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Accuracy of Haplotype Reconstruction from Haplotype-Tagging
Single-Nucleotide Polymorphisms
Julian Forton,1,2 Dominic Kwiatkowski,1,2 Kirk Rockett,1 Gaia Luoni,1,† Martin Kimber,1,3

and Jeremy Hull2

1Wellcome Trust Centre for Human Genetics and 2University Department of Paediatrics, University of Oxford, Oxford, United Kingdom;
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Many investigators are now using haplotype-tagging single-nucleotide polymorphism (htSNPs) as a way of screening
regions of the genome for association with disease. A common approach is to genotype htSNPs in a study population
and to use this information to draw inferences about each individual’s haplotypic makeup, including SNPs that
were not directly genotyped. To test the validity of this approach, we simulated the exercise of typing htSNPs in
a large sample of individuals and compared the true and inferred haplotypes. The accuracy of haplotype inference
varied, depending on the method of selecting htSNPs, the linkage-disequilibrium structure of the region, and the
amount of missing data. At the stage of selection of htSNPs, haplotype-block–based methods required a larger
number of htSNPs than did unstructured methods but gave lower levels of error in haplotype inference, particularly
when there was a significant amount of missing data. We present a Web-based utility that allows investigators to
compare the likely error rates of different sets of htSNPs and to arrive at an economical set of htSNPs that provides
acceptable levels of accuracy in haplotype inference.

Introduction

A critical roadblock in complex-disease genetics is to
identify the most-informative markers to use in large-
scale association analysis, out of ∼10 million SNPs that
exist in the human genome. The problem can be broken
down into two distinct stages. The first stage is to iden-
tify the SNPs that are most informative about common
haplotypes in the population of interest. The second
stage is to type the selected SNPs in epidemiological sam-
ples (e.g., disease cases and controls) and, by reconstruc-
tion of haplotypes, to make inferences about SNPs that
have not been directly typed.

The first stage, identification of informative SNPs, has
received considerable attention over the past 3 years,
and several different methods have been described (John-
son et al. 2001; Patil et al. 2001; Cardon and Abecasis
2003; Stram et al. 2003; Weale et al. 2003). All SNPs
of interest are genotyped in a random sample of the
population, and haplotype frequencies are estimated,
often by use of expectation-maximization or Bayesian
methods (Fallin and Schork 2000). Haplotype-tagging
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SNPs (htSNPs) can then be identified in two different
ways. One approach is to represent the haplotypic struc-
ture of the region as discrete blocks, each of which can
then be tagged independently (Daly et al. 2001; Johnson
et al. 2001; Patil et al. 2001; Gabriel et al. 2002; Zhang
and Jin 2003); in the present study, we used a greedy
algorithm implemented by HaploBlockFinder (Zhang
and Jin 2003) as a simple example of the block ap-
proach. An alternative approach is to ignore block
structure and to identify the markers that are most in-
formative across the whole region (Ackerman et al.
2003; Ke and Cardon 2003; Sebastiani et al. 2003; Hall-
dorsson et al. 2004); in the present study, we used the
Entropy algorithm (Ackerman et al. 2003; R. Mott’s Web
site) as a simple example of the unstructured approach.

The second stage, typing htSNPs and reconstructing
haplotypes in epidemiological samples, has received
much less attention and is the focus of the present study.
The approach is particularly problematic when the in-
vestigator wishes to use htSNPs to infer haplotypes for
an individual rather than simple estimation of popu-
lation frequencies. In this situation, expectation-maxi-
mization or Bayesian theory is used to estimate the most
probable pair of haplotypes possessed by an individual.
These haplotypes contain only the htSNPs (we will call
them “htSNP haplotypes”), but they can be used to re-
construct the full haplotypes that were observed in the
first stage of analysis; this allows us to infer genotypes
for SNPs that were not physically genotyped.

Here, we use simulations to evaluate the accuracy of
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Table 1

Haplotype-Tagging Sets Derived for European and West
African Data Sets for 5q31 and IL-8 Regions

REGION AND

POPULATION

NO.
OF

SNPS

TAGGING APPROACH

FOR HTSNPS

Contiguous Block Unstructured

5q31:
European 99 46 22
West African 89 56 16

IL-8:
European 55 17 16
West African 52 21 21

NOTE.—Contiguous-block–structure tagging sets were de-
rived using HaploBlockFinder to partition the haplotype into
blocks, each of which was then tagged by eye. The unstructured
tagging sets were derived using Entropy to analyze the whole
region as a single unit.

reconstructing individual haplotypes and inferring un-
typed SNPs from htSNP data. We explore how accuracy
is affected by the method used to select htSNPs, by the
linkage disequilibrium (LD) structure of the region, and
by the amount of missing data. We present a Web-based
tool that allows investigators to combine algorithmic and
manual methods to identify a set of htSNPs that will give
low error rates when haplotypes are reconstructed.

Material and Methods

Marker Selection and Genotyping

Family trios (32 European and 32 West African) were
genotyped for 122 SNPs across 654 kb of the 5q31 cy-
tokine gene cluster and for 55 SNPs across 550 kb in
the IL-8 region on chromosome 4, as described elsewhere
(Hull et al. 2004). Mean inter-SNP distance was 12 kb.

In brief, genomic DNA samples were subjected to
whole-genome preamplification by use of primer exten-
sion amplification prior to genotyping (Hull et al. 2000).
MassArray (Sequenom) was used to genotype all mark-
ers by use of allele-specific MALDITOF mass spectrom-
etry (Jurinke et al. 2001). Multiplexes were designed using
the dedicated software SpectroDESIGNER (Sequenom).

All SNPs at frequency 15% and in Hardy-Weinberg
equilibrium were included for analysis. The 5q31 region
was characterized with 99 SNPs in the European popu-
lation and with 89 SNPs in the West African population.
The IL-8 region was characterized using 55 SNPs in the
European and 52 SNPs in the West African population.

Population haplotypes and their frequencies were in-
ferred using Phamily and PHASE (Stephens et al. 2001)
software.

LD structure for each region and each population was
interrogated, using HaploXT (Abecasis et al. 2000) and
MARKER, to chart pairwise D′ and statistics derived2r
from haplotype data.

Simulations

Model populations.—Model populations were created
using haplotype data for the two gene regions in the two
ethnic groups discussed above. Initially, 100,000 “in-
dividuals” were created by assigning two haplotypes at
random to each individual, while ensuring that the over-
all frequencies of the haplotypes were correct. Two “par-
ents” were chosen at random and one “transmitted”
haplotype from each parent was chosen at random to
create the “child.” Populations of 380 families were cre-
ated to be used, as either 380 family trios or 760 un-
related individuals (parents only), in models of haplotype
inference for pedigree data sets and unrelated individ-
uals, respectively.

Haplotype-tagging strategies.—Two htSNP sets were
generated for each model population by use of two fun-
damentally different methods. The first used a structured
approach in which the region was first divided into con-
tiguous haplotype blocks, by use of HaploBlockFinder,
with the chromosomal coverage algorithm at 90%
(Zhang and Jin 2003). Consequent haplotype blocks
were small and tagged by eye. The second tagging strat-
egy used an unstructured approach using Entropy (Ack-
erman et al. 2003), with the greedy algorithm approxi-
mation and 100% haplotype description, on the whole
region as one block.

Missing data.—In each of the eight simulations (in two
populations, for two regions, by use of two tagging ap-
proaches), genotype data for the htSNPs were taken from
the model population and were used to represent ge-
notyping results that might be acquired in an association
study. Six levels of missing data were introduced into
this simulated genotype data: 0%, 1%, 2%, 5%, 10%,
and 20%. Levels of missing data for each htSNP were
derived at random but were maintained below the de-
fined threshold for that simulation. Missing data were
distributed in this manner at each htSNP locus. Five
genotype sets were created for each category of missing
data. A total of 240 simulated genotype sets were created.

Each simulated genotype set was used to infer haplo-
types from the htSNPs. htSNP haplotypes were extrapo-
lated to the full haplotypes and were compared with the
starting haplotypes. Each incorrectly inferred haplotype
was interrogated, and the position of each error on the
haplotype was recorded. For all simulations, outcome
measures for accuracy of haplotype inference were re-
corded as “percent incorrect haplotype assignment” and
“percent incorrect allele assignment” at each locus on
the inferred haplotype. To assess how well haplotypes
could be used to infer genotypes at each untyped ob-
served SNP on the haplotype, we also recorded percent
genotype error at each untyped locus.

Simulation was used to address the effect of the fol-
lowing variables on outcome measures: (1) LD archi-



440 Am. J. Hum. Genet. 76:438–448, 2005

Figure 1 Simulations for European (A) and West African (B) data sets for the 5q31 region, which demonstrate increased error in haplotype
inference using an unstructured tagging approach compared with a contiguous-block–structure tagging approach. All data sets shown carry
!20% missing data assigned at random to each SNP. Percentage error is shown for each SNP locus on the haplotype.

tecture, (2) unstructured versus contiguous-block–struc-
ture tagging approach, (3) level of missing data, and (4)
family data versus unrelated individuals. In simulation
category (4), Phamily and PHASE were used to infer
htSNP haplotypes from pedigree data, and SNPHAP was
used for unrelated individuals. All other parameters were
modeled using unrelated individuals, by use of SNPHAP
to infer the htSNP haplotypes.

Results

Comparison of Haplotype-Block and Unstructured
Methods of Selecting htSNPs

We began by comparing a haplotype-block approach
and an unstructured approach to identify htSNPs, using
four different sets of population genetic data. The IL-8
region in Europeans has extended haplotype blocks, with
little LD across block boundaries (Hull et al. 2004). In
contrast, the 5q31 region in West Africans has short hap-
lotype blocks, with extensive LD across block boundaries
(G. Luoni J. Forton, M. Jallow, A. E. Sadighi, F. Sisay-
Joof, M. Pinder, N. Hanchard, M. Herbert, M. Kimber,
R. Mott, J. Hull, K. Rockett, and D. Kwiatkowski, un-
published material). The haplotype structures of the
IL-8 region in West Africans and of the 5q31 region in
Europeans lie between these two extremes.

Population-haplotype frequencies were determined for

each of these data sets, as described in the “Material and
Methods” section. To illustrate the haplotype-block ap-
proach for selection of htSNPs, we used the greedy al-
gorithm provided by HaploBlockFinder (Zhang and Jin
2003). To illustrate an unstructured method of selecting
htSNPs, we used Entropy, which determines the infor-
mation content of each SNP without consideration of
block structure (Ackerman et al. 2003; R. Mott’s Web
site). As noted by other authors (Halldorsson et al.
2004), the unstructured approach consistently generated
a smaller set of htSNPs than did the block approach
(table 1).

Accuracy of Reconstructing Individual Haplotypes
from htSNP Data

To model the process of reconstructing haplotypes from
htSNP data in a population-based study, we simulated
a random sample of 760 unrelated individuals whose
genotypes and haplotypes were based on real population-
haplotype frequencies. As in the previous section, Eu-
ropean or West African data for the IL-8 and 5q31 re-
gions were used to represent a range of different patterns
of population-haplotype structure.

We supposed that htSNP genotypes were known for
each individual within the sample and used the SNPHAP
algorithm to estimate the most probable htSNP haplo-
types for each individual. From the htSNP haplotypes,
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Figure 2 Simulations with increasing missing data for European (A) and West African (B) data sets for the 5q31 region, which show the
economical tagging strategy to be more susceptible to missing data.

we then inferred the full haplotypes comprising all SNPs.
After the simulation was repeated for five random sam-
ples of the population, inferred full haplotypes were
compared with true haplotypes to determine the average
error rate at each SNP locus.

The results are shown in figure 1. By use of the htSNPs
generated by the haplotype-block approach, the error
rate in estimation of individual SNP alleles was generally
in the range of 0%–0.2%, but, in a few cases, it was as
high as 1.5%. By use of the smaller sets of htSNPs gen-
erated by the unstructured approach, the error rate was
generally in the range of 1%–2.5% and reached a maxi-
mum of 3%. The difference between the two htSNP-
selection methods was most marked in simulations of
the 5q31 region, where the unstructured approach gave
a 2-fold increase in the number of incorrect haplotypes
in Europeans (which resulted in 5% vs. 1.5% incorrect
SNP alleles) and a 10-fold increase in West Africans
(which resulted in 7% vs. 1.7% incorrect SNP alleles).

Effect of Missing Data on Haplotype Reconstruction
from htSNP Data

To understand how genotype failure might affect the
accuracy of haplotype inference from htSNP data, we
incorporated missing data into the simulated data sets
outlined in the previous section. Simulations incorpo-
rating missing data demonstrate a linear relationship be-
tween level of missing data and incorrect haplotype in-
ference, for all regions used and with both block-based

and unstructured tagging approaches. With the level of
missing data set below a threshold of 20%, haplotype
error ranged from 5% to 14%. The impact of missing
data on haplotype error was greatly enhanced in simula-
tions performed with the more economical unstructured
tagging sets, compared with the block-based tagging
sets. This is most marked in the West African 5q31 re-
gion, where populations with missing data set below a
threshold of 20% had 10% error in haplotype inference
for the unstructured tagging set, compared with 1% for
the block-based approach (fig. 2). These findings suggest
that the most economically efficient tagging set may not
always be the most effective for poor-quality data sets
with missing data.

Effect of Local Pattern of LD on Haplotype
Reconstruction from htSNP Data

When we inspected the pairwise LD statistics for the
four regions used in simulation, we noticed great varia-
tion in pairwise LD within these regions and between
regions and populations. A remarkable similarity in pat-
tern can be seen between the distribution of pairwise LD
(parameter ) for a given region and the position2r 1 0.4
of errors on inferred haplotypes (fig. 3). Segments within
a region in which LD is low or in which LD drops rapidly
at a potential recombination hotspot show increased er-
ror rates. In each of the four models, repeated simula-
tions with increasing missing data reveal a conserved yet
exaggerated pattern in error position (fig. 3). This im-



Figure 3 In all four models, there is strong inverse correlation between pairwise and percentage inference error for each SNP2r 1 0.4
locus on the inferred haplotype. Data shown for European (A and C) and West African (B and D) data sets for 5q31 and IL-8 regions, with
!10% missing data (blackened diamond) and !20% missing data (unblackened diamond) assigned at random to each SNP. The unstructured
tagging approach was used in all simulations.
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Figure 4 Simulations with increasing missing data for European (A) and West African (B) data sets for the 5q31 region, by use of Phamily
and PHASE to infer haplotypes for pedigree data and by use of SNPHAP to infer haplotypes for unrelated data. Both methods demonstrate a
linear relationship between missing data and error in haplotype inference from htSNPs. The unstructured tagging approach was used in all
simulations.

plies that missing data enhances the pattern of errors in
haplotype inference determined by the underlying LD
architecture.

Effect of Haplotype-Estimation Methods on Accuracy
of Reconstruction from htSNP Data

The above findings suggest that use of an unstructured
tagging approach may lead to problems when applied
to a region of low LD or when data sets with missing
data are used. These findings are based on simulations
in which the EM algorithm (SNPHAP) is used to infer
haplotypes for a population-based study. We next at-
tempted to extrapolate these findings to an alternative,
more sophisticated method of haplotype inference by
using Phamily and PHASE to infer haplotypes, as might
be used in a pedigree-based study.

Phamily contributes phase-known sites from family-
trio pedigree data. The PHASE algorithm infers haplo-
types by use of coalescent theory within a Bayesian frame-
work. As might be expected, we found that, for simu-
lations without missing data, haplotype inference by use
of Phamily and PHASE showed an advantage over
SNPHAP (fig. 4). In the 5q31 region for Europeans, error
rates in haplotype inference were 1/190 with Phamily
and PHASE and were 1/54 with SNPHAP. In the 5q31
region for West Africans, the trend was similar, with
error rates in haplotype inference at 1/380 for Phamily

and PHASE and 1/75 for SNPHAP. However, with miss-
ing data set below a threshold of 20%, error rates in
the European 5q31 data set increased to 1/21 haplotypes
with Phamily and PHASE and to 1/16 haplotypes with
SNPHAP. Error rates in the West African data set simi-
larly increased to 1/13 for Phamily and PHASE and to
1/10 for SNPHAP.

These findings are of interest, since they suggest that
the susceptibility of a highly economical tagging strategy
to missing data is independent of the haplotype-inference
algorithm used and that these findings are likely to be
relevant to both pedigree and case-control study designs.

Effect of Considering Probabilities of Haplotype
Assignment When Reconstructing Haplotypes
from htSNP Data

When confronted with phase-ambiguous sites, haplo-
type-inference algorithms may assign more than one pair
of haplotypes to a given individual with different levels
of certainty. We next considered whether taking the
probabilities of haplotype assignment into account when
reconstructing haplotypes from htSNP genotype data—
rather than assigning the best-fit pair of haplotypes for
each individual—altered the profile or pattern of errors
seen. Using the SNPHAP algorithm, we set the posterior
probability threshold for inclusion of a pair of haplo-
types at 0.0001# the most likely posterior assignment
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Figure 5 Simulations for the 5q31 region in European (A) and West African (B) data sets, comparing error profiles generated using
haplotype probabilities versus best-fit haplotypes. Data shown use an unstructured tagging strategy with !20% missing data assigned at random
to each SNP.

(-th option) and thus collected multiple haplotype as-
signments together with corresponding probabilities for
each individual. Simulations were repeated for the 5q31
region for both West African and European populations
by use of both tagging approaches, with no missing data
and with missing data set below a threshold of 20%.
Error profiles appeared to be similar when the results of
simulations were analyzed using best-fit haplotypes or
probabilities (fig. 5).

Use of Inferred Haplotypes to Predict Genotypes
for Untyped SNPs

We next considered the problem of analyzing disease
association with a SNP that has not been physically ge-
notyped but whose genotype can be inferred from the
haplotypic information obtained by genotyping htSNPs.
The error rate for a SNP genotype is lower than that for
the corresponding locus on the haplotype, because the
phase information is irrelevant if disease association is
analyzed with a single SNP in isolation.

When we performed this operation using haplotypes
reconstructed from htSNPs in the 5q31 region with no
missing data, we found that genotypes assigned to un-
typed SNPs had !1% error for both block and unstruc-
tured tagging approaches. When the amount of missing
data was increased to a threshold of 20%, inferred ge-
notypes had up to 5% error with the unstructured tag-
ging approach but still !1% errors with a block-tagging
approach (fig. 6).

Use of Error Profiles to Optimize htSNP Selection

The above results show that when an unstructured tag-
ging method is compared with a block-tagging method,
a smaller set of htSNPs is defined, but there is greater
error in haplotype reconstruction from htSNP data, par-
ticularly in regions that have low LD or missing data.
We asked whether it was possible to establish a set of
htSNPs that does not have the high redundancy (and
therefore the high genotyping cost) of a block-based ap-
proach but is more robust than a totally unstructured
approach.

We explored an iterative approach to this problem:
(1) a totally unstructured tagging method was used to
generate a minimal set of htSNPs across a specified chro-
mosomal region, (2) simulations were used to identify
loci that were most prone to error in haplotype recon-
struction from htSNP data, (3) additional tagging SNPs
were selected at error-prone loci, and (4) the process of
error profiling and adding SNPs was repeated until the
error rate across the chromosomal region had fallen to
an acceptable level.

To illustrate this process, when an unstructured tag-
ging method is used on the 5q31 data set of Europeans,
the highest error rates in haplotype reconstruction occur
between SNP 62 and SNP 92 (fig. 1a). We therefore com-
plemented the original set of 22 htSNPs with four ad-
ditional tagging SNPs at positions 65, 72, 81, and 87.
This greatly reduced the error rate in haplotype recon-
struction for the 20% missing data set to levels that were
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Figure 6 Genotypes were derived from inferred htSNP haplotypes for all untyped observed markers on the full haplotype, for European
(A) and West African (B) data sets for the 5q31 region. Data sets shown carry !20% missing data assigned at random to each SNP.

comparable to those achieved with 46 markers derived
by a block-tagging method (fig. 7). When the same ap-
proach was applied to the West African 5q31 data set,
it was found that the addition of 8 SNPs to a set of 16
htSNPs brought error rates toward the level achieved by
56 htSNPs selected by a block-tagging method (fig. 6).
Error profiles for all data sets and tagging strategies can
be actively interrogated and modified at the authors’ Web
site.

Discussion

Many investigators are using htSNPs to screen regions
of the genome for association with disease by genotyping
htSNPs in a study population and then using this infor-
mation to draw inferences about each individual’s hap-
lotypic makeup, including SNPs that were not directly
genotyped. Haplotype assignment by use of phase-in-
ference algorithms is imperfect. Stram et al. (2003) have
developed the Rh2 statistic, a useful single measure of
certainty with which full haplotypes can be inferred from
a given set of tagging SNPs. In this article, we explore
a similar problem using simulation and define outcomes
of accuracy that are geographically specific across the
haplotype. This enables localization of susceptible regions
and insight into the limits of accurate haplotype infer-
ence across heterogeneous regions of LD.

Using simulations that are based on four different sets
of haplotypic data—two regions of the genome ana-

lyzed in two distinct populations—we have identified
some of the factors that determine the accuracy of this
process. Errors in haplotype inference are most likely
to occur in regions of low LD or when there is a sig-
nificant amount of missing data.

When we compared a block-based method with an
unstructured method of htSNP selection, we found that
the block-based method tended to yield a larger set of
htSNPs but resulted in fewer errors of haplotype infer-
ence, particularly in regions of low LD and with missing
data. This is not surprising, given how the two ap-
proaches work. Block-based methods define the best
htSNPs for each haplotype block independently, whereas
unstructured methods attempt to define the most eco-
nomical set of htSNPs for the genomic region as a
whole. The different results obtained by the two meth-
ods are largely related to long-range patterns of LD that
cross haplotype-block boundaries, which are taken into
account by the unstructured approach but are ignored
by the block-based method. In regions of perfect hap-
lotype-block structure, where there are few occurrences
of high LD that cross block boundaries, the two meth-
ods may give similar results; this is exemplified by the
IL-8 region in Europeans, for which we found that
block-based and unstructured methods yielded similar
numbers of htSNP sets and similar error rates. The other
genomic regions that we studied had a more patchy
haplotype-block structure, and the set of htSNPs se-
lected by a block-based method produced a lower error
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Figure 7 Using pairwise LD statistics and simulated error profiles, we highlighted potential sites of increased inference error and explored
the effect of introducing additional SNPs in a focused manner at these sites. Data for the European (A) and West African (B) 5q31 region show
a dramatic improvement in haplotype inference with incorporation of additional SNPs, particularly for simulations with high levels of missing
data.

rate in haplotype inference. The advantage of the block-
based approach is twofold; first, it preferentially selects
a high density of htSNPs when haplotype blocks are
very short (i.e., in regions of low LD), and, second, it
is better able to cope with missing data because more
htSNPs are typed, so there is greater redundancy of
information. The disadvantage of the block-based ap-
proach is that, in a region of the genome that has strong
patterns of LD that are not compartmentalized in hap-
lotype blocks, the selected set of htSNPs may have an

excessive level of redundancy, and this may unneces-
sarily inflate genotyping costs.

The cost of genotyping is a major limiting factor in
large-scale disease-association studies, so how can in-
vestigators studying specific genomic regions define sets
of htSNPs that are economical but do not result in a
high error rate in haplotype inference? Although there
may be analytical approaches to this problem, they have
yet to be defined.

Here, we suggest an iterative approach based on simu-
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lated genotyping of different combinations of htSNPs,
and assessment of the error rates of each different com-
bination. The first stage is to use a method such as the
Entropy algorithm to generate a minimal set of htSNPs
and (1) to run simulations to identify the loci at which
errors in haplotype inference are most likely to occur
and (2) to assess how this inference is affected by dif-
ferent levels of missing data. The next stage is to intro-
duce additional markers and to repeat the simulations
to see how this addition affects error rates. This process
is repeated until the error rate is considered to be ac-
ceptable across the region as a whole. Different strate-
gies may be employed for adding htSNPs. One approach
is to saturate loci where error rates are highest; another
is to saturate loci that are considered to be critical (e.g.,
those that are thought to be of greatest functional im-
portance). We find that, even when haplotype inference
is imperfect, minimal htSNP sets are often accurate in
predicting the unphased genotypes of markers that have
not been physically genotyped; this process can be op-
timized using the same iterative process.

A demonstration of this iterative process of selecting
htSNPs is available at the MARKER Web site. The ap-
plication randomly assigns haplotypes to a population
of 500 individuals on the basis of population-haplotype
frequencies provided by the user. The default htSNP
selection is derived using Entropy (R. Mott’s Web site)
but can be modified by the user. htSNP-genotype data
is generated for each individual in the population.
SNPHAP is used to infer haplotypes from the htSNP-
genotype data, and the inferred full haplotypes are then
compared with the starting haplotypes assigned for each
individual. Simulations are repeated five times without
missing data and five times with up to 20% missing
data at each htSNP locus. An overall error rate for each
locus on the haplotype can therefore be calculated and
the resultant errors (mean � SEM for each locus) are
displayed as a haplotype-error profile, with juxtaposed
pairwise statistics for the region shown graphically.2r
htSNP selection can be modified to incorporate redun-
dancy and the process repeated until predicted error
rates are acceptable. A complete simulation for a given
htSNP set of 25 SNPs takes ∼1 min.
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