Table 9. Numerical results obtained from models using the V2 plant seedling test dataset.
Model | Metric | AF | AFCS-CNN | |||||
---|---|---|---|---|---|---|---|---|
ReLU | ELU | SELU | Mish | SiLU | GELU | |||
VGG16 | Accuracy | 0.9193 | 0.1287 | 0.1287 | 0.9193 | 0.9133 | 0.9157 | 0.9362 |
Loss | 0.2923 | 2.4259 | 2.4699 | 0.2602 | 0.2903 | 0.3782 | 0.2074 | |
Precision | 0.9215 | 0.0167 | 0.0167 | 0.9213 | 0.9155 | 0.9201 | 0.9354 | |
Recall | 0.9195 | 0.1288 | 0.1288 | 0.9194 | 0.9141 | 0.9154 | 0.9367 | |
F1-score | 0.9205 | 0.0296 | 0.0296 | 0.9202 | 0.9090 | 0.9104 | 0.9368 | |
VGG19 | Accuracy | 0.8916 | 0.1371 | 0.8676 | 0.9025 | 0.8977 | 0.9109 | 0.9253 |
Loss | 0.5742 | 2.4543 | 0.5411 | 0.3799 | 0.3579 | 0.2915 | 0.2368 | |
Precision | 0.8934 | 0.0192 | 0.8652 | 0.9061 | 0.8987 | 0.9112 | 0.9259 | |
Recall | 0.8917 | 0.1372 | 0.8668 | 0.9010 | 0.8989 | 0.9112 | 0.9256 | |
F1-score | 0.8824 | 0.0329 | 0.8596 | 0.9030 | 0.8961 | 0.9096 | 0.9224 | |
DenseNet121 | Accuracy | 0.9542 | 0.8868 | 0.7496 | 0.9386 | 0.9157 | 0.9590 | 0.9711 |
Loss | 0.1581 | 0.3422 | 0.7506 | 0.2014 | 0.2752 | 0.1367 | 0.0904 | |
Precision | 0.9555 | 0.8919 | 0.8280 | 0.9431 | 0.9503 | 0.9598 | 0.9719 | |
Recall | 0.9552 | 0.8881 | 0.7492 | 0.9385 | 0.9160 | 0.9590 | 0.9714 | |
F1-score | 0.9539 | 0.8817 | 0.7423 | 0.9397 | 0.9186 | 0.9574 | 0.9721 | |
DenseNet169 | Accuracy | 0.9446 | 0.7785 | 0.6594 | 0.9049 | 0.8880 | 0.9410 | 0.9675 |
Loss | 0.1971 | 0.6784 | 1.5014 | 0.2827 | 0.3053 | 0.1905 | 0.0955 | |
Precision | 0.9437 | 0.8260 | 0.7670 | 0.9117 | 0.8981 | 0.9465 | 0.9682 | |
Recall | 0.9454 | 0.7784 | 0.6599 | 0.9063 | 0.8883 | 0.9421 | 0.9688 | |
F1-score | 0.9439 | 0.7701 | 0.6190 | 0.9044 | 0.8815 | 0.9416 | 0.9670 | |
EfficientNetV2B0 | Accuracy | 0.9265 | 0.9217 | 0.6943 | 0.8543 | 0.7075 | 0.6401 | 0.9518 |
Loss | 0.3443 | 0.3035 | 1.1257 | 0.5348 | 1.0339 | 1.3997 | 0.1822 | |
Precision | 0.9334 | 0.9254 | 0.7661 | 0.8815 | 0.7790 | 0.7297 | 0.9508 | |
Recall | 0.9271 | 0.9223 | 0.6951 | 0.8550 | 0.7067 | 0.6410 | 0.9527 | |
F1-score | 0.9264 | 0.9236 | 0.6833 | 0.8515 | 0.7007 | 0.6199 | 0.9517 | |
EfficientNetV2B1 | Accuracy | 0.9265 | 0.7148 | 0.7352 | 0.9169 | 0.9121 | 0.8122 | 0.9530 |
Loss | 0.3025 | 0.9967 | 0.9698 | 0.3140 | 0.3973 | 0.6153 | 0.1796 | |
Precision | 0.9273 | 0.7581 | 0.8119 | 0.9224 | 0.9258 | 0.8288 | 0.9531 | |
Recall | 0.9278 | 0.7150 | 0.7360 | 0.9167 | 0.9124 | 0.8124 | 0.9526 | |
F1-score | 0.9241 | 0.7041 | 0.7274 | 0.9192 | 0.9145 | 0.7987 | 0.9518 |