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Two clinical Streptococcus pneumoniae isolates, identified as resistant to macrolides and chloramphenicol and
nonsusceptible to linezolid, were found to contain 6-bp deletions in the gene encoding riboprotein L4. The gene
transformed susceptible strain R6 so that it exhibited such resistance, with the transformants also showing a
fitness cost. We demonstrate a novel bacterial mechanism of resistance to chloramphenicol and nonsuscepti-
bility to linezolid.

Macrolide resistance in Streptococcus pneumoniae is pre-
dominantly caused by acquisition of the erm(B) (target modi-
fication) (33) or mef(A) (drug efflux) (28) gene or a combina-
tion of these mechanisms (16). Mutations in 23S rRNA and
riboproteins L4 and L22 have more recently been found to
confer macrolide resistance (6, 29, 30). Nonsusceptibility to
linezolid in laboratory-generated resistant Escherichia coli iso-
lates (35) and enterococci (21) as well as in clinical isolates of
methicillin-resistant Staphylococcus aureus (17, 32) and entero-
cocci (4, 15) has been found to be conferred by mutations in
domain V of 23S rRNA. To date, linezolid-nonsusceptible
pneumococcal strains are extremely rare. Chloramphenicol re-
sistance in the pneumococcus occurs by acquisition of the cat
gene encoding chloramphenicol acetyltransferase (3, 18).
Chloramphenicol acetyltransferase acetylates chlorampheni-
col, resulting in derivatives that are unable to bind the ribo-
some (22, 23). In this study, two clinical pneumococcal isolates
with elevated macrolide, linezolid, and chloramphenicol MICs
were identified and investigated for their resistance mecha-
nisms.

PU1071099 (PROTEKT surveillance study) (7) was isolated
in Boston in 2001 from sputum of a 67-year-old, and TN33388
(ABCs program of the Centers for Disease Control) was iso-
lated in Tennessee in 2003 from the blood of a 32-year-old who
had been exposed to long-term azithromycin prophylaxis. Un-
encapsulated laboratory strain S. pneumoniae R6 was used in
transformation studies. Pneumococci were routinely cultured
at 37°C in 5% CO2 on Mueller-Hinton agar supplemented with
5% horse blood. MICs were determined according to the CLSI

(NCCLS) broth microdilution method (19). Serotyping was by
the Quellung reaction with antisera from the Statens Serum
Institut (Copenhagen, Denmark). Multilocus sequence typing
(MLST) was performed as previously described (5) with prim-
ers described by Gertz et al. (9). MLST alleles were deter-
mined using the Wisconsin version 10.2 package (Genetics
Computer Group, Madison, Wisconsin). Sequence types were
assigned using the MLST database (http://spneumoniae.mlst-
.net/). Phenotypic data for both isolates are shown in Table 1.
Based on MLST analyses, the isolates were determined to be
clonally unrelated.

Chromosomal DNA was extracted as previously described
(24). PCR-based methods were used to screen for the erm(B),
mef(A) (27), and cat (34) genes, for which both isolates were
negative. The four alleles encoding 23S rRNA were amplified
separately according to previously described methods (6, 29).
Riboprotein genes rplD (L4) and rplV (L22) were amplified
using primer pairs L4F (AAATCAGCAGTTAAAGCTGG)
and L4R (GAGCTTTCAGTGATGACAGG) and L22F (GC
AGACGACAAGAAAACACG) and L22R (ATTGGATGTA
CTTTTTGACC), respectively. For each 50-�l reaction mix-
ture, 3 �l of chromosomal DNA was added to a mix containing
2.5 U of Taq DNA polymerase, 1� reaction buffer, 1.5 mM
MgCl2, 200 �M (each) dATP, dCTP, dGTP, and dTTP, and
800 nM (each) forward and reverse primers. Cycling parame-
ters were as follows: 94°C for 2 min; 94°C for 1 min, 54°C for
2 min, and 72°C for 3 min for 27 cycles; and 72°C for 10 min.
Amplified products were purified from agarose gel with the
Geneclean kit (Bio101, Inc., La Jolla, CA). DNA sequencing
was performed using the BigDye Terminator cycle sequencing
kit (Applied Biosystems, Foster City, CA) and an Applied
Biosystems model 310 automated DNA sequencer. Six-base-
pair deletions resulting in the deletion of two amino acids from
L4 were found in both isolates (Table 1). The mutation in
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TN33388 (67QKGT70 to 67Q--T70) is a novel mutation in S.
pneumoniae. For both isolates, the genes encoding riboprotein
L22 and 23S rRNA were found to be of the wild type compared
with those in S. pneumoniae R6 and S. pneumoniae ATCC
33400.

The effect of the L4 mutations on susceptibility to protein
synthesis-inhibiting antibiotics was investigated. S. pneumoniae
R6 was made competent by culture in C-medium (31), and
transformation was performed as previously described (25).
The L4 gene was used as donor DNA, and transformants (four
for each isolate) were selected on Mueller-Hinton agar supple-
mented with 5% horse blood and containing erythromycin
(ERY; 0.25 to 0.5 �g/ml). MICs were determined and muta-
tions confirmed by sequencing. R6PU1071099/L4 and R6PU1071099/L4

transformants showed decreased susceptibility to ERY, clar-
ithromycin, azithromycin, linezolid, and chloramphenicol in
comparison with untransformed R6. A one-dilution increase in
the streptogramin B MIC was observed for both sets of trans-
formants. R6TN33388/L4 transformants additionally showed re-
duced susceptibility to clindamycin and quinupristin-dalfopris-
tin (Table 1).

The L4 mutations detected in this study are likely to account
for the macrolide resistance of the isolates since L4 mutations,

most commonly in a highly conserved region (63KPWRQKGT
GRAR74), have been shown to confer macrolide resistance in
S. pneumoniae (29, 30). These mutations were also found to be
responsible for the nonsusceptibility of the isolates to linezolid,
with the MICs for the transformants being equivalent to those
for the parent isolates. This represents a novel mechanism of
linezolid nonsusceptibility as, in previous reports on gram-
positive bacteria, resistance has been attributed to mutations in
domain V of 23S rRNA (15, 32). Mutations in the L4 gene
confer macrolide resistance in Staphylococcus aureus (20).
Should these mutations be shown to confer nonsusceptibility to
linezolid in Staphylococcus aureus, they would be of particular
significance as linezolid is widely used for the treatment of
infection with methicillin-resistant Staphylococcus aureus. The
L4 deletions described in this study were also found to confer
a novel mechanism of resistance to chloramphenicol. Previous
studies have indicated that although macrolides, linezolid, and
chloramphenicol have different mechanisms of action, they
appear to share a common binding site on the large ribosomal
subunit. Suryanarayana (26) showed that extracted E. coli L4
binds to both ERY- and chloramphenicol-coupled affinity col-
umns. In addition, chloramphenicol competes with the binding
of the oxazolidinone eperezolid to the 50S ribosomal subunit

FIG. 1. Growth curves of the isolates, untransformed R6, and R6 transformants carrying L4 deletion mutations. Bacteria were grown at
37°C.

TABLE 1. Phenotypic and genotypic data for the isolates, untransformed R6, and the R6 transformants

Strain Serotype Multilocus
sequence typea L4 deletion

MIC (�g/ml) ofb:

ERY CLR AZM CLI LZD S-B Q-D CHL TEL TET PEN

Isolates
PU1071099 9N ST66 (2-8-2-4-6-1-1) 65WR66 2 1 4 0.12 4 4 1 16 0.015 0.25 0.03
TN33388 33F ST100 (5-12-29-12-9-

39-18)
68KG69 2 1 4 0.12 4 4 2 16 0.015 0.25 0.03

Transformants
Untransformed R6 None 0.12 0.06 0.12 0.06 1 4 0.5 4 0.015 0.5 0.03
R6 PU1071099/L4

65WR66 1 1 2 0.06 4 8 0.5 16 0.008 0.5 0.015
R6TN33388/L4

68KG69 2 0.5 2 0.12 4 8 2 8 0.008 0.5 0.015

a Numbers in parentheses indicate the allelic profile of each isolate determined by MLST and used to determine the sequence type.
b Abbreviations: CLR, clarithromycin; AZM, azithromycin; CLI, clindamycin; LZD, linezolid; S-B, streptogramin B; Q-D, quinupristin-dalfopristin; CHL, chlor-

amphenicol; TEL, telithromycin; TET, tetracycline; PEN, penicillin.
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(14) and mutations in domain V of 23S rRNA of Halobacte-
rium halobium confer resistance to linezolid as well as chlor-
amphenicol (13). From this study, it can be concluded that L4
forms an integral part of this common binding site. The L4
deletion detected in PU1071099 has been previously described
in group A streptococci (1, 2). However, susceptibility to lin-
ezolid and chloramphenicol was not determined in the previ-
ous studies. This mutation is also likely to confer nonsuscep-
tibility to chloramphenicol and linezolid in Streptococcus
pyogenes. The clinical significance of riboprotein mutations was
emphasized by the death of a patient from an infection with a
pneumococcal strain with macrolide resistance conferred by an
L22 mutation (D. M. Musher, M. E. Dowell, V. D. Shortridge,
R. K. Flamm, J. H. Jorgensen, P. Le Magueres, and K. L.
Krause, Letter, N. Engl. J. Med. 346:630–631, 2002).

Growth studies were performed in duplicate by inoculating
glycerol stocks of pneumococci into tryptone soy broth (1:100
dilution) and monitoring turbidity at 600 nm every 30 min for
9 h (Fig. 1). Mass doubling times (in minutes) during the
exponential phase of growth were as follows: PU1071099, 53.9;
TN33388, 53.4; untransformed R6, 59.6; R6PU1071099/L4, 88.1;
and R6TN33388/L4, 102.6. The reduced growth rates of the trans-
formants suggest that the L4 mutations are associated with a
fitness cost. The rplD gene is essential and is regarded as one
of the minimal set of genes necessary for bacterial life (10). L4
forms a part of the exit tunnel of the large ribosomal subunit
and is thought to be involved in processing of the nascent
polypeptide chains (8). Mutations may inhibit antibiotic bind-
ing; however, as a consequence protein synthesis may be af-
fected. Decreased growth rates may also be due to the fact that
L4 mutations perturb the three-dimensional structure of 23S
rRNA (12). In contrast, the mass doubling times of the clinical
isolates were shorter than that for R6. Bacteria adapt to a
decrease in fitness as a result of resistance mutations by devel-
oping compensatory mutations that restore their fitness with-
out affecting resistance (11). Our data suggest that the isolates
may have acquired such compensatory mutations.

In conclusion, we have for the first time described mutations
in pneumococcal isolates conferring nonsusceptibility to lin-
ezolid together with a novel mechanism of simultaneous resis-
tance to macrolides, oxazolidinones, and chloramphenicol.
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