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INTRODUCTION 

In  a recent paper Professor JENNINGS (1916) has given formulae for 
the calculation of the results of various systems of breeding in which a 
single Mendelian trait is in question. It seems that JENNINGS’S method 
gave him no absolute assurance of the correctness of his formulae. T o  
quote from his paper (1916, page 62), 
“After a law or regular series is obtained that fits the first five or six gener- 
ations, the law is applied to give the results for three or four generations 
more. These results are then tested by the actual detailed working out 
(symbolic formation of gametes and their mating, etc.) for these same 
later generations; if the formula has given the correct results, it is assumed 
to be a general formula.’’ 
Again (1916, page 61), 

the actual formulae, leaving their correctness to the test of time.” 
I am compelled, therefore, in most cases, to content myself wit.h giving < L  
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It is the purpose of this paper, first, to give some examples to show 
how a method of mathematical repetition can be used to suggest formulae 
and how mathematical induction can be used to establish a formula when 
once suggested; second, to express the nth term of series in JENNINGS’S 

table I, (1916, page 54) as a function of n ;  third, to solve the problem 
of inbreeding by brother and sister mating. This paper deals only with 
a single pair of typical Mendelian factors. 

PART I. APPLICATIONS O F  T H E  METHODS OF MATHEMATICAL INDUCTION 

AND REPETITION 

I. Random matiutg in a general popdation 
Consider the problem of random mating in a population consisting of 

r A A  + s Aa + t aa. The fundamental method of considering all pos- 
sible crosses gives the results stated by JENNINGS (1916, page 65) for 
the first generation : 

I )  
It should be stated Once for all that it is only the relative magnitudes of 
the coefficients of AA,  Au and a;a which are of interest. I t  has been 
shown1 that I )  gives the result for all following generations. A proof 
will be given here to illustrate a method which is quite valuable for other 
problems in breeding. 

To get the composition of the second generation, one should note that 
he has merely a repetition of the problem of getting the composition of 
the first generation. We have to consider the problem of random mating 
in a population consisting of R A A  + S Aa + T aa, in which 
2) R = (s + 2r)’, S = 2 ( s  + 2r) (s +2t ) ,  T = (s + 2t)’. 

It is needless to repeat the work involved in obtaining expression I ) .  
We read from I )  immediately that the second generation will have the 
composition 
3 )  ( S  + 2 R ) 2  A A  + 2 ( S  + 2R)  ( S  + 2T)Au + ( S  + 2T)’aa8. 
To find what this means in terms of r, s, t, we substitute the values of 
R, S, T from 2 )  into the expression 3 ) .  This gives the composition 

A A  = 16(r + s + t ) ’ (s  + 27).’ 

Aa = 16(r + s + t>’2(s + 2r) (s + 2 t ) .  
aa = 16(r + s + t ) ’ ( s  + 2t)’. 

(s + 2r)’AA + 2 ( s  + 2r) (s + 2t)Au + (s + 2t)’aa. 

For want of a better name this process is called “mathematical repeti- 

f This has been proved by WENTWORTH and REMICK (1916) who state that JEN- 
NINGS also had the result. 
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tion.” Omitting the common factor, 16(r + s + t )2 ,  which has nothing 
to do with the proportions involved, we have the same composition for 
the second generation that we had for the first. 

We can read from this result more than 2 conclusion regarding the 
second generation. We can say that random mating in any population 
of composition I )  results in another generation of the same composi- 
tion. Thus for our original problem, we have the conclusion that after 
the first random mating the proportions in the population are fixed and 
are given by expression I ) . 

2. A special case of assortative matting 
This example is to illustrate how mathematical induction can be used 

to test the accuracy of a formula when once suggested. Consider the 
problem of assortative mating, dominants with dominants, recessives 
with recessives. Beginning with a cross between AA and m, and fol- 
lowing this by assortative mating for n generations, JENNINGS (1916, 
page 66) gives the resultant composition as follows : 

4) 
If this composition is correct for a particular value of n, and assortative 
mating occurs in the population it represents, the next generation should 
show a composition obtained from 4) by replacing n with n + I. Con- 
versely, if assortative mating in the population 4) gives a population of 
composition obtained by replacing n by n + I in 4), and if our original 
problem gives the distribution 4) for n = I ,  then the formula 4) holds 
for  all values of n. The most elementary methods show that 4) holds 
for n = I. Then to complete the proof it is only necessary to show that 
assortative mating in a population 4) results in a population of composi- 
tion obtained by replacing n by n + I in 4) ; i.e., 

( n  + I )AA + 2Aa + ( n  + 1 ) ~ .  

5 )  ( n  + 2)AA + 2Aa + (n + 2)m. 

In assortative mating the AA and Aa individuals mate at random while 
the aa individuals mate with like kind. Out of every 2n + 4 children, 
n + 3 will come from dominant parents, the remaining n + I coming 
from recessive parents. The crosses among the dominants will be in the 
proportions 

We shall use the notation (a, b, c) to indicate a individuals of type AA. 
b of type A a  and c of type m. Then the three crosses noted will pro- 
duce individuals in the following proportions : 

( n  + I)’AA X AA, 4(n + I )AA X ACE, 4 A a  X Aa. 
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( a, b, c )  
( n  + I ) ~ A A  X A A  = ( ( n  + I ) ' ,  0 )  * 

4 ( n  + I ) A A  X Aa = ( z ( n  + I ) ,  z ( n  + I ) ,  0 ) .  

4 A a X A a = (  I, 2 ,  1 ) .  

Totals = ( ( n  + 2) ' )  z ( n  + 21, 11. 

0, 

Then the ( n  + I ) th generation consists of individuals in the following 
proportions : 

( n + ~ ) ~  n + 3  Z ( . M . + Z )  n f 3 .  

(n+3) '  2%+4 (n+3>* * 2n+4' 
I n + 3  n + I  - ( n  + 2)'  

( . + 3 l 2  . 2n+4 zn+4 ( n + 3 > ( z n + 4 )  

A A  = ; Aa = 

aa = +------ 
Removing the common factor I / [ z ( n  + 3)] we have 

(a + 2)AA + zAa + ( n  + 2 ) ~  

which is identical with expression 5 )  as was desired. 

3. Assortative mating in a general population 

As a final example illustrating both methods, consider the more gen- 
eral problem of assortative mating of the population 

Detailed examination of the crosses involved gives the result stated by 
JENNINGS (1916, page 67) for the first generation, 

6) 
The problem is now really simpler than was the special case considered 
above. To get the composition of the second generation we need not 
consider the crosses involved at all. If we set 

7)  
expression 6) can be written 

We seek the result of assortative mating in this population and it is evi- 
dent that it is only necessary to write expression 6) with large letters. 
The second generation has the composition, 
8 )  (2R + S)'AA + zS(2R + S)Aa + (9 + 4RT + @T)akz. 
To interpret this we must replace R, S, T by their values in r, s, t from 
equations 7). 

r AA + s Aa + t m. 

( z r  + s)'AA + zs(2r + s)Aa + (3  4- 4rt + qst)aa. 

(2r + s)' = R, zs(z r  + s) = S, s2 + 4rt + Mt = T,  

R A A + S A a + T a a .  

(zR + S)' = 4(2r + s ) 2 ( z r  + 2 ~ ) ~ .  

zS(2R + S )  = 4(2r + ~ ) ~ 2 s ( z r  + 2s). 
S2 + 4RT + 4 ST = 4(2r + s )  ( 2  r + zs) (2s' + 4rt + 6s t ) .  
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Omitting the common factor 4(2r  + s) (2r + 2s), we have for the sec- 
ond generation 
9 )  (2r + s) (2r  + 2s)AA 4- 2s(2r + s)Aa8 + ( 2 3  + 4rt + 6st)aa. 
This, or at least one more repetition of the process, suggests that the nth 
generation will have the composition2 
IO) (214 + S ) ( 2 Y  + m ) A A  + 2 4 2 r  + s ) A a  + [ns2 + 4rt + 2 ( n  + 1)stIm.  
Inspection shows that this formula holds for n = I and n = 2.  If we 
assume IO) thinking of 1zi as fixed, and show that assortative mating in 
such a ppulation gives a generation whose composition is obtained by 
replacing n by n + I in I O ) ,  then we shall know that I O )  holds for all 
values of n. To do this let 
R = (2r + s )  (27 + ns) ; S  = 2 4 2 r  + s) ; T = ns2 + 4rt + 2 ( n +  1)st, 
and form expression 6) in the large letters; i.e., the expression 8) with 
our present meaning for R, S, T. This process gives for the proportions 
in the (w + 1) th  generation. 

AA = 4(2r  + s) ' [2r  + (n + 1)sI2. 
Aa = 4(2r  + s ) ~ .  2s[2r + ( t z  + I ) $ ] .  

aa = 4(2r  + s )  [27 + ( n  + I ) S ]  [n  + I ) ?  + 4rt + 2 ( n  + 2)stI.  
Dividing by the common factor 4 (2r  + s) [2r + ( n  + I ) s ]  the propor- 
tions become, 

( z r  + s ) [ z r  + ( n  + I)s]AA + 2s(2r + s)Aa + [(n + 1)s' 

Inspection shows that these results may be obtained by replacing n by 
n + I in expression IO). 

I t  should be of interest to note that as n increases indefinitely the pro- 
portions in IO)  approach the proportions in 

+ 4rt + 2 ( n  + 2)s t Im.  

(21  + s)AA + 0 Aa + (2t  + s)m.  
These examples should show, first that the method of mathematical 

repetition can be used to simplify the work of calculating the composi- 
tion of higher generations ; second, that the method of mathematical in- 
duction can be used to prove or  disprove a general formula for the com- 
position of the nth generation when it has once been suggested. 

PART 11. GENERAL TERMS OF JENNINGS'S SERIES 

In  table I JENNINGS (1916, page 54) gives twenty terms of each of 
several series which present themselves in breeding problems. For series 

2 This result was obtained by WENTWORTH and REMICK (1916). 
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B, C, D and E he gives the nth term as a function of rz. It may be de- 
sirable to have the nth term of his other series (lettered from F to M) .  
Inspection shows that only two of these are independent and if we can 
express the nth term of each of them, the others come immediately. The 
derivation of these two nth terms will be given next and then the nth 
term of each series will be written down. 

I .  Derivation of the nth term of the Fibonacci series 

The Fibonacci series F is defined by its first two terms, F, = 0, F, = I ,  

and the recurrence relation F, = Fn-, + Fn-,. In  mathematical language 
we have to solve the homogeneous recurrence equation 

with the initial conditions, F, = o and F, = I .  I t  is well known that C” 
is a solution of 11), where C is a root of Cz - C - I = 0 :  i.e., C = 

( I  * v/5)/2. Then [ ( I  + v/3)/2In and [ ( I  - v/J)/2]” are solu- 
tions of I I ) and any solution can be put in the form 

12) 
We wish to determine the constants K ,  and K ,  so that F, = o and F, = I. 

Setting n = o and n = I in equation 1 2 ) ,  we have 
13) F,=K,+K,=o.  

14) F, = [Kl(I + v3 + &(I - v31/2 = 1. 
From 13), K ,  = - K,. Substituting in 14), 

11) F, - F,-1 - Fn-Z o 

F,= [ K ~ ( I  + v/5)% + K ~ ( I  - v/5)n]/2n. 

F, = K1[1 + v j  - (I - -\/5)]/2 == I. 

K ,  = I / V ~ ;  K ,  = - I/V:; and 

1s) F n =  [(I + v+- (1 - v/5)”1/”[v\/3.2n1. 
The rather complicated appearance of this formula may make it seem 

useless. If one desires only a few of the early terms in the series, it 
would most certainly not be advisable to use this formula. But suppose 
you want the 100th term. By using logarithms it is about as easy to get 
the 100th term with all desirable accuracy from this formula IS) as it is 
to get the tenth term, and no time need be spent calculating the first 99 
terms. 

The formula IS) for the Fibonacci series enables us to prove the fol- 
lowing important 

THEOREM : As n imcreases indefinitely, the nth term of the Fibonacci 
series divided by 2n appomhes zero as a limit. 

Symbolically stated, the theorem is 
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Writing in the value of F, this becomes 

- 
v 5  4" n = m  

The proof consists in noting that ( I  + v/5)/4 and ( I  - v\/5)/4 are 
proper fra,ctions and that as a proper fraction is raised to higher and 
higher powers, the result approaches zero as a limit. As an immediate 
corollary we have that if C, and cz are constants, 

This follows because Cl/20~ is a constant, say C,, and we have 

2. Derivation of series G 
The second series which it is necessary to consider is defined by the 

recurrence G, = 2"-' - G,-,, together with the initial condition Go = 0. 
We have to solve the non-homogeneous recurrence 
17) G, + Gn-l = 
subject to the condition Go = 0. The most general solution is the sum 
of the general solution of the homogeneous equation 

IS) 
and any particular solution of equation 17). The general solution of 
IS) is K C" where C is a solution of C + I = 0; i.e., K(-I)". A par- 
ticular solution of equation 17) is G, = 2" /3. 
The general solution of 17) is therefore 
19) 
We wish to determine K so that G o  = 0. Setting n = o in IS) ,  we have 

20) G, = [2"- (-1)*]/3. 
The value of a formula for G, is particularly apparent in an example 

given by JENNINGS (1916, page 80). The series G,. Gn+1/22a-1 is needed. 
Substituting the value of G, and G,+l this fraction is 

G, + G,-l = o 

G, = K(-I)" + 2"/3. 

Go = K + 1/3. . . . K = - 1/3 and 

From this expression, the various terms of the series can be calculated 
readily, independently, and without recourse to any complicated rule, 
and the limit approached as n increases indefinitely is apparent. 
GENETICS 2: S 1917 
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3. The nth terms of series in JENNINGS'S table 

496 

Using the values of F, and G, we can write down the following set 
of rtth terms for JENNINGS'S series : 

I ( 1  - Vi),-- ( I  + v : > n  
Hn=Gn-Fn=- [2"- ( -I)"]  + 

3 v5-. 2,  

2"+l+ (- I ) "  

( I  - V<)*+l- ( I  + V/5)"+1 

( I  - Vj)"+Z- ( I  + V/3)"+2 
vF . 2 n 4  

( I  - v/3)"- ( I  + Vj)"  
1% = Bn- Gn- Fn = + - 

3 vs * 2" 

J, = Bn - F,,+l= 2" + - v5 . 2,+l 

Kn = Bn- F,+Z = 2" + 

Incidentally it may be noted that E,, given by JENNINGS as zn-l + 2,-* 

- I can be written in the slightly more compact form, E, = 3. 2n-2 - I .  

PART 111. BROTHER AND SISTER MATING 

I .  Remdts in random brother a d  sister meting 
Given a family consisting of r A A  + s Aa + t aa, what is the compo- 

sition of the nth generation if mating is restricted to random mating 
between brothers and sisters? Special cases of this problem have been 
considered by JENNINGS (1916) and PEARL (1914). 

For the benefit of those who do not care to follow the details of the 
development, the results will be stated first. The nth generation, i.e., 
the generation resulting from the nth brother and sister mating, has the 
following composition : 

A A =  [ I  +K2-Tn]/2;Aa5Tn;~=[1-Kz- T,]/2, in 
which Tn = [s K F,,, + (rs + st + qrt)F,]/K2.2R; K,  = ( r -  t ) / K ;  
K = r + s + t ;  and F, is the general term of the Fibonacci series. 

3 By what is evidently a slip, JENNINCS writes Fn+i in this equation for Fe,,. 
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2. Development of above results 
The dif- 

ferent possible crosses of individuals of these types together with the 
composition of the resulting families are given below. The notation 
(a5 b, c )  means that individuals of the types AA, Aa, ua appear in num- 
bers proportional to a, b, c. 

Three types of individuals are involved, AA, Aa and aa. 

Letter indicating type 
of family 

P 
4 
r 

0 

U 

v 
It is useful to keep track of these six kinds of families. Let on, p,,, 
q ,  r,, U*,, v,, be the relative numbers of families of the various kinds in the 
order given above. If we can calculate 0,. . . . .v, we can readily find the 
numbers of AA, Aa, ala. individuals in the nth generation. 

a. Dtvelopnzent of the f ormulaae for on, p,, q,, r,, urL, v, 
To find on, for instance, we examine the source of the families in the 

nth generation of the type 0. All the children of families o f  type o in 
the (~~-1) th  generation will be in families of type 0, since AA indi- 
viduals only are concerned. One-fourth of the families which consist of 
children of families of type p in the (n--i)th generation will be of 
type o and 1/16 of the families which are children of families of type r 
in the (n-~) th  generation will be of type 0. Thus we have that' 

2 1 ) 0, = 0,-1+ Pfl-l /4 + m - 1  /I 6. 

2 2 )  P n = P n - 1 / 2  + rn-l /4. 
23 ) 4 = "**-1 /8 -  
241 r ,%= P ,*J4 + 4 *-I + y,_l 14 + ll,z_l /4. 
25) 21,= 2Ln-J2 + r,_l /4. 
26) z', = v, ,_~ -I- f ~ , - ~  /4 + r,_l 1'16. 

Similar considerations give 

The problem before us is to solve this system of recurrence relations. 

4 PEARL (1914) had these equations, except that in the case he considered, ala, = vn; 
Pa = U%. The notation here used was used by PEARL. 
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V\ie first set 
27) P n  - = ~ n ,  and 

28) 
Then from equations 22) and 25), 

29) yn = yn-l/2, and similarly 
30) x n  = x n - l +  yn-l/4 
replaced by the following system: 

on - vn = xw, 

and the above system, 21)-26), may be 

21’) 0, = OaL1 + pfl - ,  /4 + T s - ,  /I6. 
22’) PIE = Pn_, /2 + Tn-l /4. 

23’) rn = rfl-1/4 + rn-n /8 + P,l- ,  / 2  - Yll-l /4. 
24’) Y, = Y n..,/2. 

25’) xn = x,-1+ Yn-1/4. 
Equation 24’) may be written 

2yn - yn-, = 0. 

yn = K ,  / P ,  in which K, is an arbitrary constant. Then equation 
The most general solution of this equation is 
31)  
25’) becomes 

The most general solution of this equation is 
32) 
From equation 22’) 

X, - = K1 /2”+‘. 

A;, = K, - Kl /2“+’, K ,  being an arbitrary constant. 

r - r,-, - 4 P ,  - 2P,-1, 
- 33)  m - 2  - 4 p,-1 - P,,-n, 
- I ‘ n  - 4 f i n + , -  2 P n ,  

Substituting these values of rn, r,,+ r,-2, in equation 23’) and using equa- 
tion 3 I ) gives the equation 

The corresponding algebraic equation is 16c3 - 12c’ - 2c + I = 0 ;  

the roots are c = 1/4; c = ( I  + v/5)/4;  c = ( I  - d/5,/4. Then the 
most general solution of the homogeneous equation 

I ~ P , , + ~  - 12p, - 2 ~ , ~ _ ~  + P ~ - ~  = o-is 

34) I6P ,1+1- 12Plt-- 2P %..I+ Pn_, = - K1/2”i-1. 

CKB(I V/sIn K, (1 - V<)” + KsI/4”, 
in which K3, K, and K,  are arbitrary constants. A particular solution of 
the non-homogeneous equation 34) is K1/zn+l. Therefore the general 
solution of equation 34) is 
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Let P, = K,(I + j / /5 )"  + K,(I  - j/?),, 
Then 35) may be written, 
36) p, = K1/2,+' + (Pn + K5)/4n. 

37) U, = - Kl/Z"+l+ (P, + K5)/4*. . 
From y, = p ,  - U,, we have U, = p ,  - y, = p ,  - K1/2". 

From 33) r ,  = 4p,+l - 2p1,. 
this becomes 

A little algebraic reduction shows that 

38) r, = [@,-I - K51/4*- 
Sincf: q,, = r,J8, we have 
39) q n  = (4Pn-2 - K6)/2 x 4"- 
By direct substitution one can verify that 

Using this equation, q,, may be written 
40) q,=  [Pn-2P,,-,-K~1/2 X 4". 

pn - 2p,-1 - 4p,-, = 0. 

Finally, to get 0, and v, we note that since 0, . . . . . . v, are only 
proportional to the numbers of families of different types, it will simplify 
the problem to choose them so that, 

on + p n  + q ,  + r, + U, + v, = I. 
Then on + zsn = I - ( p ,  + q ,  + yn + atr . ) .  

From equation 32) we have that 

Solving the last two equations for 0, and vn, 
0, - v, = K z  - K1/2,+l. 

Kz-I I 
42) v, = K,/2"+' - ~ - - (P, + 4 ,  + Y n  + " f i ) .  

2 2 

Substituting the values of p,+, qx, r,, U,, from equations 36), 37), 38), 
40) into equations 41), 42) gives, 

I + K ,  Ki S P , + ~ P , - ~ + K ~  43) o,=---- 
4"'l 2n+2 2 

1--2 Ki 5P,+6P,-1+K5 
44) v n = - - + 7 -  2 4"'l 

The constants K,  . . . . . K,  are to be found in terms of the initial con- 
ditions ; in our problem they are functions of r, s, t. To determine them 
we need the values of or, p,, ql, rl, ul, U,.  Considering the possible 
crosses involved in mating the family r A A  + s Aa + t aa and using the 
notation K = r + s + t ,  we find that 

GENETICS 2: S 1917 
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2 rs 2rt  ;pl=- ; q 1 = - .  K 2  K Z  ' 
rz 

K Z  0 1  = - 

To evaluate K, we note from equation 31) that 3,  = K , / 2 .  Also 
Then K, = 231, = 2(pl - ul) and yl = p1 - u1 by definition. 

substituting for p , ,  241,  

4 4 r - t )  
45) K1= Kz  

From equation 3 2 ) ,  K, = x, + K1/4 = 0, - vi + K1/4; and sub- 
stituting for o,, v,, 

r-t  
46) K ,  = -. 

K 
More complicated work of the same nature gives for the remaining 

constants, 

I t  should be noted that we have here five constants K ,  . . . .K, ex- 
pressed in terms of three initial numbers Y, s, t. This indicates that our 
method is useful for a more general problem than the one to which it is 
here applied. This is shown clearly by expressing K,. . . . K ,  in terms 
of o,, p ,  . . . . . U ,  as follows : 

K,  = [ ( I  + V/5> (pi 
K ,  = [(I - v/3) ( p l  

K ,  = 4[pi + 111 - 441 - Y l I / 5 .  

K ,  = 2(f1 - uti) ; K ,  = 01 - 2'1 + (pi - ~ 1 ) / 2 .  

211) 4( dj - 1141 + 4viI/IO. 

211) - 4(  V j  + I)qi + 4"iI/IO. 

With this set of values of K ,  . . . . K,  our formulae will give the compo- 
sition of the population after n - I brother and sister matings starting 
with families of the six special types in numbers proportional to ol, PI, 41. 
r1, U,, Vl. 

b. Proportions of the three types  of individzinls in the ntla generntiort 
The final results desired are the numbers giving the proportions of 
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I t  is readily seen that AA, Aa, aiz individuals in the nth generation. 
they are5 

A A  = 0, + p , / 2  + r,,/4. 
Aa  = ( p ,  + r,, + 2 q n +  21,)/2. 

aa = rn/4 + U n / Z  + V", 

Substituting the values of on. . . .zfn, 
I + Kz 3Pn f 2Pn-1 

50) AA=------% 
2 4"" 

I -K* 3Pn 3- 2Pn-1 
52) aa = - - 

2 4"+l 
T h e  expression 3Pn + 2Pn-1 which enters these three equations is 

- 

3P" -+ 2Pn-1 =- v5 [ & ( I  + V\/j)n+l-Kp ( I  - V / ) " + ' ] .  
2 

It is instructive to get the proportions in so), S I ) ,  5 2 )  in another 
form by substituting the balues of K ,  and K ,  from equations 47) and 
48). This gives 

I s F,,, S* - 4 ~ t  
A a = - [ - -  , F n I  * 

2" K K? 
in  which F, is the ntb term of the Fibonacci series. 
F,+l + Fa, 
53) 
in which K = Y + s + t. 

Since F,+, = 

Aa = [sK Fn+l + ( rs  3- st + 4 ~ t ) F , 1 ~ [ 2 ~ .  K'I. 

From this form we can read the following results: 
I .  If the numbers representing the proportions of Aa ilzdividua~s in 

sicccessive generations be mitten with 2" in the denominators, the numer- 
ators .will satisfy the recuwcnce, 

N" = Nn-l + Nnw2. 
2 .  I f  s = o or  s' = 4rt, awd the denominators are chosen as 2"KZ/ 

(s2 - 4rt)  or 2"K/s, the numerators will be t e m s  of the Fibonacci 
series. 

3. As the %umber of generations increases, the proportion of heterosy- 
gous indiwiduals approaches zero regardleis of the values of r, s, t. 

4. A s  the number of generations increases, the retib of A A  to  au indi- 

6 PEARL (1914) had this result for A A  but seems to have erred in getting the num- 
bers for Aa. In the case he considered, on = v, and pn = U". 
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vidaials approaches ( z r  + s ) / (2 t  + s), zchiclt is tlze sattic as thc ratio of 
A and a gaketcs ~ P Z  the original family. 

c. Illustrative exniizplc 

As a check on these formulae, and to illustrate their application, let U* 
take a special case considered by JENNINGS (1916). Let AA and aa be 
crossed and assume brother and sister mating thereafter. The children 
of the original cross are all of type Aa. I t  is with crosses of these indi- 
viduals that our problem begins. We therefore have r = t = 0 ;  s = I .  

Substituting in equations 4 j )  - 49), 

Substituting these values of the constants into equations j o ) ,  j I ), j 2 ) ,  

and using the notation of part 11, F, = [ ( I + v/5)" - (I - j I"] 

K ,  K ,  10; K ,  z= K ,  = 2/5; Kj =- 4/j .  

- 
/ l / j  . 2", 

,4A = $ - Fn+l/2n+1; Aa = FILT1/2'; 
uu = 5 - F , + ~ / Z ~ + ~ .  

These results agree with JENNINGS'S series. 

3. Assortative brother nnd sistcr mating 
Given a family consisting of r AA + s A a  + t au, what is the compo- 

sition of the nth generation if mating is restricted ( I )  to brothers with 
sisters and (2) to dominants with dominants and recessives with reces- 
sives ? 

To derive the recurrence relations upon which the solution of this 
problem depends we note: 

a) Families of type q will not appear since they arise only by a cross 
between AA and ao. 

b j  Families of type zt will not appear since they arise only by a cross 
between Aa and aa. 

c j Random mating will occur in families of types 0, p ,  2'. 
d )  Assortative mating will occur in families of type r, ~ of the re- 

sulting families being of type o, p ,  r, in the proportion I : 4: 4 and % 
being of the type a. 

These considerations lead to the following equations : 
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pn-1 r7k-1 

56) r n = -  + -. 
4 3 

I m - 1  
57) V" = Vn-1 + - 4 

The problem of solving this system of equations is very similar to the 
problem considered above in studying random brother and sister mat- 
ing. Using the notation 

the solution takes the form, 

- 
pm = Ki(5 +?'G)" + Kz(5 - 1' 13)n, 

58) 
59) P n  = Pn/Izn- 

0, = I - K3 - 3 Pn+1/2 X 12~+'.  

60) rw = ( P,+l - 6Pn) /4 X 12"' 

61) vn = K ,  - (P,,, - 4Pn)/8 X 12". 

are given by 
The proportions of the three types of individuals in the nth generation 

Pnil- 2Pn _- P n  rn 

2 4  
62) AA = on + - + - = I - K ,  - 

1 6 .  12" 

P n  + r, Pn+1- 2P, 
2 8 .  12" 

- - 63) Aa=-- 

W e  have to determine the constants K,, K,, K ,  in terms of the initial 
numbers r, s, t. First, substituting n = I in equations 5S), 59), 60). 
61 ) , and solving, 
65) K i = 2 [ ( J - 2 ) f i i +  (5 -  ~ 'G)ri]/1/17 
66) K2 2[( v'G + 2 ) p l  - ( 5  +1/3)r11/ 

Examination of the first matings shows that 
67) K,  [ 2 (  I + Z J ~  - 0,) - p l ] / 4 .  

S2 t 
y1 = r - -  ; vi = -, ; p ,  = ---* 68)  01 = -- 2rs rz 

(r+s)K ( T+S) K ' ( r+s )  K K 
in which K = r + s + t. 
Substituting these values into equations 65), 66), 67), we have, 
6g) K,-= 2 s [ 2 ~ (  

70) 
71) 

E- 2 )  + s(5 - I/ YI3)] / [  1/73 . K ( r  + s)]. 
K 2  = 2 ~ [ 2 1 (  V ' S  + 2 )  - S(  v'T~ + 5)]/[  ~'-13 . K ( r  f s ) ] .  
K ,  = (2t  + s ) / zK .  

The expressions for AA, Aa, an, in terms of Y ,  s, t, are far from neat. 
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The one for Aa will be given; those for AA and aa can be readily calcu- 
lated from the one for A n  by using equations 62), 6 3 ) ,  64). 

It is instructive to note that 

n = I 2n+c 

This follows from the fact that (5  + v ' x ) / 1 2  and (5  - p'G)/12 are 
proper fractions, and that a proper fraction raised to higher and higher 
powers approaches zero as a limit. With this in mind we see at once 
from equation 63) that the proportion of heterozygotes approaches zero 
as n increases. Then 

2 r + s  

2K 
(AA). = I - K, = ___ , and Limit 

I Z = +  

Limit 2 t + S  
= oo (nu) ,  = K,  = -. 

2K 
Here again we see what has been true of every problem in inbreeding, 
that the heterozygotes tend to disappear and the homozygotes approach 
the proportion 

This is to be expected. In fact the following statement of the case seems 
obvious : 

Any method of breeding which gives A and a gametes equal chamces 
of mating and which tends to eliminate Izeterosygoi4.s individuals will in 
siiccessive generations give populations which a#proaclz a stablc condi- 
tion i ~ t  whiclz the two types of homozygous idizddbals appear in tlic 
sawte proportion as were their types of gametes in the original popdation. 

AA/an = (2r  + s ) / ( 2 t  + s). 

LITERATURE CITED 
JENSIXGS, H. S., 1916 The numerical results of diverse systems of breeeding. Ge- 

netics l : 53-89. 
PEARL, RAYMOND, 1914 On a general formula for the constitution of the izth gener- 

ation of a Mendelian population in which all matings are of brother X sister. 
Amer. Nat. 48 : 491-494. 

WENTWORTH, E. N., and REMICK, B. L., 1916 Some breeding properties of the gen- 
eralized Mendelian population. Genetics 1 : 6~8-616. 


	TITION
	I Random mating in a general population
	2 A special case of assortative mating

	3 Assortative mating in a general population
	PART 11 GENERAL TERMS OF JENNINGS™S SERIES
	I Derivation of the lzth term of the Fibonacci series
	2 Derivation of series G
	3 The nth terms of series in JENNINGS™S table

	BROTHER AND SISTER MATING
	I Results in random brother and sister mating
	2 Development of above results
	Development of the formulae for on pn qn rn,Un vfl
	Proportions of the three types of individuals in the lzth generation
	Illustrative example

	3 Assortative brother and sister mating

	LITERATURE CITED

