Table 10. Success accuracy and loss values on the APTOS 2019 Blindness Detection Validation dataset.
Model | Metric | AF | AFCS-CNN | |||||
---|---|---|---|---|---|---|---|---|
ReLU | ELU | SELU | Mish | SiLU | GELU | |||
VGG16 | Accuracy (%) | 76.91 | 69.09 | 75.27 | 80.73 | 77.82 | 77.09 | 80.18 |
Loss | 1.1004 | 0.8905 | 0.6830 | 0.6732 | 0.6521 | 1.0028 | 0.5188 | |
VGG19 | Accuracy (%) | 78.73 | 74.91 | 75.45 | 76.18 | 73.82 | 78.18 | 78.73 |
Loss | 0.6350 | 0.7446 | 0.6775 | 0.6536 | 0.7559 | 0.5691 | 0.5652 | |
DenseNet121 | Accuracy (%) | 81.82 | 74.00 | 76.36 | 77.45 | 72.91 | 78.55 | 83.27 |
Loss | 0.8153 | 0.7373 | 0.6211 | 0.6366 | 0.9755 | 0.7211 | 0.5611 | |
DenseNet169 | Accuracy (%) | 79.09 | 64.36 | 57.64 | 69.45 | 77.09 | 80.73 | 83.45 |
Loss | 0.9562 | 1.0919 | 1.3097 | 0.9848 | 0.6766 | 0.7533 | 0.6115 | |
EfficientNetV2B0 | Accuracy (%) | 62.55 | 74.18 | 59.27 | 74.91 | 70.91 | 70.91 | 79.45 |
Loss | 1.1221 | 0.9009 | 1.2356 | 0.9989 | 1.5562 | 1.0489 | 0.8403 | |
EfficientNetV2B1 | Accuracy (%) | 69.27 | 62.55 | 66.91 | 79.64 | 73.27 | 73.45 | 81.82 |
Loss | 1.0717 | 1.2512 | 1.0693 | 1.1388 | 1.0198 | 1.0289 | 0.8520 | |
ConvNeXtTiny | Accuracy (%) | No learning occurred in any of the trainings | ||||||
Loss | ||||||||
ConvNeXtSmall | Accuracy (%) | No learning occurred in any of the trainings | ||||||
Loss |