Skip to main content
. 2025 Feb 17;16(16):6620–6687. doi: 10.1039/d4sc08300h

Table 2. Literature data on the performance of alkane reaction for power and chemical cogeneration.

Anode Electrolyte Fuel Flowing rate (mL min−1) Conversion Selectivity Yield Power density (mW cm−2) Ref. Duration
Pt BaCeY0.15O3 C3H8 20–80 5–30% (550–650 °C) 90–95% for CH4 + C2H4 + C3H6 17–35 (600–650 °C) 281
Cr2O3 + Ag BaCe0.8Y0.15Nd0.05O3−δ C2H6 150 8–31% for C2H4 51–118 283 50 h (650–750 °C)
MoCx BaCe0.7Zr0.1Y0.2O3−δ 100 7.7–42.6% 97.5–87.2% 65–215 284 100 h
Cu–Cr2O3 100 10–40% 90–100% 81–170 285 10 h
Cr3C2 and WC 75 10–40% 91–96% −185 286 80 h
Co–Cr2O3 BaCe0.8Y0.15Nd0.05O3−δ 100 91.6% 31.2% 173 287 No CO2
La0.6Sr0.4Fe0.8Nb0.1Cu0.1O3−δ BaCe0.7Zr0.1Y0.2O3−δ 30 43.3% (750 °C) 94% 90 288 12 h
Co/Fe-(Pr0.4Sr0.6)3 (Fe0.85Mo0.15)2O7 100 15–50% (650–750 °C) 90–100% 13.2–41.5% (650–750 °C) 349 (750 °C) 291 750 °C for 100 h
FeNi3-(PrBa)0.95(Fe0.8Ni0.2)1.8Mo0.2O6−δ BaZr0.1Ce0.7Y0.2O3 30 50.9% 92.1% 46.9% 318 (750 °C) 295 50 h
Au BaCe0.7Zr0.1Y0.2−xNdxO3−δ 100 3–23% (600–700 °C) 100–90% 23% (700 °C) 123 (700 °C) 296
Pr0.6Sr0.4Fe0.8Nb0.1Cu0.1O3−δ BaZr0.1Ce0.7Y0.1Yb0.1O3−δ 30 45.2 92.8 209 (750 °C) 293 N2O as oxidant/24 h
Co–SrMo0.8Co0.1Fe0.1O3−δ BaCe0.7Zr0.1Y0.2−xNdxO3−δ 100 12.5–41.3 at 650–750 °C >91% 11.9–37.8% 258 (750 °C) 194 50 h
Aligned carbon nanotube forests BaZr0.4Ce0.4Y0.1Yb0.1O3−δ 20 37.6 (650 °C) >90 111 (650 °C) 297 90 h
PtGa/ZSM-5-(Pr0.3Sr0.7)0.9Ni0.1Ti0.9O3 C3H8 50 15% >90 172 (550 °C) 298 20 h
(Pr0.3Sr0.7)0.9Ni0.1Ti0.9O3 catalyst layer BaZr0.3Ce0.5Y0.2O3−δ C3H8 + H2O 10 20–70% 68% for C3H6 + C2H4 (700 °C) 94–450 (650–750 °C) 292 50 h
Co7W6@WOx-La0.4Sr0.6TiO3 YSZ n-C4H8 80% (650 °C) 65% for C4 alkenes 50% 212 25 7 h