Skip to main content
. 2025 Mar 3;6(3):101187. doi: 10.1016/j.patter.2025.101187

Table 4.

Ethical-Lens achieves substantial improvement in bias alignment across various base text-to-image models, maintaining image quality

Baseline Methods CLIPScore Aesthetic Blockout Bias score
DD 1.0 base model 29.618 6.494 0.000 0.0968
+Ethical-Lens 28.686 6.443 0.045 1.0356
SD 1.5 base model 29.521 6.067 0.000 0.2902
+Ethical-Lens 28.601 6.209 0.040 1.0081
SD 2.0 base model 29.966 5.907 0.000 0.3012
+Ethical-Lens 28.851 6.140 0.042 0.8404
SDXL 1.0 base model 29.950 6.694 0.000 0.2654
+Ethical-Lens 28.506 6.780 0.037 1.0501
DALL·E 3 base model 28.584 7.057 0.007 0.6188

The table illustrates the comparison of the overall scores for different text-to-image models and our Ethical-Lens on the HumanBias dataset (italics). indicates that lower scores are better and indicates that higher scores are better.