Table 12. Numerical results obtained from models using the APTOS 2019 Blindness Detection test dataset.
Model | Metric | AF | AFCS-CNN | |||||
---|---|---|---|---|---|---|---|---|
ReLU | ELU | SELU | Mish | SiLU | GELU | |||
VGG16 | Accuracy | 0.7709 | 0.7381 | 0.7599 | 0.7945 | 0.7945 | 0.7927 | 0.8254 |
Loss | 1.0019 | 0.7306 | 0.6178 | 0.6689 | 0.5773 | 0.9456 | 0.4848 | |
Precision | 0.7589 | 0.7468 | 0.6838 | 0.7846 | 0.8030 | 0.7921 | 0.8196 | |
Recall | 0.7693 | 0.7390 | 0.7597 | 0.7970 | 0.7923 | 0.7935 | 0.8234 | |
F1-score | 0.7601 | 0.7308 | 0.7170 | 0.7838 | 0.7975 | 0.7901 | 0.8130 | |
VGG19 | Accuracy | 0.7981 | 0.7727 | 0.7418 | 0.8090 | 0.7545 | 0.8000 | 0.8181 |
Loss | 0.5737 | 0.6036 | 0.6501 | 0.6260 | 0.6962 | 0.5305 | 0.5149 | |
Precision | 0.7925 | 0.7231 | 0.7238 | 0.7961 | 0.7154 | 0.7902 | 0.8132 | |
Recall | 0.7971 | 0.7744 | 0.7413 | 0.8078 | 0.7532 | 0.8008 | 0.8173 | |
F1-score | 0.7943 | 0.7368 | 0.7209 | 0.8013 | 0.7081 | 0.7939 | 0.8092 | |
DenseNet121 | Accuracy | 0.8072 | 0.7654 | 0.7690 | 0.7818 | 0.7327 | 0.7854 | 0.8327 |
Loss | 0.7971 | 0.6421 | 0.5645 | 0.5828 | 1.0582 | 0.6388 | 0.5704 | |
Precision | 0.8080 | 0.8246 | 0.7714 | 0.8173 | 0.7720 | 0.7886 | 0.8335 | |
Recall | 0.8066 | 0.7634 | 0.7687 | 0.7816 | 0.7325 | 0.7872 | 0.8329 | |
F1-score | 0.8049 | 0.7611 | 0.7607 | 0.7877 | 0.7251 | 0.7817 | 0.8135 | |
DenseNet169 | Accuracy | 0.7836 | 0.6218 | 0.5836 | 0.7290 | 0.7618 | 0.8163 | 0.8254 |
Loss | 1.0642 | 1.0636 | 1.2094 | 0.9553 | 0.6982 | 0.7083 | 0.6344 | |
Precision | 0.7825 | 0.6644 | 0.6388 | 0.7760 | 0.7766 | 0.8182 | 0.8258 | |
Recall | 0.7813 | 0.6203 | 0.5853 | 0.7286 | 0.7649 | 0.8196 | 0.8233 | |
F1-score | 0.7777 | 0.6185 | 0.5693 | 0.7173 | 0.7580 | 0.8027 | 0.8071 | |
EfficientNetV2B0 | Accuracy | 0.6363 | 0.7490 | 0.5690 | 0.7454 | 0.7163 | 0.7127 | 0.8054 |
Loss | 1.0799 | 0.8925 | 1.1607 | 1.0322 | 1.5423 | 1.0767 | 0.8327 | |
Precision | 0.6663 | 0.7050 | 0.6519 | 0.7261 | 0.7260 | 0.6596 | 0.7985 | |
Recall | 0.6383 | 0.7486 | 0.5675 | 0.7461 | 0.7159 | 0.7113 | 0.8076 | |
F1-score | 0.6448 | 0.7124 | 0.5953 | 0.7277 | 0.6797 | 0.6634 | 0.8013 | |
EfficientNetV2B1 | Accuracy | 0.6836 | 0.6399 | 0.6454 | 0.7927 | 0.7309 | 0.7363 | 0.8254 |
Loss | 1.0460 | 1.2034 | 1.1211 | 1.1672 | 1.0322 | 1.0834 | 0.8308 | |
Precision | 0.6712 | 0.5901 | 0.6211 | 0.7718 | 0.7080 | 0.7365 | 0.8269 | |
Recall | 0.6864 | 0.6378 | 0.6473 | 0.7909 | 0.7284 | 0.7374 | 0.8251 | |
F1-score | 0.6392 | 0.6097 | 0.6188 | 0.7657 | 0.7061 | 0.7077 | 0.8194 |