Skip to main content
. 2025 Mar 24;11:e2756. doi: 10.7717/peerj-cs.2756

Table 12. Numerical results obtained from models using the APTOS 2019 Blindness Detection test dataset.

Model Metric AF AFCS-CNN
ReLU ELU SELU Mish SiLU GELU
VGG16 Accuracy 0.7709 0.7381 0.7599 0.7945 0.7945 0.7927 0.8254
Loss 1.0019 0.7306 0.6178 0.6689 0.5773 0.9456 0.4848
Precision 0.7589 0.7468 0.6838 0.7846 0.8030 0.7921 0.8196
Recall 0.7693 0.7390 0.7597 0.7970 0.7923 0.7935 0.8234
F1-score 0.7601 0.7308 0.7170 0.7838 0.7975 0.7901 0.8130
VGG19 Accuracy 0.7981 0.7727 0.7418 0.8090 0.7545 0.8000 0.8181
Loss 0.5737 0.6036 0.6501 0.6260 0.6962 0.5305 0.5149
Precision 0.7925 0.7231 0.7238 0.7961 0.7154 0.7902 0.8132
Recall 0.7971 0.7744 0.7413 0.8078 0.7532 0.8008 0.8173
F1-score 0.7943 0.7368 0.7209 0.8013 0.7081 0.7939 0.8092
DenseNet121 Accuracy 0.8072 0.7654 0.7690 0.7818 0.7327 0.7854 0.8327
Loss 0.7971 0.6421 0.5645 0.5828 1.0582 0.6388 0.5704
Precision 0.8080 0.8246 0.7714 0.8173 0.7720 0.7886 0.8335
Recall 0.8066 0.7634 0.7687 0.7816 0.7325 0.7872 0.8329
F1-score 0.8049 0.7611 0.7607 0.7877 0.7251 0.7817 0.8135
DenseNet169 Accuracy 0.7836 0.6218 0.5836 0.7290 0.7618 0.8163 0.8254
Loss 1.0642 1.0636 1.2094 0.9553 0.6982 0.7083 0.6344
Precision 0.7825 0.6644 0.6388 0.7760 0.7766 0.8182 0.8258
Recall 0.7813 0.6203 0.5853 0.7286 0.7649 0.8196 0.8233
F1-score 0.7777 0.6185 0.5693 0.7173 0.7580 0.8027 0.8071
EfficientNetV2B0 Accuracy 0.6363 0.7490 0.5690 0.7454 0.7163 0.7127 0.8054
Loss 1.0799 0.8925 1.1607 1.0322 1.5423 1.0767 0.8327
Precision 0.6663 0.7050 0.6519 0.7261 0.7260 0.6596 0.7985
Recall 0.6383 0.7486 0.5675 0.7461 0.7159 0.7113 0.8076
F1-score 0.6448 0.7124 0.5953 0.7277 0.6797 0.6634 0.8013
EfficientNetV2B1 Accuracy 0.6836 0.6399 0.6454 0.7927 0.7309 0.7363 0.8254
Loss 1.0460 1.2034 1.1211 1.1672 1.0322 1.0834 0.8308
Precision 0.6712 0.5901 0.6211 0.7718 0.7080 0.7365 0.8269
Recall 0.6864 0.6378 0.6473 0.7909 0.7284 0.7374 0.8251
F1-score 0.6392 0.6097 0.6188 0.7657 0.7061 0.7077 0.8194