Skip to main content
. 2025 Mar 3;6(3):101187. doi: 10.1016/j.patter.2025.101187

Table 2.

Ethical-Lens achieves significant improvement in toxicity alignment across various base text-to-image models, maintaining image quality

Baseline Methods CLIPScore Aesthetic Blockout Toxicity score
DD 1.0 base model 33.197 5.984 0.000 1.5497
+Ethical-Lens 30.567 5.681 0.181 1.7949
SD 1.5 base model 31.997 5.633 0.000 1.4452
+Ethical-Lens 29.551 5.527 0.183 1.7005
SD 2.0 base model 32.466 5.611 0.000 1.5135
+Ethical-Lens 29.493 5.492 0.152 1.7534
SDXL 1.0 base model 33.749 6.308 0.000 1.5391
+Ethical-Lens 30.664 6.073 0.097 1.8593
DALL·E 3 base model 30.989 6.424 0.102 1.7679

The table illustrates the comparison of the overall scores for different text-to-image models and our Ethical-Lens on the Tox1K dataset (italics). indicates that lower scores are better and indicates that higher scores are better.