is evidently a slip, that  the percentages are of heterozygotism. 
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( a )  In  some cases the proportions (and formula) remain the same 
for all generations. It is mainly in random mating that this is the case. 
Examples are found in sections ( I ) ,  (4), (37), etc.3 

(b)  The constitution of the population changes from generation to 
generation. In  such cases it is often possible to give a simple formula 
based upon n, the number of generations; from it the result for any 
generation can be directly computed. Examples are (13 ) ,  (16), ( 1 7 ) ,  
etc. 

(c) In  other cases the proportions of the population give a series of 
values, not easily expressible as simple functions of n alone. These 
cases are the most numerous and most interesting; they will be dealt 
with further presently. 

(d )  In some cases a general formula for any generation taken by 
itself is not obtained; the best that we can do is to give a formula for 
determining the constitution of any generation when that of the im- 
mediately preceding generation is known. Only a few cases of this 
sort have been found among those here dealt with, for example, ( S ) ,  
(531, (541, ( 5 5 ) ,  etc. 

FUNDAMENTAL SERIES 

As just mentioned ( ( c ) ,  above), in most cases the population result- 
ing from a given system of breeding shows in the successive generations 
a series of definite proportions for each of the possible combinations of 
factors present. The diverse series so obtained, whether from random 
mating, assortative mating, self-fertilization, or one of the various types 
of inbreeding, are almost all examples of certain simply derived mathe- 
matical series, or of their covbinations. It will greatly facilitate the 
presentation of results and avoid much repetition, if we deal first in a 
general way with these simple series, giving their laws of formation, and 
presenting in a table the first twenty terms of each. Our later results 
may then be presented by designating the terms of the particular series 
which they give. These fundamental series are shown in table I. 

Aside from the series of natural numbers, designated n in the table, 
the most fundamental series for Mendelian breeding is that of the suc- 
cessive powers of 2 ;  this series is here designated B. Each term is 
derived from the preceding one by doubling it. The fractions expressing 
the proportions of the population having any particular combination of 
factors have as a rule terms of this series as denominators. 

'Tthe numbers in parentheses refer to the numbered sections o r  paragraphs in which 
the formulz are given later, in the body of the paper. 
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Closely related to the series of powers of 2 are several series (C, D 
and E in the table) in which any succeeding term is derived by doubling 
the preceding one, and adding or subtracting I to or from the result. 
Series C is formed by beginning with 0, doubling each term and adding 
I to give the next term. Each term is I less than the corresponding 
term of B. Series D begins with 2 ;  succeeding terms are obtained by 
doubling and subtracting I. Each term is one more than the immediately 
preceding term of series B. (A series beginning with I and formed by 
doubling each term and subtracting I plays a part in breeding, but as all 
its terms are I ,  it does not require elucidation.) Series E is obtained 
by beginning with 2 ,  doubling and adding I to the preceding term. 
Each of its terms is the difference between a given term of B and the 
preceding term of D. 

Series F is the so-called Fibonacci series; its first two terms are o and 
I ,  then each succeeding term is the sum of the two preceding ones. This 
series is given by the proportions of heterozygotes Aa in various sys- 
tems of inbreeding (q.v.). 

Series G is formed by beginning at 0, doubling, then adding or sub- 
tracting I ,-alternately for the successive terms,-beginning with ad- 
dition. Thus, twice o, plus I, gives I ;  twice I minus I gives I ;  twice 
I plus I gives 3, etc. ’The same series is obtained if we begin with I, 

double, and first subtract I ,  next time adding I ,  etc.; but the first term 
of the series so obtained will be the second term of G. It may be ob- 
served that the difference between any term of G and the correspond- 
ing term of B always forms the next term of G. Thus if we subtract 
each term of G from the corresponding term of B, we obtain anew the 
series G, though with each term moved one place to the right. Further, 
the sums of the corresponding terms of G and B give again the series G, 
though now with each term moved two places to the right. This 
peculiar series G is characteristic for the results with sex-linked factors. 

The remaining series of the table are combinations of those already 
mentioned (as shown in the second column of the table, headed “HOW 
formed”). Thus, series H is given by subtracting each term of F 
from the corresponding one of G ;  series I by subtracting from B the 
corresponding terms of both F and G. Series J is obtained by subtract- 
ing from a given term of B the next succeeding term of F, (that is, 
J = B, - F,+l). In the same way, K is formed by subtracting from 
any term of B the second succeeding term of F. Series L is another 
combination of B, F and G. Series K and M are obtained when parents 
of the type AA X A a  are inbred. 

GENETICS 1: Ja 1916 
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The table gives the first 20 terms of each series. At the left is, in 

each case, a letter which will be employed as a designation of the cor- 
responding series. Before each series is given likewise a formula or 
statement showing, in the first seven series, how any term of the series 
is derived from the preceding one,-the preceding term being called x. 
Thus, in series C, z x  + I signifies that any term is formed by doubling 
the previous term and adding I .  In  the remaining six series this form- 
ula shows how any given term of the specified series is obtained from 
the other series. Thus, each term of H is obtained by subtracting the 
corresponding term of series F from the same term of series G. After 
the last term of many of the series is given another formula or explana- 
tion showing as a rule how any given term of this series may be other- 
wise designated ; thus the fifth term of series C is equal to z5 -I (or 3 I ). 
In some cases certain other information is here given. 

Any term of any series is designated by the aid of the letter repre- 
senting the series, with the corresponding term of the series n as a sub- 
script. Thus, C, signifies the first term of C(= I )  ; F, is 8;  J9 is 475 ; 
Bo is I, etc. In general, if n represents a given number, D, is the cor- 
responding term of series D, etc. Such expressions as Fn+:! signify such 
a term of series F as is found by adding 2 to the given number n; thus 
if n is 5, F,,, is F, (= 13). 

In  giving results of breeding where these series are involved, there 
will be given first a general expression showing what terms of the series 
correspond to the results of n successive breedings of the given type; 
this will be followed by the first three or four fractions so derived (cor- 
responding to the values I ,  2, 3, 4, etc., of n) .  For example, under 
paragraph (45), we find : 

T 

This signifies that after one inbreeding the proportion of the popu- 
lation having the constitution A A  is ; after two it is # , after three it 
is & after four k&, and in general after n inbreedings it is the nth 
term of the series J, divided by the (n+I) th  term of the series B, so 

that after I O  inbreedings it is '3 or .&f& . (See page 63 for further 
explanation. ) 

B11 

THE RATE O F  CHANGE I N  THE DIVERSE SYSTEMS O F  BREEDING 

Working out the concrete results for a single pair of characters, it is 
found that in most or all the systems of breeding there is a tendency to 
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approach a constant set of proportions after a large number of genera- 
tions. I n  most cases these constant proportions or limits are (theoreti- 
cally) never actually reached, although the difference between them and 
the actual proportions may be made less than any designated fraction. 
Thus, in random mating of sex-linked characters, when the original par- 
ents are AA and a - (see (58) ), the proportion of males that are A - 
approaches 3, of those that are a -approaches % ; of the females, AA 
and Aa each approach 3 ,  while aa approaches 8 ; but these limiting 
proportions are never actually reached. In brother by sister mating 
(29),  the proportions of AA and au each approach s, while that of Aa 
approaches 0. 

For any particular case, after the formulae have been worked out, as 
given in the text, the proportions which any particular class approach 
may be obtained from a table giving once for all the limits approached 
by the various series of table I ,  when divided by the corresponding 
terms of the series B, since most of our results take the form of such 
fractions. For example, in the mating of brother by sister, sex-linked 

character (69),  in the males the proportion of A - is __ Gn+l ,  and this 
G fraction approaches the value Q ;  of a the proportion is -n, which 

Bn 

T Bn 
approaches the value r/3 ; in the females AA is 3, which approaches 

, approaching the limit ; Aa is , whose H n+l the limit g, an is ___ 
B n + 1  B, 

Bn+1 
Fn+1 

. -  

limit is 0. 
We therefore give in table 2 the limits approached by the fractions 

obtained when the diverse series are divided by B. 
Table 2 includes also certain other data of importance. One needs to 

know, not only the theoretical limit approached, but also how long a 
series of breedings is required before the limit is practically attained. In 
most cases there is at first rapid progress toward the limiting value, and 
it is attained within say I percent after only 6 or 7 generations; there- 
after progress is so extremely slow as to be practically negligible. This 
is the condition already pointed out by PEARL (1913) for certain systems 
of inbreeding. For example, in self-fertilization, where the original 
cross was AA X Aa (see ( 2 6 ) ) ,  the proportion of AA gives the series 
En +2 the limit of which is g, or 75 percent. But after five self- 
fertilizations AA has already reached the proportion 74.2 percent, so 
that further breeding in this way has little further effect. I n  table 2 

Bn+a 
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we give, therefore, the earliest term of the series in which the difference 
between the final or limiting proportion and the proportion actually at- 
tained is less than I percent of the total. From this we can readily 
determine the number of generations required in any system of breeding 
to bring the actually attained proportion within I percent of the theo- 
retical limit. 

In  most of the series of table 2 ,  the value attained at any term is below 
the theoretical limit. In  the series formed by the division of D and of 
F by B, the actual value is always above the limit,-the limit being ap- 
proached from above. I n  the series formed by dividing G by B, the 
actual values are alternately below and above the limiting value, the 
difference decreasing in later terms. These relations are shown in table 
2 by use of the signs + and -, as also of t. 

The information summarized in table 2 is given more precisely and 
fully in the text, under the proper paragraph. After giving the general 
formula and the first few terms of the series to which it gives rise, the 
limiting value of the proportions is given, and this is followed by the 
actual value of the proportions for the smallest number of generations 
in which the proportion attained is within I percent of the limiting value 
(see explanation on page 63) .  

DERIVATION O F  THE F O R M U L A E  

In  the actual working out, the path to most of the formulae has been 
long and indirect; frequently with many windings and digressions. T o  
give in detail the method of working out each formula would swell the 
paper beyond all bounds. I am compelled, therefore, in most cases, to 
content myself with giving the actual formulae, leaving their correctness 
to the test of time. In  a few cases some indications are given of special 
points requiring attention in the working out. The general method of 
work is something as follows : 

One begins with the formulae of the assumed parents (as A A  X A a ) ,  
forms the gametes, and mates them (all symbolically of course), ab- 
taining the results for generation I .  One may continue this for five or 
six generations, getting the proportions of each sort of individuals for 
each generation. The work is shortened by obtaining at the beginning 
a formula for transforming the proportions for one generation into 
those for the next (such a formula as is given in (8)). After obtaining 
the results for five or six generations, one examines the series of results, 
and the method of derivation, to discover general relations that may 

GENETICS 1: Ja 1916 
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give a regular series, or be embodied in a formula. Curiously, the study 
of the actual procedure in deriving results is usually of little assistance 
in determining the nature of the series or of the general formula. One 
must, as a rule, take the series of results as finished products, and make 
an independent study of them, endeavoring by processes of trial to fit 
them to some series or to some formula. It is here that there is scope 
for ingenuity; a given series of results may resist for weeks the dis- 
covery of the law that unites them. After the system of fundamental 
series, given in table I ,  had been discovered, it was usually found pos- 
sible to fit the results to some combination of these; but of course the 
work was three-fourths done before this system was worked out. The 
series of results as one obtains them are often in perplexing form. For 
example, in (43), the proportions of AA are for five generations suc- 
cessively s, j/, 5, g$- . It is difficult to discover the general law 
underlying such a series, though it turns out that there is one. 

After a law or regular series is obtained that fits the first five or six 
generations, the law is applied to give the results for three or four 
generations more. These results are then tested by the actual detailed 
working out (symbolic formation of gametes and their mating, etc.) 
for these same later generations; if the formula has given the correct 
results, it is assumed to be a general formula. 

More rarely, the formula is obtained by generalizing the actual pro- 
cedure in the symbolic formation of gametes and their mating according 
to the given method. 

METHOD O F  PRESENTATION; DIRECTIONS FOR USE O F  T H E  FORMULAE 

The ideal method of presentation of the formulae would be in tables, 
but this is impracticable, owing to the somewhat complex conditions that 
must be specified. They will, therefore, be presented in a series of 
numbered paragraphs. Any single pair of alternative factors will be 
represented by A and a, in the three possible combinations AA, aa and 
Aa. The number of successive times.any given sort of breeding has 
occurred (that is, the number of generations that the system has been 
followed) will be called n. The formulae are designed to show the 
relative proportions of the population formed by each of the three sorts 
of individuals (AA,  aa and Aa) after any number n of breedings of 
the designated sort (from these the relative proportions of homozygotes 
and heterozygotes; of dominants and recessives, are of course, at once 
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obtainable) ; also the limit which each proportion tends to approach as 
breeding is continued ; and the smallest number of generations that 
breeding must be continued before the actual proportions come within 
one percent of the limiting value. The *information given will best be 
understood from an example. In ( 3 1 ) ~  page 72, we find: 

3 
4 '  

Here we have: 
I .  The general formula for the proportion of the population having 

the constitution AA, after any number n of breedings of the sort set 

forth. This general formula, M_n+l , enables one to find from table I ,  

page 56, the proportion of AA after any particular number of gener- 
Bn;3 

atjons (n) ; thus, after 12 such matings( n = IZ), the proportion of 
A A  1s --= 2 3 9 6 6 -  mT68 - -731 

* M13 

15 
2. Immediately following the general formula are the first three 

terms of the series given by the formula; that is, the proportions when 
n is I, 2, and 3 ;  these are in this case &, g ,  $2  . 

3. Following these, after a series of dots, is the limiting value which 
these proportions approach. Thus, in this case, after a very large num- 
ber of inbreedings the proportioq of the population that are AA would 
be very near g. This limiting value is never actually attained, but the 
difference between it and the actual value may be made smaller than any 
designated value. 

Finally is given, in the form AA,, = .7401, the lowest number, 
15, of inbreedings necessary to bring the actual proportion within I 

percent of the limiting value, together with the actual proportion (.740I) 
in this generation. Thus, in this case, the formula shows that we must 
continue inbreeding I 5 generations before the individuals AA form 
within I percent of the possible g of the population, that at that time 
they form .7401 of the population, and that if we continue to inbreed we 
make very little further progress, and can never in this way cause A A  
to form quite .75 of the population. 

Similarly, in paragraph (31), page 72, we find given the general 
formula and the first three terms of the series for the proportions of the 
population formed by aa and Aa. We find that aa approaches gradually 
the limit g, while Aa comes nearer and nearer to 0, although these limits 
are never quite reached. We find further that after 15 inbreedings ( ~ a  

comes within I percent of forming of the population, its actual 

4. 
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proportion at that time being .2401. After 19 generations Aa comes 
within I percent of being 0, its actual proportion being then .008. 

In  some cases the general formula given is the same as that in a 
preceding paragraph. In  such a case the first terms of the series and 
the limiting values are not repeated; they should be sought in one of 
the immediately preceding paragraphs. This is the case, for example, 
in (36) ; the terms and limit are given in (35). 

For some cases the general formula involves other variables besides 
n, so that a concrete series of terms can not be given and no general 
limit can be assigned. Such are found in ( 2 ) ,  (8), etc. These and 
various other methods of presentation are self-explanatory. 

I. TYPICAL FACTORS, NOT SEX-LINKED 

a. Random mating 

( I  ) The population at the beginning consists of individuals AA and 
aa, in equal numbers. These mate at random ( A A  with AA or with aa, 
etc.). 

In  any later generation the population consists of : 

~ A A + ~ a a a + ~ A a  
% Homozygotes + 5 heterozygotes 

Dominants + recessives. 

(2)  If the proportions of the two kinds are at the beginning not 
equal, but there are r AA to t aa, in later generations the population 
consists of:  

r2 AA + t3 aa + 2rt Aa 
The condition given in ( I ) is only a special case of this, where r and t 

(3) If the population at the beginning are all Aa, in later generations 

(4) The population at the beginning consists of individuals A A  and 
In 

are both I. 

the constitution is the same as that set forth under ( I ) .  

Aa, in equal numbers, mating at random ( A A  with A A  or Aa, etc.) 
later generations the population consists of : 

2- AA + -;6 aa + +F Aa 
5/8 Homozygotes + heterozygotes 
-15 Dominants + 1 recessives 

16 

16 10 
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(5 )  The proportions of AA and Aa at the beginning are not equal, 
there being r AA to s Aa. In later generations the population is 

(s +ZY)-)"AA + szaa + 2s(s +2r)Aa 
4(s + y>' 

4 

Case (4) is only a special case of this. 
(6) If the population at the beginning is aa and Aa, the results are 

the same as given under (4) and (5) ,  save that the proportions for aa 
and AA are interchanged, that for A a  remaining the same. 

(7) If a breeding experiment begins with a single pair (AA  and au, 
or AA and Aa, for example), and these are mated, this first mating is 
not a random mating, but a defined one, and the later conditions speci- 
fied in ( I )  and (4) are not reached till after an actual random mating; 
that is, until the generation fz ;  they persist thereafter, so long as the 
matings are random. 

(8) The conditions thus far specified are all special cases of the 
general condition that at the beginning of random mating the population 
consists of r AA + t au + s Aa. If r, t and s are diverse and none of 
them are zero, the constitution of the population is not uniform in later 
generations, but changes with the number of random matings that occur. 
If the constitution of any generation n is Y AA + t a@ + s Au then the 
constitution of the next following generation is : 

AA = (s + 2r)2. 
aa = ( s  + 2t)2.  
Aa = z ( s  + 2 ~ )  ( s  + 2 t ) .  

Thus, if at the beginning of random mating the proportions are 3 AA 

AA = (5 + 2  x 3)3 = II* = 121 
aa = (5  + 2 X 4)2 = 1 3 ~  = 169 

A u = a X 1 1  x 13' 286. 
The proportions for succeeding generations can be found in the 

same way. I have not been able to obtain a serviceable formula giving 
directly the proportions for any later generation, without working out 
the proportions for the intervening generations. 

( 9 )  If r and t are equal (whatever the value of s), the later pro- 
portions are those given under ( I ) .  

( IO)  If s is zero, the condition set forth under ( 2 )  is realized. 
( 1 1 )  If Y or t is zero, the condition set forth under ( 5 )  or (6) is 

+ 4 aa + 5 Au, in the next generation the proportions will be : 

realized. 
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(12 )  If r and t are both zero, the condition given in ( 3 )  is realized. 
The results for (g),  ( I O ) ,  (11) and ( 1 2 ) ,  as given in ( I ) ,  ( 2 ) .  

( j ) ,  (6) and ( 3 ) ,  flow directly from the relations set forth under (8) 
when the proper substitutions are made. These ‘relations (8) are the 
fundamental ones for discovering all the rest. 

b. Assortative mating,-dominants m*th dominants, recessives with 
recessives 

If in pure stocks dominants mate with dominants, recessives with 
recessives, of course the stocks simply remain pure. The problem of 
how such breeding will result has point only after crossing has oc- 
curred, so that heterozygous dominants are present. Therefore, it is 
necessary to specify in each case what cross or what other sort of 
mating has occurred before the assortative mating begins. 

In such assortative mating after a cross, AA mates with A A  or with 
Aa, while au mates only with aa. 

(13 )  The population at the beginning consists of A A  and ua in equal 
numbers; these mate at random, producing AA + aa + Aa; 
assortative mating then occurs among these progeny. 

There are certain pitfalls to be avoided in working out the propor- 
tions in later generations. In  the generation before assortative mating 
occurs, the proportion of dominants ( A A  + Acc) is H, while the reces- 
sives are %. The essential point to keep in mind is that in the next 
generation the progeny produced by the dominants will be of all 
the progeny produced, while those from the recessives (which will all 
be recessive) will be %. We have then merely to find out what will be 
the relative proportions of AA, aa and Aa among the progeny of the 
dominants; to get their proportions of the total we must multiply these 
proportions from dominants by g. For aa the proportion so obtained 
(derived from the dominants) must be added to g, to give the pro- 
portion of the total progeny that are recessive. Proceeding in this 
way, we find that after any number n of successive assortative matings, 
the proportions of the three classes are: 

AA =- ”+ I ; i, I, & . . . . . . 3. AA4,= 490. 
2% +4 
7 z + r  

2% +4 
& = - - * l  , 3, *, I 

aa --- . 

I 
I . .  . . . .  0 .  Aag*= . O I O .  

n+2 
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I Homozygotes = __ n+l * heterozygotes = __ 

n+2 ' n+2 * 

*'+3 ; recessives = - n+r 
2nt-4 

Dominants = __ 
272 +4 

(14) In the more general case the population at the beginning is r AA 
to t aa; which mate at random, assortative mating occurring in their 
progeny. 

By (2) the progeny derived from the original parents is 

?AA + 2r t Aa + t 2ua  
Now dominant mates with dominant, recessive with recessive. After 

1.z successive assortative matings, the population is : 

(15) In  the still more general case the population before a given as- 
sortative mating, is composed of r AA + t ua + s Aa. In the next 
generation (after the assortative mating), the proportions are : 

e 

s2+4rt+4st 
4 ( y + 4  (.+.+t) 

4 @+s) (Y+S i t )  . 

aa = .~__ 

4rs+2s2 Aa=- 

By continued use of these formulae (substituting at any generation 
the proportions of AA for r, of uu for t, of Aa for s ) ,  the results for 
any number of generations of assortative matings may be obtained: 
These relations are the fundamental ones for working out the formulae 
given in the following paragraphs (as well as in (13)). 

(16) The population at the beginning is all Aa; assortative mating 
occurs. After n such matings: 

?Z AA = ~ ; +, *, j- . . . .  . . + . AA49 .490. 2n+2 

aa = A A .  . 

I Aa =-; +, Q, -& . . . . . .  
7 2 t I  

0. Aaw = .OIO . 
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(If the experiment begins by a cross of AA with ua, of course the 
first assortative mating occurs thus when all are Aa). 

(17) The population at the beginning consists of AA and Aa in equal 
numbers. After n assortative matings (including among these the first 
mating, where all are dominants), the proportions are as follows : 

aa = ___ e .  thus ilc, &, -2”,-, .;‘s . . . . . .  . aaY2 = 2 4 0 .  
4n+12 ’ 

7L Dominants = - 3”+ I’ . recessives = ~ 412+12’ 4n+12’  
(IS) At the beginning we have aa and Aa in equal numbers. If these 

cross, giving again aa + Aa, there is no opportunity for assortative 
mating. But if instead of crossing, they mate at random (producing 
I AA + g aa; + 6 Aa),  then assortative mating begins;-after n such 
matings : 

. AA24 = 2401 . 

c. Selection of the dominants alone 
Only dominants are bred, the recessives being rejected in each gen- 

eration. In  this case, as in assortative mating, some sort of a cross 
must have occurred at the beginning, otherwise no problem is involved. 
(19) The population is at first AA and aa in equal numbers; these 

mate at random, producing % AA + aa + % Aa; the dominants 
alone are bred (at random among themselves). After n such breed- 
ings, the population is : 

(20) In  the more general case, the population at first consists of 
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r AA to t aa, which mate at random (giving according to (2) ?AA + 
t2au + 2r t Aa) ; then dominants alone are bred. After n such suc- 
cessive selections, the population is : 

2 t  ( r+n  t )  Aa = 
t 2  

(Y 4 ( % + I )  t>” (Y + ( H + l )  t)2 
aa = (y+n t>” 

(Y+ ( Z + I i  t>’ . AA =--- 

(21) In  the still more general case, before a given selective breeding 

Of course the t aa do not breed at all, and play, therefore, no r6le. 
the population is Y AA + t aa + s L4a. 

After the next selection of dominants: 

By continuation, the results for any number of generations can be 
worked out. 

(22) If at  first AA is crossed with aa, giving Aa, and then dominants 
alone are bred, the result is the same as in ( ~ g ) ,  save that any given 
proportion is reached one generation later. That is, 

(23) At the beginning ua is crossed with Aa, giving Aa + aa; only 
dominants are bred. This gives the same results as ( 2 2 ) .  

(24) AA is crossed with Aa, giving AA + Aa; then only dominants 
are bred (at random among themselves). This gives the same series of 
results as do (19) and (22), but any given result comes one generation 
sooner than in ( I S ) ,  and two generations sooner than in ( 2 2 ) .  That is, 
after n breedings of dominants alone: 

d. Self-f rrtiliza,tion 
Some sort of a cross must have occurred before self-fertilization be- 

(25) Original cross, AA by ua, giving all Aa. Thereafter all breed- 
gins, otherwise, of course, the stock remains constant. 

ing is by self-fertilization. In  
C (table I ) ,  while Aa is 2 in 
fertilizations : 

c R 2n-I . A A = -  B,+1 (= -) ’ 

this case A A  and na each give the series 
every generation. That is, after n self- 

Aa =-- 2 =- ; -4, 1, 4 . . . , . :  0 .  Aa7 = ,008 p i - 1  ( i n )  
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(26) Original cross AA by Aa; thereafter self-fertilization. In this 
case AA gives the series E, beginning at 5 ; au gives the series Cy begin- 
ning at I ,  while Aa is always 2. After n self-fertilizations: 

Aa = ___ 2 
Bn+2 (= m) I (=zILfl) I 

; 4, Q, 24, d4 . . . . . . o , Aa6 = .008 . 
(27) The population at the beginning shows the typical Mendelian 

proportions, AA + aa + 5 Au.. Now self-fertilization begins 
and is continued. In this case we obtain the same three series as in 
( 2 5 ) ,  but beginning one term farther; that is, after n self-fertilizations: 

aa = same as AA 

(28) The three cases so far considered are particular instances of the 
general case that the population consists at the beginning of T AA + t 
aa + s Aa. Then after n self-fertilizations: 

For any particular constitution of the population at the beginning the 
results after any number of self-fertilizations will readily be obtained 
by making the proper substitutions for r, s, t and n in these formulae. 
For example, if the original population is 2 AA f 4 na -+ 3 Aa, after 
three self-fertilizations : 

AA = -5-3- . = 9 144 3 . An = --6 I C Y .  1 4 4  

INBREEDING 

Inbreeding may occur according to various diverse systems, and in 
each case the outcome depends of course on the constitution of the 
parents originally crossed; or, in the case of an entire population, on the 
constitution of the population at the time inbreeding begins. In our 
formulae the number of inbreedings ( n )  includes only the actual matings 
of related individuals, not the cross that precedes such matings. The 
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Fibonacci series (F,  table I )  is the key series in most cases of 
inbreeding. 

e. Brother and sister mating 

When the original cross is either AA X aa, or AA X Aa, or aa X Aa, 
or Aa X Aa, followed by brother X sister mating among the progeny, 
the proportions of heterozygotes Aa form in successive generations a 
series of fractions of which the terms of the Fibonacci series (F in 
table I )  are the numerators, while the denominators are certain powers 
of 2 (forming thus our series B). In the different original matings 
the series for Aa begins at different points in the F series. Where the 
original cross is AA X aa or Aa X Aa, the proportions of AA (or of 
cra) are % of the difference between I and the fraction showing the 
proportion of the heterozygotes Aa. Thus, if the heterozygotes are g ,  
the proportion for AA is % ( I  - 3 / s )  = i;; the proportion of aa 
is the same. 

Where the original cross is AA by Aa, the proportion for the sum of 
(AA  + aa)is ( I  - Aa),  but ( A A  + Aa) is always equal to three 
times ( a a  + s/z Aa ) ,  so that AA = 3aa + Aa. If the original cross 
is aa X Aa, the proportions are reversed; so that aa= 3 AA + Aa. I t  
results from these relations that the proportions for AA and aa can 
readily be found when those for Aa are known. When the crosses are 
A A  X aa, or Aa by Aa, the proportions for AA and aa give our series J. 
When the first cross is AA by Aa, the proportions of AA give the series 
M, while au gives the series K. If the first cross is aa by Aa, then 
aa gives M, while AA gives K. We shall now for reference give the 
formulae for each of the cases. 

(29) Original cross AA by aa. After n brother by sister matings: 

3. AA17 = ,490+ . 

Aa = ; 3, 5, 4, & . . . . . . 0 .  Aael = .oo8+. 
B, 

(30 )  Original cross Aa x Aa. After IZ inbreedings : 

aa = AA . 

Aa = __ F n + 2  ; 2, #, &, & .  . . . . . 0 .  Aaa = .oo8. 
B,+l 
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(31) Original cross AA x Aa. After IL inbreedings : 

An - F=+3 ; ;, ijT, & . . . . . . 0 .  An19 = .008. 
Bnt2 

(32) Original cross au X Aa. After n inbreedings: 

; . AAl j  = .2401 

(33). In a Mendelian population showing the typical proportions 
AA f aa + $ Aa, exclusive brother X sister mating begins at  a 

certain time. After n such inbreedings the results are the same as given 
in (30) .  

(34) I t  may be observed that in all cases the proportions for Aa 
form a series of fractions in which the numerator of any term is the 
sum of the numerators of the two preceding terms, while its denomi- 
nator is double that of the preceding term. One requires therefore but 
to know the first two terms of any series (as given in preceding para- 
graphs) in order to write out the entire series as far as he desires. 

Similarly, the proportions for AA and ira may be written out by a 
general rule when the first two terms in any series (as given above) 
are known. The rule is to double the nilinerator and denotizinator of the 
preceding term, and add to the numerator the stint of the two last ad- 
ditions so made. For example, in the series for AA given under (31), 
to obtain the second numerator 19 from 9, one evidently doubles 9 and 
adds one; to get 40 from 19, one doubles 19 and adds 2 ;  therefore, to 
get the numerator of the next term one must double 40 and add I + 
2 = 3, giving ; for the next numerator one doubles 83 and adds 
2 + 3 = j, giving $68, etc. 

The formulae here given are simpler than the one proposed in my 
paper in the AMERICAN NATURALIST of November, 1914. 

. .  

f .  Mating of parent by offspring 

The inbreeding of parent by offspring is practicable in higher orgaii- 
isms mainly in the successive breeding back of daughters to the father. 
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In  this way the same individual is used repeatedly as parent in successive 
generations, as indicated in the diagram (figure I ) .  

Other systems of breeding parent by offspring are conceivable, and 
might be carried out in lower organisms, particularly plants. Some of 
these will be considered for. their theoretical interest. 

* 

FIG. I 

‘i“Jb 

4 l>f 
p J  

FIG.  2. 
9 

FIG. 3. 
FIGURES I, 2 and 3.-Diagrams illustrating different conceivable systems of mating 

parents to offspring. The letters represent intdividuals; the arrows show their 
parentage. 

FIGURE I.-Continued mating of daughters back to their father. The same father a 
is bred from in each generation. 

FIGURE z.--The altermuting system of breeding parent by offspring. Each parent 
save one ( a )  is bred from twice; thus b is parent of c, and is also mated with c to 
produce d ;  c is parent of d and e, etc. (For simplicity’s sake only one offspring is 
represented in each generation.) 

FIGURE j.-The alternating system of breediing parent by offspring, when both the 
original parents are represented to the same extent, through breeding half their 
progeny to one parent, half to the other. (Only one of the offspring from each parent 
is represented, save that two of the f, progeny of a and b are shown, in order that 
the family may be divided into two.) 

i. Same father bred to his daughters in successive generations (fig. I ) .  

(35) Original parents AA and aa; the progeny are always mated 
back to AA. The proportions for AA give the series C, while & is 0, 
and A a  is I. That is, after n such inbreedings: 

I . AA7 = ,992 . 

A ~ = - . I  I 1 I 
2 n ,  2, 4, *- . . . . . . . . . . . . . . . 0 .  Aa,  = .o08 . 
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(36) Parents aa X ,4A; progeny mated back to m. After n in- 
breedings : 

(37) Parents Aa X Aa; progeny matedv back to Aa. This gives the 
same result as random mating ; after n inbreedings : 

A A = : .  a a = i .  A n = + .  
(38 Parents AA X Aa; mated back to AA. After n inbreedings: 

a a = o .  

A a  =- ; limit 0 .  
I 

2 n + l  Aa = .o08 . 

(39) Parents AA and Aa; progeny mated back to Aa.. 
Here AA gives the series D, aa gives the series C, while Aa is always 

5. That is, after 1z inbreedings: 

; . A A 5  = .258.  

. aa5= .242 

/ l a = + .  

(40) Parents aa X Aa; mated to aa. After n inbreedings: 
I . A a = -  . A A = o .  aa = ~ 

Cn+l 
Bnt l  B?L+l 

(41) Parents aa X Aa; mated back to Aa. After n inbreedings: 

A a = + .  
(42) In a Mendelian population consisting of % AA + % aa + 5 

Aa, at a certain time the female progeny are bred back to their fathers, 
and this continues. Here AA and an each gives the series E, beginning 
at 5, while Aa gives the series D, beginning at 3. That is, after n 
inbreedings : 

aa = A A .  

#, & & . . . . . . Dn+1 . 
Bn+2 

Aa=- ,  ; . AaS= 2 5 8  . 
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ii. Parent by offspring, alternating system 

The system of continuous employment of a single individual as parent 
with successive generations of its own progeny could not be continued 
indefinitely, owing to the limited length of life of the individual. It is 
possible to conceive a system which could be continued indefinitely, by 
using each parent alternately as the parent of a second generation. That 
is, each individual would be employed twice, once for breeding with its 
own parent, once for breeding with its progeny. Such an alternating 
system is represented in figure 2. Such a system could not well be 
carried out with higher organisms, since it requires in alternate gener- 
atlons the mating back of the male children to their mother, and the 
mothers are of course less numerous than the male children. The sys- 
tem could, however, be carried out with certain plants. We shall deal 
with it without regard to practical considerations, for its theoretical in- 
terest. When in this system “parents” are bred to progeny, each “par- 
ent” plays (from a statistical or numerical point of view) the same 
part that the father plays in the continuous system. 

(43) The original (unrelated) parents are AA and aa, giving prog- 
eny that are all A a .  These Aa are bred back to AA, and the progeny 
resulting from this are bred to their parent Aa. Thus an alternating 
system is continued, as illustrated in figure 2.  

After mating back to parents has thus occurred n times: 

$ .  aa17 == .3235 . 

F,+1 Aa = --; 4, i ,  B IL 8” . . . . . . o . Aazl = .008 . 
(44) The first cross is au by AA; the progeny are bred back to aa, 

and the alternating system continues. This gives the same result as 
(43), save that the proportions of AA and mx must be interchanged. 

(45) It may be observed that by the system given in (43) and (44), 
and illustrated in figure 2 ,  one of the original individuals ( a  in figure 2) 
plays a smaller part than all others, being employed as a parent but 
once, while others are employed twice. It is of interest to determine the 
results when all parents are equally represented. For this purpose, after 
the original parents A A  and Aa have produced progeny Aa, half of these 
progeny are mated to the parent AA, half to the parent au. The result- 
ing progeny are then mated to their younger parents (Aa) ,  and the 
alternating system continued as before. Figure 3 illustrates this system. 
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(In working out this system, the correct statistical results are ob- 
tained if in each generation we mate all the progeny first to one of the 
two parents, then to the other.) 

In  this case AA and aa each give the series J, while Aa gives (as in 
(43) and (44) , the Fibonacci series F. That is, after n inbreedings: 

(46) Original cross, AA X Aa,; progeny bred back to AA, and thence- 
forth the alternatiiig system of figure 2 is employed. Here AA gives 
the series L, aa gives the series H ,  while Aa gives the Fibonacci series 
( F )  . After n inbreedings : 

F n + l .  , T, 1 g - ,  2 T B ,  8 &, . . . . . . o . Aal ,  = .0098. Aa = __ 
%l+1 

(47) Original cross, AA X Aa.; progeny bhed back to '4a, and thence- 
forth by the alternating system of figure 2. After n such inbreedings : 

H n+2 

Bn+2 
aa = ; i, , &, & . . . . 

(48) If with parents AA X Aa we make the part played by the two 
original parents equal, by following the scheme represented in figure 3, 
we obtain after n inbreedings the following results: 

. AAlj = .740I . 

Aa=- Fn+3* 3 &, & . . . . . . o . AalB  = .oo8 . 
Bn+2 ' " 

(49) Parents aa X Aa; alternating system of figure 2 ,  beginning with 
After n inbreedings the proportions are as in (46),  with those for aa. 

A A  and aa interchanged. That is: 
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(50) Parents aa X Aa; alternating system of figure 2, beginning with 
Aa. After n such inbreedings the proportions are as in (47), with 
those for AA and aa interchanged. 

(51) Parents aa X Aa; equalized alternating system of figure 3. 
After n such inbreedings the proportions are as in (48), with those for 
AA and aa interchanged. 

In  this case the same results are 
reached whether we employ the system shown in figure 2 ,  or that shown 
in figure 3. After n inbreedings: 

(52) Original parents Aa X Aa. 

iii. Half the progeny bred to one parent, half to the other 

It is theoretically interesting to examine what results would follow 
if half the progeny were bred each time to one of the parents, half to 
the other. This system could be carried ot; in plants in which vegetative 
reproduction by cuttings is possible. The daughters would be bred, as 
usual, to the father. From the mother-plant would be produced by cut- 
ting as many plants as there are sons, and one of these would be bred to 
each son. The relative numbers of progeny in the next generation would 
thus depend on the relative numbers of different kinds of their younger 
parents, as in the mating of father by daughters. 

This system gives a number of peculiar series of results, seemingly 
not reducible to simple general formulae, so that I shall have to content 
myself with giving rules for obtaining any term of the series when 
preceding terms are known, together with a number of the earlier terms 
in each series. 

( 5 3 )  Original parents AA X M. Half the progeny are mated to one 
parent, half to the other, and this system is continued. 

What we desire is to obtaih the three series of fractions giving the 
proportions of AA, ua and Aa, for successive values of n. The results 
for A a  give the key to those for the others, so that Aa will be dealt 
with first. The rule obtained is such as to require that before its ap- 
plication the first two terms shall be known; these for Aa are: after I 
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inbreeding 3.; after z inbreedings . LVe desire then to obtain 
a rule for finding the term in the series for any value of n, when the 
terms for n - I and n - 2 are known. 

T o  obtain the nth term of the series: 
For Aa: If n is odd, double the numerator and denominator of the 

term for n - I ,  and from the resulting numerator subtract the numer- 
ator oi  the term for n - 2 .  Thus, since the first term is 4 and the 
second &, the third term is 

If n is even, multiply by four the numerator and denominator of the 
term for n - I ,  and from the resulting numerator subtract the numer- 
ator of the term for n - 2 .  Thus, as term 2 is 2c and term 3 is ;t 
term 4 will be ~ozrxi = -3-k.. 

(The fractions expressing the values must not be reduced to lower 
terms, otherwise incorrect results are reached,, or the numerators them- 
selves become fractional.) 

f i  . 

1 2 8  12.8 

For AA or aa (the values are the same for both) : 
If n is odd, double numerator and denominator of the term for n - I ,  

and to the resulting numerator add the numerator of Aa for n - 2 .  

Thus, term I is % ; term z is lj6 ; therefore term 3 is 1*p = %$ (since 
term I for Aa is l ) .  

If n is even, multiply by 4 f i e  numerator and denominator of the term 
for n - I ,  and add to the resulting numerator % the numerator of Aa 
for n - 2.  Thus, since term 3 is +;, term 4 will be y ? 3 .  = $;x . 

I ~ = I  2 3 4 5 6 j 8 9 IO 

Aa 2 6 IO 34 58 I@ 338 1154 I970 6726 
AA I 5 11 47 QQ 413 855 3519 7207 29405 

aa _________ 
TOG 4 16 32 128 256 1024 2048 8192 16384. 65536 

( I t  may be noted that five of these terms were worked out before the 
rule was obtained; that three more were then obtained through the rule 
and verified by working out in detail; while the last two are based on 
the rule alone.) 

The limiting value for AA and for aa is apparently 5 ; for Aa, 0; 
but I have not carried the results far enough to make this certain. 

(54) Original parents Aa X Aa; half the progeny mated to one 
parent, half to the other. 

The rules here are the same as in (53), save that the relations of odd 
and even are interchanged; also the series begin differently (that is, to 

The first ten terms of the series are thus: 

1 5 11 47 99--413-_ j s5  3519 - 7207 29405 
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obtain an odd-numbered term we multiply by 4, etc., to get an even- 
numbered term we multiply by 2, etc.). The series of proportions are : 

? 8 = I  2 3 4 5 6  7 8 9 IO 

A A  4 9 40 87 372 785 3280 6799 z%12 57417 
MI. 4 9 40 87 372 785 3280 6799 2 8 0 1 ~  57417 

Total 16 32 128 256 1024 2048 8192 16384 65536 131072 

__ 
Aa 8 14 48 82 280 478 1632 2786 9512 16238 

(55) Original parents AA x Aa; half the progeny mated regularly to 
each parent. 

The rules here are the same as in (54), though the series begin dif- 
ferently and give diverse results. For Aa, if n is odd, multiply by 4 the 
numerator and denominator of term n - I,. and subtract numerator of 
IZ - 2 ; if n is even, multiply by 2, and subtract numerator of n - 2, etc. 
The first ten terms of the resulting series are: 

B = I  z 3 4 5 -  6 7 8 9 IO 

AA 9 19 79 163 669 1367 5567 11303 45789 92563 
aa I 3 15 35 157 343 I471 3111 13021 27027 

Total 16 32 128 256 1024 2048 819 16384 65536 131072 

Aa 6 IO 34 58 IS& 338 I154 I970 6726 II& 

It will be observed that here, as in (31)~ (Ai + A@) = 3 (aa + 
If the original parents were aa and Aa, doubtless the results would be 

f / 2  AG). 

the same, save with the proportions for AA and aa interchanged. 

11. SEX-LINKED FACTORS 

The peculiarities of sex-linked factors are, for present purposes : ( I  1 
The males consist of but two classes with respect to such factors, while 
the females fall into the usual three classes. ( 2 )  The males are never 
double dominants; they never show the constitution AA. Two different 
methods of conceiving the constitution of the males are extant, resulting 
in two diverse methods of representing them. For our purposes both 
methods have the same results, but one is more convenient than the 
other. According to the absolute “presence and absence” theory, the 
two classes of males are to be designated A a  and aa; one is a heterozy- 
gote, the other a pure recessive, while no pure dominant exists. Accord- 
ing to MORGAN’S results, the male is conceived to have but one factor, 
for either dominant or recessive, so that the two classes of males are 
to be represented as A - and a, -. Both systems of designation give 
(of course) in later generations the same proportions of the various 
classes of males and females. But the system which represents differ- 
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ently the males and females is the more convenient in computing and 
representing results. We shall represent the two classes of males by 
A - and a -, the three classes of females by AA, aa and Aa. Anyone 
who desires to do so may substitute a for the dash in the formula for the 
males. The only difference produced will be to make it, in working out 
formulae, difficult to determine the proportions of males and females 
having any particular constitution, and as a consequence, to determine 
what later matings should be made. 

The characteristic feature in the results with sex-linked characters is 
the frequent appearance of the series G, which is of such a nature (as 
will be seen) that the proportions of individuals having a given consti- 
tution do not change continuously in one direction, but show successive 
slight increases and decreases, though with a general trend in one 
direction. 

In the formulae for sex-linked characters the proportions of the males 
and of the females will be given separately. In  all cases the number of 
males and females is the same. 

a. Random mating 
(56) The population at the beginning consists of two biotypes in 

equal numbers, each with equal numbers of the two sexes; that is, on 
the one hand of AA and A -, on the other of aa and a -. These mate 
at random (any male with any female). 

In  any later generation the population is : 
Males: % A - + + u - -  
Females: AA + aa + 5 Aa. 

Of the total population 
(57) In the more general case the proportions at  the beginning are: 

r AA and r A -; t ua and t a - (there being thus two biotypes differ- 
ing in number, but with equal numbers of males and females in each). 
After random mating for any number of generations the proportions 
are : 

are dominants, @ recessives. 

d 
~~ 

Y 
( I  ~~ 

Y+t ’ 
Males: A- -= ?,+t. 

2 rt 
(Y+d>L . An = 

Y2 t 2  
(r+t>” . czn = ___ (.+t>” * 

Females: AA == -~~ 

(58) The population at the beginning is AA and a - (two biotypes 
in equal numbers, but all the males belonging to one, all the females to 
the other). After the first cross all breeding is by random mating. 

This case gives certain curious series of proportions as the number 
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of successive random matings increases. The two sorts of males give 
the series G (table I ,  page 56), while the three classes of females give 
series formed by products of succeeding terms of G, or compounds of 
these with B. That is, after n generations of random mating (not in- 
cluding in n the first cross) : 

Males::- 
A-'= __ G,+1. . f ,  1 4,  3 8, 5 1 1  16, etc. + .  AA6 = .672 . . . . . . .  Bn 

I-AA-aa. 1 4 14 -5-8- 2 2 6  91 '4  ,p?j, 3 2 > 1 2 8 , b l Z , f V 4 8  . . . . . .  4 .  Aa3=*437* 
The above series given by the different constitutions present some in- 

teresting points. Any term n of the values for A - is given by the sum 
of n terms of the following well-known series: 

g + a  - 4  +$F-& + . . . .  . . e tc .  
If we discontinue this series after any number n of terms, and take its 

sum to that point, we shall have the proportion of A - for n random 
matings. 

Similarly, the series of values for a - are given by the sums of the 
following series, stopped at any point: 

4-4 +t-& + + -  . . . . . .  etc. 
In both cases the signs of the terms (after the first) alternate, and 

each successive denominator is double the preceding one. 
In the females the values of the different terms are given by the sums 

of still more curious series. The nature of these series will best be 
understood by taking a concrete case. After 5 random matings 
( n  = 5 ) ,  the values for AA, aa and Aa are given by the sums of the 
following series : 

aa5 = 3 + - 2 + +$ - $T + $z - -8- 1 2 8  + y+6 - dT = di$. 

Aab = +[- + + Q - y+ + & - $tr + & - & + dT]= 8%. 
These series for any value of n can be written by taking note of the 
following facts : 

For ae: ( I )  The first term is 3 ; ( 2 )  The total number of terms is 

AA5 = +[+ $ - + + & - 2z + -,+x - -3- 1 2  8 + fh  - 5b1= &P+ * 
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212 - I .  (3) The terms after the first alternate in sign, the sign of the 
second term being +. (4) The numerators increase successively by I 

up to the number n - I ; the series of numerators is then repeated in 
reverse order, to I. (5)  The denominator is doubled for each suc- 
cessive term. 

For AA: ( I )  The value is equal to $, with the series within the 
brackets; ( 2 )  The series within the brackets begins with + -2 ; (3) The 
number of terms in the brackets is 2n - 2. (4) The terms of this 
series alternate in sign. (5)  The numerators of its terms are increased 
successively by I ,  up to the number n - I ,  then decrease by I, to unity. 
(6) The denominator is doubled for each successive term. 

( 2 )  The 
first term of the series in brackets is - g. (3) The number of terms 
in the brackets is 2n - 2. (4) The terms of this series alternate in 
sign. ( 5 )  The successive numerators are the successive odd numbers up 
to the number (2n - 3), followed by the next higher even number, 
then by the descending series of even numbers, to 2. (6) The denomi- 
nator is doubled for each successive term. 

(59) If the population at the beginning is aa and A -, in equal num- 
bers, the results are the same as in ( jS ) ,  save that : 

For Aa: ( I )  The value is s, with the series in brackets. 

The values for A - and a -- are to be interchanged ; 
The values for AA and aa are to be interchanged; 
The values for A a  remain the same, 

b. Assortative mating 

(60) The population consists of the progeny of AA, m, A - and 
a -, which were present in equal numbers and have mated at random. 
That is, the population consists (by (56) ) o f :  females, AA + 
% aa + Aa; males, A -, a -. These thenceforth mate as- 
sortatively; the dominants AA and Aa mate only with A -, while the 
recessive aa mates only with a -. 

In the case of sex-linked factors the number of dominant males is 
less than that of dominant females. It must be assumed that one male 
may fertilize several females, so that no proportion of any particular 
class of females goes unfertilized on account of relative scarcity of 
males. The proportions of progeny produced by dominants on the one 
hand, by recessives on the other, will therefore depend entirely on the 
relative proportions of dominant and recessive female parents (provided 
that, as is always the case, some considerable number of males of each 
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class exist.) In working out the proportions in later generations, it 
must be assumed that all female dominants are fertilized by A -, all 
female recessives by a -. In this case A - and AA give the series E; 
a - gives the series D. After n assortative matings, the proportions are : 

I An = -; 4, ;, & . . . . . .  0 .  Aa6 = .008. 
B,+1 

(61) At the beginning, AA is crossed with a -, the progeny mate 
assortatively. The progeny are of course Aa + A -, males and females 
in equal number. 

In this method of mating it turns out that the recessives do not propa- 
gate at all, since no female recessives (.a) are formed, and the female 
heterozygotes of course mate with male dominants. If the females re- 
produce in proportion to the numbers of the two classes that exist ( A A  
and A a ) ,  then after n such assortative matings the population in the 
nth generation is : 

2't-I . I Males: A- = ~ , a - = - .  
2 2" 

2%-I 

2n 
Females : AA = ~ , limit I .  AA7 = .992. 

I 

2n 
A a  = -; limit o . Aa7 = 0 0 8 .  

The same result is reached if we make at the beginning a reciprocal 
cross, AA by a - and au by A -, the progeny mating assortatively. 

(62) The original cross is aa by A -. This gives progeny Aa + 
a -, which gives no opportunity for assortative mating. If these are 
crossed again, they give Aa + aa + A - + a -, in which assortative 
mating may occur. After n successive assortative matings the popula- 
tion is: 
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c. Dominants alone selacted 

If our original cross is either AA by a -, or aa by A - (followed by 
crossing of their progeny Aa; and a -) ; or we have the double recipro- 
cal crosses AA by a - and aa by A -; or it is Aa by A -; or Aa by 
a -, the same series of results is obtained after n generations of breed- 
ing from dominants alone, but in some cases a given result is reached 
earlier than in others, thus requiring in the formulae a slightly different 
relation to n. I will therefore list the formulae for each case. 

Original cross. 
(63) AA by a -. 

AA ,by a 

(64) au. by A - (giving 
Aa and a -, which 
are bred together). 

(65) Reciprocal crosses, 

(67) Aa by A - .  

(68) Original population AA, aa, A - and a -, in equal numbers, 
mating at random so as to give: males 5 A - + 5 a; -; females 
AA + Now begins selection of dominants alone. 
After n such selections: 

After n selections of dominant alone : 

AL4 o r A  -=- cn , limit I. 

Aa or a -= ~ , limit 0. 

aa = 0. 

Bn+1 

I 

%+I 

and aa by A -. 
I . Aaora-- - .  AA or A - = __ 

G%+l 
Bn+2 Bn+2 

11 ( 6 6 )  AU by U -. 

cna = 0. 

aa + 5 Aa. 

En+1 
3 Bn-1 

3 Bn-1 

AA or A- = ~ ; 2, if, ++, +% , . . . . . I . 

I . I 1  1 1  An or a- = ~ , %, iT, y4 . . . . . . 0 .  

AA? or A-7 = .995 . 

Aa7 or a-7 = .005 

d U  = 0 

INBREEDING AND SEX-LINKED FACTORS 

d. Mating of brother by sister 

(69) Original cross, A A  X a -; brother and sister mating then con- 
tinues for n generations. 
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Males: A- = % *  7 1 2 9  9 ,  3 . . . . . . + .  A--B =.672.  
Bn 

F,+1; 1 ~, 4 ,  2 3 *, l , i  5 . . . . . . 0 .  Ant1 = . o o ~ .  An = ~ 

Bn 
(70) The original cross is aa by A -. 

The results here are the same as in the last (69) save that : 
The values for AA and aa are interchanged. 
The values for A - and a; - are interchanged. 
The values for Aa are the same as in (69). 

(71) At the beginning there are reciprocal crosses, AA by a -, and 
After n such aa by A -; thereupon brother by sister matings occur. 

matings, the population is : 
Males: A- = 'z. 1 a - = + .  

Females: A A  = A; thus i, ;, Ijc . . . . . . + .  AA17 = .490+ I 

B,+1 
J n  

B,+1 

Bn 

aa = -. 

Aa = ~ Fn+l = +, 2, f . . . . . . o . AaZl = .oo8 . 
(72) The original cross is Aa by A -. 
This gives the same result as (69),  save that any given set of pro- 

portions is reached one generation sooner. That is, after n inbreedings : 

Gn+1 ' . a - - - .  Gn+2 
Bn+1 Bn+1 

Fn+2 . Aa = -~ . H n + 2  Females : A A  = . aa = ___ Bn +2 B,+2 Bn+1 
(73) The original cross is Ao by a -. 
Results as in (72) save that : 

Males : A- = __ 

The proportions for A - and a are interchanged. 
The proportions for AA and aa are interchanged. 
The values for Aa are the same. 
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e. Mating of parent by offsphzg 
i. Same parent (father) used successively 

(74) The parents are A - and aa; after this cross the female progeny 
are bred back to their father, this continuing for n generations. 
. Of the males: 

C 2n ---I A- - - --!! Bn ( or 2“.) ; limit I .  A - ~  = .99z . 

’ ; limit 0 .  a- = a-7 = ,008. B, 
Of the females : 

(75) The parents are A - and Aa; the female progeny are.bred to 

Of the males: 
their father for n successive generations. 

I A -  = k; limit I .  A - ~  = ,992. a- = - -; limit 0. a-6 = .008 . 
&l+1 b + 1  

Of the females: 

(76) The parents are a - and AA; after the cross the female prog- 
eny are bred to their father. 

This gives the same result as (74), save that the results for A - are 
to be interchanged with those for n --; also the results for AA with 
those for aa, while A a  is unaltered. 

(77) Parents a - and Aa; successive female progeny bred to father. 
Results as in (75 ) , with A - and a - interchanged ; also AA and aa 

are interchanged. 

ii. All female progeny mated to father, all male progeny to mother 

It may be of theoretical interest to examine further what would be the 
result with sex-linked characters if all the daughters were mated to their 
father, all the sons to their mother. Such a system could be carried out 
with bisexual plants that could be propagated by vegetative cuttings. 
The mating of the daughters with the father would present no difficulty. 
For the mating of sons with their mother, cuttings would be taken of the 
mother plant, in number equal to the sons, and each son mated to one 
of these. 



NUM.ERIC.4L RESULTS OF DIVERSE SYSTEllS OF BREEDING 87 

(78) Original cross AA by a -; daughters thereafter mated to their 
fathers, sons to their mothers. 

Here in the case of the males, A - gives the odd terms of the series 
G, beginning with G, = 3, while a - gives the even terms of this series, 
beginning with G, = I .  The females give other modifications of this 
same series. 

Males : 

After n inbreedings : 

2 
3 '  = .328 . 

Females : 

0 .  AalS = .oos 

(79) The parents are aa and A -; breeding as in (78). 
Results as in (78)) save that the proportions for A - and a - must 

be interchanged; also the proportions for AA and aa must be inter- 
changed. Aa remains the same. 

(80) At the beginning we make the reciprocal crosses AA by a - and 
aa by A -; thereafter daughters are mated to fathers, sons to mothers. 
After 1z such matings: 
Males: A- =+ .  a - = + .  

B - 311-l 
Females: AA = -2c-. 1 8 ,  3 3 ,  1 %  1 2 8 1  5-5 p o x  0 1 2  . . . ' . .  4. AA10 = .49I . 

B2n I 

aq = A A .  

A a  = -; i, B(;, 2"jYIi . . . . . . 0 .  Anla = .008. 
3"-l 

BLN 
(81) Original parents A a  by A -; thereafter daughters are mated 

to fathers, sons to mothers. 
Males : 

After PZ such niatings: 
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Females : 

; . anl2 = . 3 2 6 .  

( 8 2 )  Parents Aa by a -; breeding as in (SI). 
Results as in (SI),  but the proportions of A - and a - must be in- 

terchanged, as must also those for AA and aa, while Aa. remains un- 
altered. 

The results when two or more factors, independent or linked, are con- 
sidered, will be dealt with in a later paper. 

SUMMARY 

This paper gives formulae for finding in any generation the results of 
continued breeding by a given system, with respect to a single pair of 
alternative characters. Sex-linked characters and typical characters are 
dealt with separately. Formulae are given for the results of :  random 
mating; assortative mating; selection of dominants ; self-fertilization ; 
inbreeding of brother by sister and of parent by offspring (several sys- 
tems). In  each case the diverse results obtained by beginning with 
different parental combinations are given. 

I t  is shown that the results in successive generations form fractions 
such as may be obtained by compounding in various ways several well 
known arithmetical series. The first twenty terms are given of fourteen 
such series; the formulae show how the terms of these series are to be 
compounded in order to give the results of a particular type of breeding 
for any designated number of generations. 

In  addition to the general formulae, there are given the first three 
terms of each series of fractions obtained by given methods of breeding, 
and the limiting value toward which the series tend. These limiting 
values show the approximate proportion of the population that will have 
a given constitution after breeding by a given system for an indefinitely 
large number of generations. Furthermore, the paper gives the least 
number of generations of breeding by a given system required to ap- 
proach within one percent of the final limit. This number is usually 
relatively small : after it is passed, continued breeding by the same system 
has little effect in changing the composition of the population. 
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The results of the combinations given by diverse original parents and 
the several diverse systems of breeding require for  their presentation 
eighty-two numbered formulae. 

-4ugust 2.5. 191;. 
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