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U.S. populations are genetically admixed, but surprisingly little empirical data exists documenting the impact of
such heterogeneity on type I and type II error in genetic-association studies of unrelated individuals. By applying
several complementary analytical techniques, we characterize genetic background heterogeneity among 810 self-
identified African American subjects sampled as part of a multisite cohort study of cardiovascular disease in older
adults. On the basis of the typing of 24 ancestry-informative biallelic single-nucleotide–polymorphism markers,
there was evidence of substantial population substructure and admixture. We used an allele-sharing–based clustering
algorithm to infer evidence for four genetically distinct subpopulations. Using multivariable regression models, we
demonstrate the complex interplay of genetic and socioeconomic factors on quantitative phenotypes related to
cardiovascular disease and aging. Blood glucose level correlated with individual African ancestry, whereas body
mass index was associated more strongly with genetic similarity. Blood pressure, HDL cholesterol level, C-reactive
protein level, and carotid wall thickness were not associated with genetic background. Blood pressure and HDL
cholesterol level varied by geographic site, whereas C-reactive protein level differed by occupation. Both ancestry
and genetic similarity predicted the number and quality of years lived during follow-up, but socioeconomic factors
largely accounted for these associations. When the 24 genetic markers were tested individually, there were an excess
number of marker-trait associations, most of which were attenuated by adjustment for genetic ancestry. We conclude
that the genetic demography underlying older individuals who self identify as African American is complex, and
that controlling for both genetic admixture and socioeconomic characteristics will be required in assessing genetic
associations with chronic-disease–related traits in African Americans. Complementary methods that identify discrete
subgroups on the basis of genetic similarity may help to further characterize the complex biodemographic structure
of human populations.

Introduction

Genetic-association studies are often performed in pop-
ulation samples of unrelated individuals to identify sus-
ceptibility loci for complex human traits. If subjects are
sampled from two or more subpopulations for which
the frequencies of marker alleles and traits differ, spu-
rious associations may arise due to confounding by
population substructure (Pritchard et al. 2000b; Schork
et al. 2001; Risch et al. 2002). On the other hand,
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the increased extent of linkage disequilibrium between
markers on the same chromosome, created by popula-
tion admixture, may actually facilitate genome mapping
of complex trait genes when exploited appropriately in
the design of a study (Chakraborty and Weiss 1988;
McKeigue 1998).

Prior studies assessing population stratification have
primarily considered the impact of population subdi-
vision and ancestral admixture proportions. Additional
population genetic factors, however, may contribute to
genetic background heterogeneity (Schork et al. 2001).
Variation in allele frequencies as a result of genealogical
differences between people in a sample may occur even
in the absence of overt admixture. In addition, time-
dependent population shifts, due to environmental or
socioeconomic factors that influence migration or mat-
ing patterns, might create genetic heterogeneity across
different age groups. These demographic movements
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may be especially relevant for studies of older adults
in assessing complex diseases related to aging, as well
as interindividual variation in life span or longevity
(Yashin et al. 1999).

Biodemographic factors contributing to population
heterogeneity and substructure are particularly impor-
tant for genetic-association studies involving African
Americans, among whom admixture with whites and
Native Americans varies by geographic region (Parra et
al. 1998, 2001; Pfaff et al. 2001; Smith et al. 2004).
Among older adults in the United States, African Amer-
icans have a higher prevalence of cardiovascular disease
(CVD) risk factors (Hutchinson et al. 1997; Kuller et
al. 1998; Sundquist et al. 2001) and also greater clus-
tering of CVD risk factors (Sharma et al. 2004), com-
pared with non-Hispanic whites.

In light of the potential for confounding due to pop-
ulation stratification (Kittles et al. 2002; Freedman et
al. 2004), as well as the opportunity for efficient genetic
mapping of complex diseases by admixture linkage dis-
equilibrium, we empirically evaluated the influence of
population stratification on several common chronic-
disease and aging-related phenotypes in a multicenter
African American cohort. Our results show that there
is substantial population admixture and substructure
among the African American population, and that con-
trolling for genetic ancestry not only may reduce false-
positive associations but also may uncover a true as-
sociation previously obscured by stratification. Our
findings also show that controlling for social economic
status, in addition to population stratification, is nec-
essary in assessing genetic associations with chronic-
disease–related traits in African American subjects.

Methods

Study Subjects

Study subjects were self-identified African American
men and women aged �65 years old who participated
in the Cardiovascular Health Study (CHS) (Fried et al.
1991). CHS participants were recruited from lists of
Medicare beneficiaries in four U.S. communities: Win-
ston-Salem, NC; Pittsburgh, PA; Washington County,
MD; and Sacramento, CA. The original CHS cohort,
recruited from 1989 to 1990, included 246 African
American participants. A second cohort of 678 African
American participants was recruited from 1992 to 1993.
Of 924 total African American participants, 810 are
included in the present study. The reason for exclusion
was either refusal of consent for genetic testing (n p

) or lack of an available DNA sample ( ). All62 n p 52
procedures were conducted under institutionally ap-
proved protocols for study of human subjects, and all
subjects provided written informed consent.

Data Collection and Definition of Phenotypes Related
to Vascular Disease and Aging

Data collection methods in the CHS have been de-
scribed elsewhere (Fried et al. 1991). The baseline eval-
uation included demographic, lifestyle, and medical
histories; physical examination; and fasting blood col-
lection (Cushman et al. 1995). Quantitative phenotypes
and CVD risk factors that were considered include
systolic blood pressure (mm Hg), BMI (kg/m2), fasting
blood glucose (mg/dL), HDL cholesterol level (mg/dL),
and C-reactive protein (CRP) level (mg/liter). Carotid
wall thickness, a quantitative measure of subclinical vas-
cular disease, was defined as the mean maximal intimal-
medial thickness of the near and far walls on both the
left and right arteries, as determined by high-resolution
ultrasonography (O’Leary et al. 1991). The outcome
“years of life” (YOL) was defined as the number of years
a participant was alive during 10 years of follow-up,
and “years of healthy life” (YHL) was defined as the
number of years the person reported being in excellent,
very good, or good health during the 10 years of follow-
up. This outcome was derived from standard informa-
tion on self-rated health status (excellent/very good/
good/fair/poor) collected at baseline and every 6 mo
during follow-up (Diehr et al. 1998).

Selection of Ancestry-Informative Markers (AIMs) and
Genotype Analysis

Twenty-four biallelic SNP markers (table 1) were cho-
sen on the basis of known allele-frequency differences
(d values) between African, European, and Native Amer-
ican populations. A subset of these markers has been
characterized and published by Mark Shriver and col-
leagues (Hoggart et al. 2003; Shriver et al. 2003). Ad-
ditional markers were selected by identifying markers
from dbSNP that had been typed in both European
Americans and African Americans and that had a high
allele-frequency difference between those populations
( ). The ancestral allele frequencies were then con-d 1 0.5
firmed by genotyping the markers in populations col-
lected from Sub-Saharan Africa (Nigeria, Central Afri-
can Republic, and Sierra Leone [ ]), Europen p 481
(Ireland, England, Germany, and Spain [ ]), andn p 243
Native American populations indigenous to the United
States and Mexico (Maya, Pima, Cheyenne, and Pueblo
[ ]). The ancestral DNA samples were kindlyn p 148
provided by Dr. Mark Shriver. Detailed information re-
garding the markers characterized by Shriver and col-
leagues can be found at the dbSNP Web site under the
submitter handle “PSU-ANTH,” or, for the newly iden-
tified markers, under the submitter handle “HapMap-
UCSF-WU-FP-TDI.”

The 24 AIMs were distantly spaced throughout the
genome so that they offer independent association about
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Table 1

Marker Chromosomal Locations, Ancestral Population Allele Frequencies, and Allele Frequencies and Tests for Hardy-Weinberg Proportions
in CHS African American Participants

MARKER LOCATION ALLELES 1/2

ANCESTRAL POPULATION

ALLELE 1 FREQUENCIES

MARKER VALUES BETWEENFST

ANCESTRAL POPULATIONSa

FINDINGS FOR CHS AFRICAN

AMERICANS

African European
Native

American
African/

European

African/
Native

American

European/
Native

American
Allele 1

Frequency
Hardy-Weinberg

Equilibriumb

rs2814778 1q23.2 A/G .003 .994 .991 .982 .976 .000 .256 .034
rs930072 5p13 C/T .960 .096 .447 .749 .315 .156 .731 .045
rs7349 10p11.22 C/T .039 .873 .956 .701 .841 .022 .214 .0004
rs723632 1q32.3 G/C .100 .919 .674 .671 .347 .093 .277 .822
rs722098 21q21.1 G/A .902 .177 .717 .529 .055 .295 .702 .038
rs146026 13q13.1 C/T .256 .917 .826 .450 .327 .018 .377 .132
rs6003 1q31.3 G/A .702 .083 .031 .402 .485 .013 .570 .674
rs1985080 7p14.3 G/A .100 .643 .966 .316 .753 .166 .224 .418
rs518116 9q33.3 G/A .131 .669 .581 .302 .221 .008 .245 .052
rs3287 2p16.2 G/A .730 .196 .205 .287 .277 .000 .590 .057
rs1989486 19q13.42 C/T .045 .578 .404 .331 .185 .030 .219 .120
rs7041 4q13.3 T/G .928 .413 .451 .300 .266 .001 .815 .223
rs994174 10q23.1 G/A .758 .246 .264 .262 .244 .000 .667 .062
rs1800498 11q23.2 T/C .138 .648 .088 .273 .006 .337 .258 .968
rs2816 17p13.1 T/C .003 .494 .075 .323 .035 .216 .151 .490
rs2891 17p13.2 G/A .021 .507 .425 .304 .235 .007 .122 .280
rs3188520 20q11.22 G/C .828 .349 .439 .237 .163 .008 .747 .156
rss1042602 11q14.3 A/C .004 .467 .053 .298 .022 .223 .090 .012
rs326946 11q23.1 G/T .609 .167 .067 .206 .328 .024 .482 .305
rs2077863 18p11.21 C/G .511 .925 .926 .212 .213 .000 .660 .861
rs3188519 4q28.2 C/T .758 .369 .318 .154 .195 .003 .623 .216
rs594689 11q13.1 A/G .094 .467 .130 .172 .003 .136 .193 .102
rs2228478 16q24.3 G/A .508 .136 .043 .158 .271 .027 .393 .458
rs584059 3q23 C/A .494 .140 .467 .145 .001 .126 .419 .917

a Marker values (inverse of the variance of the estimated ancestral contributions) were calculated in accordance with Pfaff et al. (2004).FST
b P values !.05 for the test of Hardy-Weinberg equilibrium are shown in bold italics.

genetic background/ancestry. The average distance be-
tween adjacent markers on the same chromosome was
26 Mb (range 1–60 Mb). The mean d value between
African and European populations was 0.56 (range
0.36–0.99). The mean allele-frequency differential be-
tween African and Native American populations was
0.44 (range 0.03–0.99). The mean allele-frequency dif-
ference between European and Native American pop-
ulations was 0.19 (range 0.001–0.56). Marker valuesFST

were calculated as the inverse of the variance of the
estimated ancestral contributions, in accordance with
Pfaff et al. (2004), and are shown in table 1.

Genotyping assays were performed on blood drawn
from 810 CHS African American participants who gave
informed consent to DNA preparation and testing. Ge-
notyping was performed using the AcycloPrime-FP
(Perkin Elmer) method (Chen et al. 1999) under standard
conditions: 5 ml PCR volume with Platinum Taq buffer,
2.5 mM MgCl2, 2.4–4.0 ng of genomic DNA, 50 mM
dNTPs, 0.1 mM of primers, and 0.1 U of Platinum Taq
(Invitrogen). Cycling conditions were 95�C for 2 min,
followed by 35 cycles at 92�C for 10 s, 58�C for 20 s,
and 68�C for 30 s, with a final extension at 68�C for 10

min. PCR products were purified enzymatically, and ge-
notyping extension reactions were performed in accor-
dance with kit directions. The primer sequences for PCR
and genotyping extension reactions and any changes to
standard conditions are presented in table A1 (online
only).

Characterization of Population Structure, Admixture,
and Genetic Background Similarity

Exact tests for Hardy-Weinberg equilibrium and link-
age disequilibrium and Wright’s hierarchical F statistics
(Wright 1951) as estimators of allele-frequency variation
under a pure-drift model (Weir and Cockerham 1984)
were computed using Genetic Data Analysis, version 1.1
(see Genetic Data Analysis Web site).

Group admixture proportions were estimated from
the average coalescent times for a pair of alleles taken
from within and between populations by use of the pro-
gram ADMIX, version 2.0 (Dupanloup and Bertorelle
2001). SEs for the group admixture coefficients were
calculated on the basis of 1,000 bootstraps. The pro-
portion of African, European, and Native American an-
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cestry for each individual was estimated by a maximum-
likelihood method (Chakraborty et al. 1986) by use of
the program IAE3 (Bonilla et al. 2004), kindly provided
by Mark Shriver. This program also gives 1-SD support
intervals for the estimated ancestral proportions.

We used two Bayesian Markov Chain–Monte Carlo
methods to provide complementary information on ge-
netic differentiation between and among populations
under nonequilibrium conditions. Population structure
and evidence for allelic association between linked
markers caused by correlation in ancestry (i.e., “admix-
ture linkage disequilibrium”) were evaluated by esti-
mating the average recombination rate by use of the
program STRUCTURE 2.1 (Pritchard et al. 2000a;
Falush et al. 2003), with a burn-in of 50,000 iterations
and 1,000,000 iterations. By relaxing the requirement
for Hardy-Weinberg equilibrium within geographic sub-
populations and by allowing for recent migration, local
inbreeding coefficients were estimated using the program
BayesAss 1.2 of Wilson and Rannala (2003), which was
run for a total of 3,000,000 iterations, including an ini-
tial burn-in of 1,000,000 iterations.

A genetic-clustering algorithm based on pairwise,
weighted allele-frequency sharing was used to assess ge-
netic background similarity (Schork 2001; Schork et al.
2001). Allele-sharing matrices were constructed in ac-
cordance with the method of Lynch and Ritland (1999),
as implemented in the program IDENTIX (Belkhir et al.
2002). The resulting similarity matrices were used in an
agglomerative hierarchical cluster analysis with com-
plete linkage, under the assumption of the existence of
2–15 genetically similar groups of individuals within the
total sample. To determine the most likely number of
groups in the sample, we assigned each individual to his
or her most likely genetic subgroup on the basis of his
or her allele-frequency profile, and we assessed phe-
notypic differences across the groups by performing
standard ANOVA and nonparametric ANOVA or the
Kruskall-Wallis test (Lehmann and D’Abrera 1998). To
identify any genetic “outliers” whose genetic back-
ground is extremely different from the remaining cohort,
we applied the multilocus genotype-based permutation
test of Curtis et al. (2002), which was run for 10,000
iterations, with a significance threshold of P � 1 # 10�6.

Tests of Associations between Quantitative Traits and
Biodemographic Variables

Associations between quantitative traits and bio-
demographic predictor variables (estimates of individual
ancestry, genetic-cluster membership, socioeconomic
status, clinic site, or individual AIM genotypes) were
assessed by multiple linear regression, by use of the sta-
tistical package Stata 8.0. Levels of blood glucose, HDL
cholesterol, and CRP were log transformed to reduce

skewness and kurtosis. Individual marker genotypes
were coded 0, 1, and 2, under the assumption of an
additive genetic model. An individual’s percentage of
African ancestry was coded as a continuous variable, by
use of his or her proportion of African ancestry esti-
mated by maximum likelihood. Each clinic site was
represented by an indicator variable, and the largest
clinic (North Carolina) was omitted from the regres-
sion model as the reference group. Similarly, the four
genetic-similarity clusters were coded as indicator vari-
ables, with cluster 1 as reference. We created categorical
variables for education, income, and occupation type as
proxies for socioeconomic status (SES). A three-level or-
dinal categorical variable for education was created by
dividing the cohort on the basis of education level (from
none to grade 9; high school or general equivalency di-
ploma; or college, vocational, graduate, or professional
training). Similarly, a three-level ordinal categorical var-
iable was created on the basis of annual income levels
!$8,000; $8,000–$35,000; and 1$35,000. For type of
occupation, we created three nonordered categories on
the basis of a response card that indicated lifetime oc-
cupation: professional/technical/managerial/administra-
tive positions and sales/clerical service were classified as
“white-collar” occupations; craftsman/machine opera-
tor/laborer and farming/forestry work were grouped to-
gether as “blue-collar” occupations; and housewife,
other occupation, or refusal to answer were combined
into the category of “other” occupations.

Covariate-adjusted P values for associations between
quantitative traits and population characteristics (clinic
site, genetic similarity cluster, individual ancestry, or SES
defined by education, income, or occupation) were de-
termined by likelihood-ratio tests. The log likelihood of
a “full” regression model containing the variable(s) for
a particular characteristic was compared with a reduced
model without the characteristic. We adjusted the nom-
inal 5% significance level by the number of traits ana-
lyzed ( ) and used a P value threshold of !.00625n p 8
for significance. Mean-adjusted trait values (and 95%
CIs) for different levels of predictor variables were cal-
culated from the linear-regression coefficients and SEs,
with any additional covariates set to their respective
mean values. All analyses were adjusted for age at base-
line and for sex. Additionally, we adjusted some analyses
for other clinical covariates known to be important for
the particular quantitative trait (Hutchinson et al. 1997;
Kuller et al. 1998; Sundquist et al. 2001; Sharma et al.
2004). Thus, systolic blood pressure was adjusted for
treated hypertension; blood glucose level was adjusted
for baseline diabetes; CRP level was adjusted for BMI,
smoking, and diabetes; and carotid wall thickness was
adjusted for smoking, hypertension, diabetes, BMI, and
HDL cholesterol level. Both YOL and YHL were ad-
justed for hypertension, diabetes, current smoking, BMI,
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Table 2

Correlations between Individual Ancestry Estimated by Maximum Likelihood and Principal-
Component Analysis

PRINCIPAL

COMPONENT

ANCESTRAL PROPORTIONS ESTIMATED BY MAXIMUM LIKELIHOOD

African European Native American

Correlation
Coefficienta P Valueb

Correlation
Coefficienta P Valueb

Correlation
Coefficienta P Valueb

1st .9718 .0000 �.8523 .0000 �.2884 .0000
2nd �.0085 1.0000 �.0656 1.0000 .1018 .3458
3rd �.0589 1.0000 �.1619 .0027 .3076 .0000
4th .0048 1.0000 .1034 .3102 �.1477 .0101

a Pearson correlation coefficient for the comparison of ancestry with principal component.
b Bonferroni-corrected P value.

coronary heart disease, cancer, and self-reported health
status.

Results

Population Substructure and Admixture in African
American Cohort

Of the 24 AIMs tested, 6 (including 4 of the 5 markers
having the largest allele-frequency differential between
Africans and Europeans) deviated significantly from
Hardy-Weinberg proportions (table 1). There was in-
creased homozygosity, both overall ( ; 95%F p 0.034IT

CI 0.016–0.052) and within the four regional subpop-
ulations ( ; 95% CI 0.015–0.050). EvenF p 0.033IS

though the markers were unlinked or widely spaced
throughout the genome, 170 (60%) of 285 pairwise
combinations showed significant allelic association. To-
gether, the excess homozygosity and association between
unlinked markers suggest substantial population sub-
structure and admixture in the CHS African American
cohort due to continuous gene flow or nonrandom mat-
ing. The program STRUCTURE 2.1 showed there was
a greater likelihood that the cohort descended from
two ancestral populations (log likelihood �20,725)
than three (�20,767) or four (�20,823) ancestral pop-
ulations or than a single homogeneous population
(�21,363). Under a linkage model with two ancestral
populations, the presence of significant admixture link-
age disequilibrium was confirmed (Falush et al. 2003).

The mean proportions (� SEs) of African, European,
and Native American ancestry, estimated for the cohort
as a whole, were 76.4 � 0.6%, 20.9 � 1.2%, and 2.7
� 1.6%, respectively. We also estimated individual an-
cestry by using maximum-likelihood, but the mean SEs
were much larger (15.6% for African, 17.9% for Eu-
ropean, and 20.9% for Native American); these presum-
ably reflect both the wide interindividual variation in
degree of admixture and the lack of precision in distin-
guishing European from Native American ancestry by
the current set of 24 markers. Individual African ances-

tral proportions estimated by use of STRUCTURE under
a two-population admixture model were virtually iden-
tical to those estimated by maximum likelihood under
a three-population model (correlation coefficient 0.98;

). We also conducted a principal-componentsP ! .0001
analysis and compared the scores that individuals re-
ceived for the principal components with ancestral pro-
portions calculated by use of the maximum-likelihood
model (table 2). We found a very high correlation be-
tween an individual’s score on the first principal com-
ponent and estimated African ancestry (correlation co-
efficient 0.97; ). For European and NativeP ! .0001
American ancestry, the correlations with the first prin-
cipal component were weaker. The second and third
principal components were also weakly correlated with
percentage European versus percentage Native American
ancestry.

Genetic Differentiation among Geographic
Subpopulations

The coancestry coefficient estimator of was 0.0013FST

(95% CI 0.0003–0.0026), suggesting a small but sig-
nificant amount of genetic differentiation among the
four regions of the United States from which the CHS
participants were sampled. Mean age- and sex-adjusted
individual ancestry estimates differed across the four
CHS clinic sites ( ). Group admixture estimatesP p .005
by clinic site are shown in table 3. Exclusion of the
Maryland African American residents did not apprecia-
bly alter the variation in admixture ( ) but didP p .01
attenuate the allele-frequency differences among the
three larger population samples ( ; 95% CIF p 0.0007ST

�0.00009 to 0.0017). Potential local inbreeding effects
for the North Carolina, California, Maryland, and Penn-
sylvania African American populations were estimated
at 0.025 � 0.014, 0.092 � 0.065, �0.006 � 0.037,
and �0.035 � 0.079, respectively. Together, these re-
sults suggest that local population differences may play
a role in shaping the overall genetic heterogeneity and
structure of the entire CHS African American cohort.
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Table 3

Group Admixture Estimates by CHS Clinic Site or by Clusters
Inferred on the Basis of Genetic Similarity

BIODEMOGRAPHIC

CHARACTERISTIC N

ESTIMATED ANCESTRAL PROPORTIONS

(% � SE)

African European Native American

Clinical centera:
Winston-Salem 299 79.1 � .9 17.0 � 1.7 3.9 � 2.1
Sacramento 214 74.4 � 1.0 20.6 � 2.0 4.9 � 2.4
Pittsburgh 285 75.2 � .9 23.9 � 1.8 .9 � 2.2

Genetic similarity:
Cluster 1 467 86.4 � .7 12.1 � 1.3 1.6 � 1.7
Cluster 2 32 76.1 � 2.3 25.0 � 5.0 .0 � 6.0
Cluster 3 74 41.4 � 1.6 37.1 � 3.6 21.5 � 4.2
Cluster 4 236 67.2 � 1.0 33.2 � 2.1 .0 � 2.6

NOTE.—Group ancestral proportions and SEs were estimated sep-
arately for each subpopulation by use of the program ADMIX 2.0
(Dupanloup and Bertorelle 2001), as described in the “Methods”
section.

a The small number of subjects in the Maryland sample ( )n p 11
were excluded from this analysis.

Figure 1 Differences in BMI for males across groups, determined
by the use of cluster analyses involving allele-similarity matrices. The
solid line represents the P values associated with standard ANOVA,
and the dotted line represents the P values associated with nonpara-
metric ANOVA.

Population Subdivision Due to Genetic Background
Similarity

As a complementary approach to population-struc-
ture assessment, discrete clusters of genetically similar
individuals were identified through the use of pairwise,
allele-frequency–weighted, identity-by-state, allele-shar-
ing matrices. The most likely number of genetically sim-
ilar clusters of individuals within the total sample was
determined by testing allele frequency and phenotypic
differences within the total sample of 810 individuals.
As shown in figure 1, the most significant differences in
male BMI involved the assumption of four groups of
individuals ( ). These and other data (N.J.S.,P ! .0001
unpublished data) suggest that, within the cohort, there
are likely four genetically distinct subgroups. The dis-
tribution of these four subpopulations, identified on the
basis of genetic background similarity, did not differ
among the four geographic subregions ( ) but didP p .20
differ with respect to individual admixture proportions
( ) and group admixture estimates (table 3).P ! .001
These results suggest that the empirically determined
clusters actually reflect the differences in degrees of ad-
mixture among the study subjects.

Two participants, one from North Carolina and the
other from California, had multilocus genetic back-
grounds that were extremely different from the remain-
ing cohort. These two genetic “outliers” were confirmed
to have 0% and 3% African ancestry, respectively, and
100% and 97% European ancestry, respectively. Both
belonged to genetic similarity cluster 4. These two in-
dividuals were excluded from further analyses. Addi-
tional investigation did not reveal any evidence that ei-

ther individual had been inadvertently misclassified
within the CHS data set.

Relationships among Population Genetic,
Demographic, and SES Variables

The mean age at baseline of the CHS African Amer-
ican participants was 73 years (range 65–93 years). In-
dividual African ancestry averaged 74% among the
65–69-year-olds ( ), 72% among the 70–74-n p 269
year-olds ( ), 74% among the 75–79-year-oldsn p 279
( ), and 78% among the participants aged �80n p 160
years ( ). These differences were not significantn p 102
( ). Education, income, and occupation type allP p .10
differed strongly by individual admixture proportions
and genetic background similarity (all P values !.001).
Moreover, there were differences in education (P !

), income ( ), and occupation ( ).001 P ! .001 P p .02
among clinic sites. These data highlight the complex in-
terrelationships that exist between genetic or ancestral
background and current social, economic, and environ-
mental conditions in human populations.

Associations between Population-Structure
Characteristics and Chronic-Disease Phenotypes

To address the influence of different forms of popu-
lation structure on traits related to CVD and aging, we
performed direct tests of association between several
quantitative phenotypes and estimates of individual an-
cestry, genetic similarity, SES, and clinic site (tables 4,
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Table 4

Blood Glucose and Systolic Blood Pressure by Clinic Site, Genetic Background Similarity, Admixture, and SES

BIODEMOGRAPHIC

CHARACTERISTIC N

MEAN BLOOD GLUCOSE (95% CI)
[mg/dl]

MEAN SYSTOLIC BLOOD

PRESSURE (95% CI)
[mm Hg]

Minimally Adjusted Fully Adjusted Minimally Adjusted Fully Adjusted

Clinical centera:
Winston-Salem 299 114 (111–117) 114 (111–117) 141 (138–143) 141 (138–143)
Sacramento 213 109 (106–112) 110 (106–114) 146 (143–149) 145 (142–148)
Pittsburgh 285 114 (111–116) 113 (110–116) 140 (138–143) 141 (138–143)

Genetic similarityb:
Cluster 1 467 114 (111–116) 114 (112–117) 141 (139–143) 141 (139–144)
Cluster 2 32 105 (97–114) 105 (97–114) 144 (137–152) 144 (136–152)
Cluster 3 74 107 (101–113) 108 (102–114) 142 (136–147) 141 (136–147)
Cluster 4 234 112 (109–115) 111 (108–115) 142 (140–145) 142 (139–145)

Genetic ancestryc:
0% African (estimated) 102 (96–108) 104 (98–111) 139 (133–145) 138 (132–144)
100% African (estimated) 116 (113–119) 116 (112–119) 143 (140–145) 143 (141–146)

Educationd:
None–grade 9 237 116 (112–119) 114 (111–117) 140 (138–143) 140 (139–143)
High school 294 110 (107–113) 112 (111–114) 142 (140–143) 142 (140–143)
Professional/vocational 274 111 (108–114) 111 (108–114) 143 (141–145) 143 (140–145)

Annual incomee:
!$8,000 285 115 (112–118) 114 (111–117) 143 (140–145) 143 (140–145)
$8,000–$35,000 398 111 (109–114) 112 (110–114) 142 (140–143) 141 (140–143)
1$35,000 77 109 (103–115) 110 (105–114) 141 (137–144) 140 (136–144)

Occupation typef:
White collar 300 111 (108–114) 112 (109–115) 142 (139–144) 142 (139–144)
Blue collar 232 111 (108–115) 110 (107–114) 139 (136–142) 140 (137–143)
Housewife/other 275 114 (111–118) 115 (111–118) 144 (141–146) 144 (141–146)

NOTE.—Likelihood-ratio tests of association were performed by multiple linear regression of each phenotypic trait
on biodemographic characteristics. Minimally adjusted models were adjusted for age, sex, and any clinically relevant
covariates, as described in the “Methods” section. Fully adjusted models additionally contained variables for remaining
biodemographic characteristics. In the footnotes below, P values in bold italics are less than the nominal significance
level of 5% adjusted for the number of traits assessed ( ; ).n p 8 P ! .00625

a For measurements by clinical center, the minimally adjusted P value was .05 and the fully adjusted P value was .25
for blood glucose, and the minimally adjusted P value was .005 and the fully adjusted P value was .04 for systolic blood
pressure.

b For measurements by genetic similarity, the minimally adjusted P value was .06 and the fully adjusted P value was
.09 for blood glucose, and the minimally adjusted P value was .86 and the fully adjusted P value was .90 for systolic
blood pressure.

c For measurements by genetic ancestry, the minimally adjusted P value was .002 and the fully adjusted P value was
.01 for blood glucose, and the minimally adjusted P value was .29 and the fully adjusted P value was .23 for systolic
blood pressure.

d For measurements by education, the minimally adjusted P value was .08 and the fully adjusted P value was .26 for
blood glucose, and the minimally adjusted P value was .16 and the fully adjusted P value was .24 for systolic blood
pressure.

e For measurements by annual income, the minimally adjusted P value was .04 and the fully adjusted P value was
.20 for blood glucose, and the minimally adjusted P value was .43 and the fully adjusted P value was .32 for systolic
blood pressure.

f For measurements by occupation type, the minimally adjusted P value was .30 and the fully adjusted P value was
.21 for blood glucose, and the minimally adjusted P value was .14 and the fully adjusted P value was .16 for systolic
blood pressure.

5, 6, and 7). Each biodemographic characteristic was
examined separately and in a multivariable model that
was simultaneously adjusted for other characteristics.
Higher fasting blood glucose levels were associated most
strongly with African ancestry. Mean glucose levels, ad-
justed for age, sex, and baseline diabetes status, were 19

mg/dL higher (95% CI 5–33) among subjects with 100%
African ancestry compared with those with 0% African
ancestry. The glucose-ancestry association was altered
only minimally by additional adjustment for SES and
clinic site. Systolic blood pressure and HDL cholesterol
levels were higher among African Americans sampled



470 Am. J. Hum. Genet. 76:463–477, 2005

Table 5

HDL Cholesterol and BMI by Clinic Site, Genetic Background Similarity, Admixture, and SES

BIODEMOGRAPHIC

CHARACTERISTIC N

MEAN HDL CHOLESTEROL (95% CI)
[mg/dl]

MEAN BMI (95% CI)
[kg/m2]

Minimally Adjusted Fully Adjusted Minimally Adjusted Fully Adjusted

Clinical centera:
Winston-Salem 299 55 (53–56) 55 (53–56) 28.3 (27.7–28.9) 28.3 (27.7–29.0)
Sacramento 213 59 (57–61) 59 (57–61) 29.3 (27.9–29.3) 28.9 (28.1–29.6)
Pittsburgh 285 55 (53–56) 55 (53–57) 28.5 (27.9–29.2) 28.5 (27.9–29.1)

Genetic similarityb:
Cluster 1 467 56 (55–57) 56 (55–57) 28.7 (28.2–29.2) 28.7 (28.2–29.2)
Cluster 2 32 56 (51–61) 55 (51–60) 26.4 (24.5–28.2) 26.5 (24.4–28.4)
Cluster 3 74 54 (51–57) 53 (50–56) 29.4 (28.2–30.6) 29.7 (28.4–31.0)
Cluster 4 234 57 (55–59) 56 (55–58) 28.1 (27.4–28.8) 28.2 (27.5–28.9)

Genetic ancestryc:
0% African (estimated) 55 (52–59) 54 (51–58) 27.8 (26.4–29.1) 28.0 (26.5–29.5)
100% African (estimated) 56 (54–58) 56 (55–58) 28.8 (28.2–29.4) 28.7 (28.1–29.4)

Educationd:
None–grade 9 237 55 (54–57) 56 (54–57) 28.6 (28.0–29.2) 28.6 (28.0–29.3)
High school 294 56 (55–57) 56 (55–57) 28.5 (28.1–28.9) 28.5 (28.1–28.9)
Professional/vocational 274 56 (55–58) 56 (54–58) 28.4 (27.8–28.9) 28.4 (27.8–29.0)

Annual incomee:
!$8,000 285 55 (53–56) 55 (53–56) 28.9 (28.3–29.5) 28.9 (28.3–29.6)
$8,000– $35,000 398 56 (55–57) 56 (55–57) 28.5 (28.0–28.9) 28.4 (28.0–28.9)
1$35,000 77 58 (56–61) 58 (55–60) 28.0 (27.1–28.9) 28.0 (27.0–28.9)

Occupation typef:
White collar 300 58 (56–59) 58 (56–59) 28.0 (27.4–28.6) 28.0 (27.4–28.6)
Blue collar 232 54 (52–56) 54 (53–56) 28.7 (28.0–29.4) 28.7 (28.0–29.5)
Housewife/other 275 55 (53–57) 55 (53–57) 28.8 (28.2–29.5) 28.8 (28.2–29.5)

NOTE.—Likelihood-ratio tests of association were performed by multiple linear regression of each phenotypic trait on
biodemographic characteristics. Minimally adjusted models were adjusted for age, sex, and any clinically relevant covar-
iates, as described in the “Methods” section. Fully adjusted models additionally contained variables for remaining biod-
emographic characteristics. In the footnotes below, P values in bold italics are less than the nominal significance level of
5% adjusted for the number of traits assessed ( ; ).n p 8 P ! .00625

a For measurements by clinical center, the minimally adjusted P value was .0005 and the fully adjusted P value was
.005 for HDL cholesterol, and the minimally adjusted P value was .61 and the fully adjusted P value was .57 for BMI.

b For measurements by genetic similarity, the minimally adjusted P value was .45 and the fully adjusted P value was
.28 for HDL cholesterol, and the minimally adjusted P value was .03 and the fully adjusted P value was .02 for BMI.

c For measurements by genetic ancestry, the minimally adjusted P value was .84 and the fully adjusted P value was
.43 for HDL cholesterol, and the minimally adjusted P value was .28 and the fully adjusted P value was .46 for BMI.

d For measurements by education, the minimally adjusted P value was .47 and the fully adjusted P value was .90 for
HDL cholesterol, and the minimally adjusted P value was .57 and the fully adjusted P value was .64 for BMI.

e For measurements by annual income, the minimally adjusted P value was .05 and the fully adjusted P value was .10
for HDL cholesterol, and the minimally adjusted P value was .20 and the fully adjusted P value was .16 for BMI.

f For measurements by occupation type, the minimally adjusted P value was .008 and the fully adjusted P value was
.02 for HDL cholesterol, and the minimally adjusted P value was .13 and the fully adjusted P value was .14 for BMI.

from the Sacramento area than among those sampled
from Winston-Salem or Pittsburgh. In multivariable-ad-
justed models, genetic background or SES did not seem
to account appreciably for these geographic differences
(tables 4 and 5). CRP levels were influenced by type of
occupation (table 6). Blue-collar workers had 23%
higher (range 5%–41% higher) CRP levels relative to
those of white-collar workers. Carotid arterial wall
thickness did not vary significantly by any of the bio-
demographic indicators in table 6.

BMI appeared to be influenced more by genetic sim-
ilarity than by ancestral proportions (table 5). Moreover,
the associations differed by sex (P value for sex-genetic

similarity cluster interaction on BMI was .03). The mean
age-, clinic-, and SES-adjusted BMI was highest among
men in genetic similarity cluster 3 (28.7 kg/m2; 95% CI
27.1–30.3) and was lowest among men in genetic sim-
ilarity cluster 2 (24.6 kg/m2; 95% CI 22.6–26.5). In
contrast, income level remained the only significant
predictor of BMI among women, after multivariable
adjustment ( ). The mean-adjusted BMI was 30.3P p .03
kg/m2 (95% CI 29.6–31.1) for women in the lowest
income group, compared with 28.3 kg/m2 (95% CI
26.8–29.8) for women in the highest income group.

African ancestry and genetic similarity, even when ad-
justed for baseline age, BMI, sex, self-rated health status,
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Table 6

CRP Levels and Carotid Wall Thickness by Clinic Site, Genetic Background Similarity, Admixture, and SES

BIODEMOGRAPHIC

CHARACTERISTIC N

MEAN CRP LEVELS (95% CI)
[mg/liter]

MEAN CAROTID WALL

THICKNESS (95% CI)
[mm]

Minimally Adjusted Fully Adjusted Minimally Adjusted Fully Adjusted

Clinical centera:
Winston-Salem 299 2.82 (2.51–3.17) 2.81 (2.49–3.17) 1.12 (1.09–1.14) 1.12 (1.10–1.15)
Sacramento 213 2.43 (2.11–2.78) 2.54 (2.20–2.93) 1.12 (1.10–1.15) 1.13 (1.10–1.16)
Pittsburgh 285 2.57 (2.28–2.88) 2.58 (2.29–2.90) 1.12 (1.10–1.15) 1.12 (1.10–1.15)

Genetic similarityb:
Cluster 1 467 2.66 (2.42–2.91) 2.66 (2.41–2.92) 1.13 (1.11–1.15) 1.13 (1.11–1.15)
Cluster 2 32 2.67 (1.88–3.80) 2.57 (1.80–3.67) 1.09 (1.01–1.16) 1.08 (1.00–1.15)
Cluster 3 74 2.35 (1.86–2.96) 2.41 (1.89–3.08) 1.09 (1.04–1.14) 1.09 (1.04–1.14)
Cluster 4 234 2.58 (2.27–2.94) 2.66 (2.33–3.03) 1.13 (1.10–1.15) 1.13 (1.10–1.16)

Genetic ancestryc:
0% African (estimated) 2.12 (1.63–2.76) 2.37 (1.79–3.14) 1.09 (1.03–1.14) 1.09 (1.03–1.15)
100% African (estimated) 2.80 (2.50–3.14) 2.72 (2.42–3.07) 1.14 (1.11–1.16) 1.13 (1.11–1.16)

Educationd:
None–grade 9 237 2.80 (2.48–3.14) 2.75 (2.44–3.11) 1.14 (1.11–1.16) 1.14 (1.11–1.16)
High school 294 2.62 (2.44–2.81) 2.62 (2.44–2.81) 1.12 (1.11–1.14) 1.12 (1.11–1.14)
Professional/vocational 274 2.45 (2.20–2.74) 2.49 (2.23–2.79) 1.11 (1.09–1.13) 1.11 (1.09–1.14)

Annual incomee:
!$8,000 285 2.81 (2.50–3.15) 2.77 (2.46–3.11) 1.13 (1.10–1.15) 1.13 (1.10–1.15)
$8,000– $35,000 398 2.55 (2.36–3.77) 2.57 (2.37–3.79) 1.12 (1.11–1.14) 1.13 (1.11–1.14)
1$35,000 77 2.48 (2.25–2.75) 2.39 (2.00–2.86) 1.12 (1.08–1.15) 1.12 (1.08–1.16)

Occupation typef:
White collar 300 2.52 (2.25–2.83) 2.54 (2.26–2.86) 1.12 (1.10–1.15) 1.12 (1.10–1.15)
Blue collar 232 3.15 (2.75–3.62) 3.12 (2.70–3.59) 1.12 (1.09–1.15) 1.12 (1.09–1.15)
Housewife/other 275 2.30 (2.03–2.60) 2.31 (2.03–2.62) 1.12 (1.10–1.15) 1.12 (1.09–1.15)

NOTE.—Likelihood-ratio tests of association were performed by multiple linear regression of each phenotypic trait on
biodemographic characteristics. Minimally adjusted models were adjusted for age, sex, and any clinically relevant covariates,
as described in the “Methods” section. Fully adjusted models additionally contained variables for remaining biodemographic
characteristics. In the footnotes below, the P value in bold italics is less than the nominal significance level of 5% adjusted
for the number of traits assessed ( ; ).n p 8 P ! .00625

a For measurements by clinical center, the minimally adjusted P value was .23 and the fully adjusted P value was .49 for
CRP level, and the minimally adjusted P value was .95 and the fully adjusted P value was .94 for carotid wall thickness.

b For measurements by genetic similarity, the minimally adjusted P value was .80 and the fully adjusted P value was .91
for CRP level, and the minimally adjusted P value was .44 and the fully adjusted P value was .32 for carotid wall thickness.

c For measurements by genetic ancestry, the minimally adjusted P value was .11 and the fully adjusted P value was .46
for CRP level, and the minimally adjusted P value was .19 and the fully adjusted P value was .31 for carotid wall thickness.

d For measurements by education, the minimally adjusted P value was .16 and the fully adjusted P value was .31 for
CRP level, and the minimally adjusted P value was .20 and the fully adjusted P value was .26 for carotid wall thickness.

e For measurements by annual income, the minimally adjusted P value was .13 and the fully adjusted P value was .27
for CRP level, and the minimally adjusted P value was .70 and the fully adjusted P value was .93 for carotid wall thickness.

f For measurements by occupation type, the minimally adjusted P value was .004 and the fully adjusted P value was .01
for CRP level, and the minimally adjusted P value was .99 and the fully adjusted P value was .97 for carotid wall thickness.

smoking, hypertension, diabetes, coronary heart disease,
and cancer, were associated with both YOL and YHL
during follow-up (table 7). For the YHL outcome, SES
adjustment attenuated these associations. Moreover,
when all of the biodemographic covariates in table 7
were included together simultaneously, income, educa-
tion, and occupation ( ), rather than individualP p .005
ancestry ( ) or genetic similarity ( ), re-P p .50 P p .12
mained the only significant predictor of YHL. In con-
trast, genetic background similarity ( ) remainedP p .02
the only significant biodemographic predictor of the out-
come YOL in a multivariable model; individuals be-

longing to genetic similarity cluster 4 lived, on average,
an additional 9 mo (95% CI 3–14), compared with ge-
netic similarity cluster 1.

Associations of Phenotypic Traits with Individual AIMs

Tests of association for each AIM with each pheno-
typic trait are shown in table 8. In general, trait-asso-
ciated markers tended to be among those with the high-
est African/European allele-frequency differential. Under
the null hypothesis, ∼1/24 markers would be expected
by chance to be associated with any single trait (with
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Table 7

YOL and YHL by Clinic Site, Genetic Background Similarity, Admixture, and SES

BIODEMOGRAPHIC

CHARACTERISTIC N

MEAN YOL (95% CI)
[years]

MEAN YHL (95% CI)
[years]

Minimally Adjusted Fully Adjusted Minimally Adjusted Fully Adjusted

Clinical centera:
Winston-Salem 299 8.13 (7.83–8.42) 8.11 (7.80–8.42) 5.07 (4.76–5.38) 5.10 (4.77–5.43)
Sacramento 213 8.54 (8.19–8.90) 8.47 (8.10–8.83) 5.63 (5.26–6.01) 5.45 (5.06–5.84)
Pittsburgh 285 8.25 (7.95–8.55) 8.26 (7.95–8.56) 4.95 (4.63–5.27) 4.93 (4.61–5.26)

Genetic similarityb:
Cluster 1 467 7.98 (7.74–8.21) 7.97 (7.72–8.21) 4.93 (4.68–5.18) 4.94 (4.68–5.20)
Cluster 2 32 7.99 (7.09–8.89) 7.96 (7.04–8.88) 5.05 (4.09–6.00) 5.07 (4.10–6.05)
Cluster 3 74 8.69 (8.10–9.28) 8.64 (8.01–9.26) 5.90 (5.27–6.53) 5.79 (5.13–6.45
Cluster 4 234 8.76 (8.43–9.09) 8.71 (8.37–9.05) 5.48 (5.13–5.83) 5.34 (4.98–5.69)

Genetic ancestryc:
0% African (estimated) 9.15 (8.48–9.82) 9.02 (8.30–9.75) 6.08 (5.37–6.80) 5.59 (4.82–6.36)
100% African (estimated) 7.97 (7.68–8.26) 7.98 (7.67–8.28) 4.86 (4.55–5.17) 4.98 (4.65–5.30)

Educationd:
None–grade 9 237 8.16 (7.85–8.46) 8.28 (7.97–8.59) 4.69 (4.37–5.01) 4.77 (4.44–5.10)
High school 294 8.26 (8.09–8.44) 8.27 (8.09–8.44) 5.15 (4.96–5.33) 5.15 (4.96–5.34)
Professional/vocational 274 8.37 (8.09–8.65) 8.26 (7.97–8.55) 5.60 (5.30–5.90) 5.53 (5.22–5.84)

Annual incomee:
!$8,000 285 8.13 (7.83–8.42) 8.25 (7.95–8.55) 4.83 (4.51–5.14) 4.94 (4.62–5.27)
$8,000– $35,000 398 8.30 (8.10–8.50) 8.25 (8.05–8.45) 5.27 (5.05–5.48) 5.22 (5.01–5.44)
1$35,000 77 8.48 (8.04–8.92) 8.25 (7.79–8.70) 5.70 (5.24–6.17) 5.50 (5.02–5.99)

Occupation typef:
White collar 300 8.41 (8.11–8.71) 8.32 (8.02–8.62) 5.63 (5.32–5.95) 5.48 (5.11–5.85)
Blue collar 232 8.07 (7.71–8.42) 8.13 (7.77–8.49) 4.60 (4.23–4.98) 4.75 (4.33–5.17)
Housewife/other 275 8.30 (7.98–8.62) 8.34 (8.02–8.66) 5.17 (4.83–5.51) 5.09 (4.72–5.47)

NOTE.—Likelihood-ratio tests of association were performed by multiple linear regression of each phenotypic trait on
biodemographic characteristics. Minimally adjusted models were adjusted for age, sex, and any clinically relevant covariates,
as described in the “Methods” section. Fully adjusted models additionally contained variables for remaining biodemographic
characteristics. In the footnotes below, P values in bold italics are less than the nominal significance level of 5% adjusted
for the number of traits assessed ( ; ).n p 8 P ! .00625

a For measurements by clinical center, the minimally adjusted P value was .32 and the fully adjusted P value was .36 for
YOL, and the minimally adjusted P value was .04 and the fully adjusted P value was .14 for YHL.

b For measurements by genetic similarity, the minimally adjusted P value was .0007 and the fully adjusted P value was
.003 for YOL, and the minimally adjusted P value was .008 and the fully adjusted P value was .08 for YHL.

c For measurements by genetic ancestry, the minimally adjusted P value was .008 and the fully adjusted P value was .03
for YOL, and the minimally adjusted P value was .01 and the fully adjusted P value was .23 for YHL.

d For measurements by education, the minimally adjusted P value was .37 and the fully adjusted P value was .93 for
YOL, and the minimally adjusted P value was .003 and the fully adjusted P value was .004 for YHL.

e For measurements by annual income, the minimally adjusted P value was .27 and the fully adjusted P value was .99
for YOL, and the minimally adjusted P value was .01 and the fully adjusted P value was .12 for YHL.

f For measurements by occupation type, the minimally adjusted P value was .36 and the fully adjusted P value was .66
for YOL, and the minimally adjusted P value was .0003 and the fully adjusted P value was .002 for YHL.

the significance threshold of ). By comparison,P ! .05
blood glucose was associated with five markers. Ad-
justment for individual ancestry attenuated each of the
five marker–blood glucose associations (fig. 2). These
findings strongly suggest false-positive associations due
to population stratification. Note also in figure 2 that
an additional marker (rs722098) showed no association
before adjustment but was associated with glucose level
( ) only after correction for African ancestry.P p .002

Discussion

Our results suggest a complex relationship between ag-
ing-related traits, genetic background heterogeneity, and

population structure among older African American
adults. Overall, there was evidence of substantial pop-
ulation subdivision and genetic admixture, as demon-
strated by decreased marker heterozygosity and excess
allelic association of unlinked markers. Remarkably,
∼60% of pairs of markers in this data set were associ-
ated, despite the fact that the markers were randomly
scattered throughout the genome. The association be-
tween markers that are not in physical proximity indi-
cates that the rate of spurious associations without ad-
justment for population stratification is likely to be
particularly high in this population, since association
cannot be a reliable measure of genomic position. How-
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Table 8

Tests of Association between Each AIM and the Cardiovascular Risk Factors and Longevity Outcomes

MARKERa

P VALUES FOR

Blood
Glucose

Systolic
Blood Pressure

HDL
Cholesterol BMI CRP Levels

Carotid Wall
Thickness YOL YHL

rs2814778 .37 .46 .65 .89 .004 .55 .01 .23
rs930072 .005 .18 .49 .16 .05 .02 .03 .02
rs7349 .04 .28 .75 .18 .97 .91 .10 .01
rs723632 .07 .94 .25 .05 .95 .85 .65 .40
rs722098 .56 .58 .16 .28 .29 .87 .05 .09
rs146026 .04 .21 .02 .93 .54 .02 .41 .58
rs6003 .12 .33 .18 .95 .07 .82 .43 .57
rs1985080 .91 .92 .74 .86 .81 .56 .94 .78
rs518116 .01 .28 .68 .76 .60 .38 .08 .07
rs3287 .01 .49 .15 .73 .50 .69 .49 .25
rs1989486 .52 .43 .08 .32 .32 .99 .16 .99
rs7041 .07 .23 .72 .38 .66 .10 .06 .22
rs994174 .45 .18 .44 .76 .30 .57 .33 .18
rs1800498 .67 .56 .15 .71 .86 .75 .03 .15
rs2816 .77 .36 .38 .59 .15 .21 .82 .54
rs2891 .15 .41 .59 .18 .28 .98 .19 .16
rs3188520 .77 .62 .49 .07 .19 .10 .61 .13
rss1042602 .96 .04 .13 .95 .62 .72 .22 .18
rs326946 .10 .67 .87 .21 .23 .64 .27 .10
rs2077863 .23 .40 .99 .38 .63 .35 .17 .91
rs3188519 .92 .32 .96 .16 .84 .08 .73 .48
rs594689 .24 .62 .48 .20 .44 .07 .29 .93
rs2228478 .45 .37 .26 .03 .04 .81 .01 .21
rs584059 .43 .04 .41 .11 .27 .45 .71 .86

NOTE.—Likelihood-ratio tests of association were performed using multiple linear regression, adjusted for age,
sex, and any clinically relevant covariates, as described in the “Methods” section. P values �.05 are indicated
in bold italics.

a Markers are listed in decreasing order of African/European values.FST

ever, the rate of association between these markers is
much higher than the rate expected with random mark-
ers, since there is a linear relationship between the
strength of allelic association and marker informative-
ness in admixed populations (Chakraborty and Weiss
1988).

All of the phenotypic traits under study are known
to be influenced by environmental factors, some of
which are related to SES. In our analyses, SES adjust-
ment seemed to weaken the association of genetic back-
ground with some traits but not others. However, ed-
ucation, income, and occupation type likely represent
only crude proxies for current SES (Kaufman et al.
1997), given the retirement status of the participants.
Moreover, clinical disease is common among older co-
horts such as the CHS cohort (Kuller et al. 1998). Al-
though we additionally adjusted our analyses for known
clinical confounders, residual nonrandom associations
between health care access or adequacy of treatment
and social characteristics may persist. Therefore, we
cannot exclude residual confounding by environmental
determinants as a possible explanation for the observed
genetic ancestry-trait associations (Risch et al. 2002;
Kittles and Weiss 2003). Ultimately, proof that associ-

ation between genetic ancestry and a particular phe-
notype is due to genetic etiology lies in the identification
of a specific genomic region or regions that account for
the association. This would require a whole-genome ad-
mixture mapping survey, which depends on the typing
of hundreds to thousands of markers (Smith et al. 2004;
McKeigue 2005).

The observed association of increased blood glucose
levels with African ancestry is consistent with reports
of higher fasting glucose and increased prevalence of
diabetes in older African Americans (Haffner et al.
1996). A similar association between insulin resistance
and African ancestry, independent of SES, was recently
reported in a study of children residing in the southern
United States, which included individuals whose self-
reported race/ethnicity was white and African American
(Gower et al. 2003). Our analysis included only indi-
viduals who self reported as African American and was
also adjusted for education and income levels.

The sex-dependent associations we observed for BMI
are noteworthy in light of the higher prevalence of fe-
male obesity but lower levels of male obesity among
older African Americans compared with older whites
(Hutchinson et al. 1997; Kuller et al. 1998; Sundquist
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Figure 2 Associations of markers with glucose, before and after adjustment for African ancestry proportions

et al. 2001). The propensity for weight gain and obesity
in black women has been associated with lower SES and
higher physical inactivity (Fernandez et al. 2003). Our
findings suggest a possible contribution of either genetic
background or other distinct environmental factors cor-
related with genetic background to the lower rates of
obesity in African American men.

SES has a major impact on all-cause mortality within
and among age, sex, and race strata (Lin et al. 2003).
In the CHS African American cohort, longevity ap-
peared to be influenced by various indicators of pop-
ulation and social structure. The association with SES
indicators was particularly strong for YHL, a measure
that incorporates both length and quality of life. For
YOL, which more objectively quantifies survival time
or all-cause mortality, the association with genetic back-
ground appeared stronger but was attenuated some-
what by SES adjustment. Genetic factors may influence
mortality in older adults, particularly at very advanced
ages (Perls et al. 2002). It is important to recognize,
however, that genetic similarity or shared ancestry are
likely correlated with a range of social, cultural, and/
or environmental variables that influence disease oc-
currence and mortality yet remain unmeasured or not
adequately accounted for in our analysis (Risch et al.
2002; Kittles and Weiss 2003). The substantial effect of
SES on the genetic associations with longevity highlights

an important principle: excess type I error can occur in
admixed populations even as a result of environmental
factors (Risch et al. 2002; Cardon and Palmer 2003).
In this case, SES is associated with genetic ancestry,
leading to confounding in tests for individual markers.

Our findings for CHS strongly suggest that control-
ling for population structure/admixture will be required
in large, multicenter genetic-association studies that as-
sess common chronic-disease–related traits in African
American population samples. Individual ancestry can
be estimated in African American samples by typing a
reasonable number of markers that are highly differ-
entiated in allele frequency across parental populations.
Conditioning on admixture proportions in a multilocus
analysis can control for confounding due to population
stratification (McKeigue et al. 2000; Pfaff et al. 2001;
Hoggart et al. 2003). As illustrated in figure 2, con-
trolling for genetic ancestry should not only reduce
false-positive associations but may also uncover a true
association previously obscured by stratification. On the
basis of dynamic relationships among various genetic
and environmental determinants of disease susceptibil-
ity, additional multilocus methods—such as those that
detect genetic similarity, cryptic relatedness, or rates of
migration under nonequilibrium conditions—may help
to characterize the complex genetic demography of
an epidemiologic sample (Overall and Nichols 2001;
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Schork 2001; Schork et al. 2001; Curtis et al. 2002;
Wilson and Rannala 2003) and thereby provide addi-
tional information about the genetic architecture of
common diseases of aging in heterogeneous outbred
populations.

The limited number of markers we used may have
resulted in imprecise estimates of individual ancestry or
genetic background similarity. However, several differ-
ent statistical methods of differentiating individuals, in-
cluding the Bayesian algorithm in the program STRUC-
TURE and the results of the principal-components
method, demonstrated a very high degree of correlation
with our estimates of African ancestry from the maxi-
mum-likelihood model. This is not unexpected, since
the markers were chosen primarily on the basis of fre-
quency differential between African and European pa-
rental populations.

Since the markers we used had less ability to distin-
guish Native American ancestry from European ances-
try, the correlations were less robust for Native Amer-
ican or European ancestry estimated by maximum
likelihood, STRUCTURE, and principal-components
analysis. This is also reflected by the wide CIs associated
with our estimates of Native American ancestry. Our
results are not inconsistent with previous studies, such
as those of Parra et al. (1998) and Smith et al. (2004),
who estimated the Native American ancestry of African
American populations at 1%–2%. Interestingly, there
appeared to be a somewhat higher proportion of Native
American ancestry among individuals within genetic
similarity cluster 3. Typing more markers informative
for Native American ancestry will be necessary to con-
firm these findings, which might lead to greater preci-
sion in controlling for admixture in association studies.

Our results also are in agreement with other studies
showing ∼20% European admixture among African
Americans, with somewhat higher contributions of Eu-
ropean ancestry in northern or western U.S. populations
(Chakraborty et al. 1986; Parra et al. 1998; McKeigue
et al. 2000; Pfaff et al. 2001; Hoggart et al. 2003).
Whether genetic heterogeneity among the African pa-
rental source populations has contributed to local var-
iations in admixture among modern African American
populations remains uncertain. Despite earlier studies
suggesting genetic heterogeneity within continental Af-
rica (reviewed by Tishkoff and Williams 2002; Kittles
and Weiss 2003), markers such as the ones we typed,
which have large frequency differences between Euro-
pean and African populations, appear to have much
smaller variations within continental Africa (Collins-
Schramm et al. 2002).

Our analysis excluded the individuals who self re-
ported as white in the CHS cohort. Since other studies
report that the proportion of African ancestry among
U.S. non-Hispanic whites is !5%, the exclusion of self-

identified white CHS participants from our study sam-
ple is unlikely to have impacted our findings in a sub-
stantial way. Our study does not address the question
of population stratification among European Ameri-
cans. Since allele-frequency differences between Euro-
pean subpopulations are likely smaller than those be-
tween European and African ancestral populations, a
larger of number of markers will be required to assess
the impact of stratification within non-Hispanic white
populations.

Individuals who self identify as African American are
culturally, socially, and genetically heterogeneous. SES
and related factors, such as access to health care, play
a major role in healthy aging. In some instances, these
nongenetic factors may account for all or part of the
association between a phenotype and ancestry. Never-
theless, from a public health and epidemiologic stand-
point, an objective assessment of genetic background
may provide additional information relevant to poten-
tial nongenetic confounders and predictors of disease
risk as well as insight into genetic contributions. These
considerations highlight the need for further investi-
gation of the various SES and biodemographic factors
that influence life span or quality of life in older adults.

In summary, there is evidence of substantial substruc-
ture and admixture among the CHS African American
population. In addition, our analyses have shown that
nongenetic factors may, in fact, confound genetic as-
sociations among populations with recent admixture
and population substructure. Therefore, both control-
ling for population admixture by use of genetic markers
and controlling for sociodemographic measures will be
required in assessing genetic associations with complex
chronic-disease traits in African American subjects.

Acknowledgments

We thank Mark D. Shriver for providing the program used
for maximum-likelihood estimation and for providing DNA
samples of the three ancestral populations. The research re-
ported in this article was supported by National Heart, Lung,
and Blood Institute contracts N01-HC-85079 through N01-
HC-85086, N01-HC-35129, and N01 HC-15103. A full list
of participating CHS investigators and institutions can be
found at the CHS Web site.

Electronic-Database Information

The URLs for data presented herein are as follows:

CHS, http://www.chs-nhlbi.org
dbSNP, http://www.ncbi.nlm.nih.gov/SNP/
Genetic Data Analysis, http://hydrodictyon.eeb.uconn.edu/

people/plewis/software.php



476 Am. J. Hum. Genet. 76:463–477, 2005

References

Belkhir K, Castric V, Bonhomme F (2002) IDENTIX , a soft-
ware to test for relatedness in a population using permu-
tation methods. Mol Ecol Notes 2:611–614

Bonilla C, Parra EJ, Pfaff CL, Dios S, Marshall JA, Hamman
RF, Ferrell RE, Hoggart CL, McKeigue PM, Shriver MD
(2004) Admixture in the Hispanics of the San Luis Valley,
Colorado, and its implications for complex trait gene map-
ping. Ann Hum Genet 68:139–153

Cardon LR, Palmer LJ (2003) Population stratification and
spurious allelic association. Lancet 361:598–604

Chakraborty R, Ferrell RE, Stern MP, Haffner SM, Hazuda
HP, Rosenthal M (1986) Relationship of prevalence of non-
insulin dependent diabetes mellitus to Amerindian admix-
ture in the Mexican Americans of San Antonio, Texas. Genet
Epidemiol 3:435–454

Chakraborty R, Weiss KM (1988) Admixture as a tool for
finding linked genes and detecting that difference from allelic
association between loci. Proc Natl Acad Sci USA 85:9119–
9123

Chen X, Levine L, Kwok PY (1999) Fluorescence polarization
in homogeneous nucleic acid analysis. Genome Res 9:492–
498

Collins-Schramm HE, Kittles RA, Operario DJ, Weber JL, Cri-
swell LA, Cooper RS, Seldin MF (2002) Markers that dis-
criminate between European and African ancestry show lim-
ited variation within Africa. Hum Genet 111:566–569

Curtis D, North BV, Gurling HM, Blaveri E, Sham PC (2002)
A quick and simple method for detecting subjects with ab-
normal genetic background in case-control samples. Ann
Hum Genet 66:235–244

Cushman M, Cornell E, Howard P, Bovill E, Tracy R (1995)
Laboratory methods and quality assurance in the Cardio-
vascular Health Study. Clin Chem 41:264–270

Diehr P, Patrick DL, Bild DE, Burke GL, Williamson JD (1998)
Predicting future years of healthy life for older adults. J Clin
Epidemiol 51:343–353

Dupanloup I, Bertorelle G (2001) Inferring admixture pro-
portions from molecular data: extension to any number of
parental populations. Mol Biol Evol 18:672–675

Falush D, Stephens M, Pritchard JK (2003) Inference of pop-
ulation structure using multilocus genotype data: linked loci
and correlated allele frequencies. Genetics 164:1567–1587

Fernandez JR, Shriver MD, Beasley TM, Rafla-Demetrious N,
Parra E, Albu J, Nicklas B, Ryan AS, McKeigue PM, Hog-
gart CL, Weinsier RL, Allison DB (2003) Association of
African genetic admixture with resting metabolic rate and
obesity among women. Obes Res 11:904–911

Freedman ML, Reich D, Penney KL, McDonald GJ, Mignault
AA, Patterson N, Gabriel SB, Topol EJ, Smoller JW, Pato
CN, Pato MT, Petryshen TL, Kolonel LN, Lander ES, Sklar
P, Henderson B, Hirschhorn JN, Altshuler D (2004) As-
sessing the impact of population stratification on genetic
association studies. Nat Genet 36:388–393

Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM,
Kronmal RA, Kuller LH, Manolio TA, Mittelmark MB,
Newman A, O’Leary DH, Psaty BM, Rautaharju P, Tracy
RP, Weiler PG (1991) The Cardiovascular Health Study:
design and rationale. Ann Epidemiol 1:263–276

Gower BA, Fernandez JR, Beasley TM, Shriver MD, Goran
MI (2003) Using genetic admixture to explain racial differ-
ences in insulin-related phenotypes. Diabetes 52:1047–1051

Haffner SM, D’Agostino R, Saad MF, Rewers M, Mykkanen
L, Selby J, Howard G, Savage PJ, Hamman RF, Wagen-
knecht LE, Bergman RN (1996) Increased insulin resistance
and insulin secretion in nondiabetic African Americans and
Hispanics compared with non-Hispanic whites: The Insulin
Resistance Atherosclerosis Study. Diabetes 45:742–748

Hoggart CJ, Parra EJ, Shriver MD, Bonilla C, Kittles RA,
Clayton DG, McKeigue PM (2003) Control of confounding
of genetic associations in stratified populations. Am J Hum
Genet 72:1492–1504

Hutchinson RG, Watson RL, Davis CE, Barnes R, Brown S,
Romm F, Spencer JM, Tyroler HA, Wu K (1997) Racial
differences in risk factors for atherosclerosis. The ARIC
Study: Atherosclerosis Risk in Communities. Angiology 48:
279–290

Kaufman JS, Cooper RS, McGee DL (1997) Socioeconomic
status and health in blacks and whites: the problem of re-
sidual confounding and the resiliency of race. Epidemiology
8:621–628

Kittles RA, Chen W, Panguluri RK, Ahaghotu C, Jackson A,
Adebamowo CA, Griffin R, Williams T, Ukoli F, Adams-
Campbell L, Kwagyan J, Isaacs W, Freeman V, Dunston GM
(2002) CYP3A4-V and prostate cancer in African Ameri-
cans: causal or confounding association because of popu-
lation stratification? Hum Genet 110:553–560

Kittles RA, Weiss KM (2003) Race, ancestry, and genes: im-
plications for defining disease risk. Annu Rev Genomics
Hum Genet 4:33–67

Kuller L, Fisher L, McClelland R, Fried L, Cushman M, Jack-
son S, Manolio T (1998) Differences in prevalence of and
risk factors for subclinical vascular disease among black and
white participants in the Cardiovascular Health Study. Ar-
terioscler Thromb Vasc Biol 18:283–293

Lehmann EL, D’Abrera HJM (1998) Nonparametrics: statis-
tical methods based on ranks. Prentice-Hall, Englewood
Cliffs, NJ

Lin CC, Rogot E, Johnson NJ, Sorlie PD, Arias E (2003) A
further study of life expectancy by socioeconomic factors in
the National Longitudinal Mortality Study. Ethn Dis 13:
240–247

Lynch M, Ritland K (1999) Estimation of pairwise relatedness
with molecular markers. Genetics 152:1753–1766

McKeigue PM (1998) Mapping genes that underlie ethnic dif-
ferences in disease risk: methods for detecting linkage in
admixed populations, by conditioning on parental admix-
ture. Am J Hum Genet 63:241–251

——— (2005) Prospects for admixture mapping of complex
traits. Am J Hum Genet 76:1–7

McKeigue PM, Carpenter J, Parra EJ, Shriver MD (2000) Es-
timation of admixture and detection of linkage in admixed
populations by a Bayesian approach using Markov chain
simulation: application to African American populations.
Ann Hum Genet 64:171–186

O’Leary DH, Polak JF, Wolfson SK Jr, Bond MG, Bommer W,
Sheth S, Psaty BM, Sharrett AR, Manolio TA (1991) Use of
ultrasonography to evaluate carotid atherosclerosis in the



Reiner et al.: Population Structure in CHS African Americans 477

elderly: the Cardiovascular Health Study. Stroke 22:1155–
1163

Overall AD, Nichols RA (2001) A method for distinguishing
consanguinity and population substructure using multilocus
genotype data. Mol Biol Evol 18:2048–2056

Parra EJ, Kittles RA, Argyropoulos G, Pfaff CL, Hiester K,
Bonilla C, Sylvester N, Parrish-Gause D, Garvey WT, Jin L,
McKeigue PM, Kamboh MI, Ferrell RE, Pollitzer WS,
Shriver MD (2001) Ancestral proportions and admixture
dynamics in geographically defined African Americans living
in South Carolina. Am J Phys Anthropol 114:18–29

Parra EJ, Marcini A, Akey J, Martinson J, Batzer MA, Cooper
R, Forrester T, Allison DB, Deka R, Ferrell RE, Shriver MD
(1998) Estimating African American admixture proportions
by use of population-specific alleles. Am J Hum Genet 63:
1839–1851

Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M,
Bogan H, Joyce E, Brewster S, Kunkel L, Puca A (2002)
Life-long sustained mortality advantage of siblings of cen-
tenarians. Proc Natl Acad Sci USA 99:8442–8447

Pfaff CL, Barnholtz-Sloan J, Wagner JK, Long JC (2004) In-
formation on ancestry from genetic markers. Genet Epide-
miol 26:305–315

Pfaff CL, Parra EJ, Bonilla C, Hiester K, McKeigue PM, Kam-
boh MI, Hutchinson RG, Ferrell RE, Boerwinkle E, Shriver
MD (2001) Population structure in admixed populations:
effect of admixture dynamics on the pattern of linkage dis-
equilibrium. Am J Hum Genet 68:198–207

Pritchard JK, Stephens M, Donnelly P (2000a) Inference of
population structure from multilocus genotype data. Ge-
netics 155:945–959

Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b)
Association mapping in structured populations. Am J Hum
Genet 67:170–181

Risch N, Burchard E, Ziv E, Tang H (2002) Categorization of
humans in biomedical research: genes, race and disease. Ge-
nome Biol 3:1–12

Schork NJ (2001) Genome partitioning and whole-genome
analysis. Adv Genet 42:299–322

Schork NJ, Fallin D, Thiel B, Xu X, Broeckel U, Jacob HJ,
Cohen D (2001) The future of genetic case-control studies.
Adv Genet 42:191–212

Sharma S, Malarcher AM, Giles WH, Myers G (2004) Racial,
ethnic and socioeconomic disparities in the clustering of car-
diovascular disease risk factors. Ethn Dis 14:43–48

Shriver MD, Parra EJ, Dios S, Bonilla C, Norton H, Jovel C,
Pfaff C, Jones C, Massac A, Cameron N, Baron A, Jackson
T, Argyropoulos G, Jin L, Hoggart CJ, McKeigue PM, Kit-
tles RA (2003) Skin pigmentation, biogeographical ancestry
and admixture mapping. Hum Genet 112:387–399

Smith MW, Patterson N, Lautenberger JA, Truelove AL,
McDonald GJ, Waliszewska A, Kessing BD, et al (2004) A
high-density admixture map for disease gene discovery in
African Americans. Am J Hum Genet 74:1001–1013

Sundquist J, Winkleby MA, Pudaric S (2001) Cardiovascular
disease risk factors among older black, Mexican-American,
and white women and men: an analysis of NHANES III,
1988–1994. Third National Health and Nutrition Exami-
nation Survey. J Am Geriatr Soc 49:109–116

Tishkoff SA, Williams SM (2002) Genetic analysis of African
populations: human evolution and complex disease. Nat Rev
Genet 3:611–621

Weir BS, Cockerham CC (1984) Estimating F-statistics for the
analysis of population structure. Evolution 38:1358–1370

Wilson GA, Rannala B (2003) Bayesian inference of recent
migration rates using multilocus genotypes. Genetics 163:
1177–1191

Wright S (1951) The genetical structure of populations. Ann
Eugen 15:323–354

Yashin AI, De Benedictis G, Vaupel JW, Tan Q, Andreev KF,
Iachine IA, Bonafe M, DeLuca M, Valensin S, Carotenuto
L, Franceschi C (1999) Genes, demography, and life span:
the contribution of demographic data in genetic studies on
aging and longevity. Am J Hum Genet 65:1178–1193


