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Admixture mapping extends to human populations the principles that underlie linkage analysis of an experimental
cross. For detecting genes that contribute to ethnic variation in disease risk, admixture mapping has greater statistical
power than family-linkage studies. In comparison with association studies, admixture mapping requires far fewer
markers to search the genome and is less affected by allelic heterogeneity. Statistical-analysis programs for admixture
mapping are now available, and a genomewide panel of markers for admixture mapping in populations formed
by West African–European admixture has been assembled. Some of the remaining technical challenges include the
ability to ensure that the statistical methods are robust and to develop marker panels for other admixed populations.
Where admixed populations and panels of markers informative for ancestry are available, admixture mapping can
be applied to localize genes that contribute to ethnic variation in any measurable trait.

Introduction

Gene flow between subpopulations generates chromo-
somes made up of segments that have ancestry from dif-
ferent subpopulations. The admixture proportions of an
individual are defined as the proportions of the individ-
ual’s genome that have ancestry from each subpopulation.
Suggestions that the genetic structure of admixed human
populations could be exploited to localize genes that
underlie ethnic variation in diseases or traits of interest
date to Rife (1954). At first, writers who explored this
approach viewed it as an extension of classic linkage-
disequilibrium mapping, based on detection of allelic as-
sociation with the disease or trait of interest (Chakra-
borty and Weiss 1988; Risch 1992; Briscoe et al. 1994;
Stephens et al. 1994; McKeigue 1997). This approach,
named “mapping by admixture disequilibrium”(Stephens
et al. 1994), does not fully exploit the information avail-
able (Hoggart et al. 2004). The problem of how to ex-
ploit admixture to localize genes is more easily under-
stood as an extension of linkage analysis of a cross
(McKeigue 1998; McKeigue et al. 2000). In an experi-
mental cross, inbred strains that differ with respect to a
trait of interest are crossed for at least two generations
to generate hybrid individuals that are typed at marker
loci where different alleles have been fixed in the two
ancestral strains. Linkage is detected by testing for asso-
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ciation of the trait with ancestry—defined as the number
of gene copies inherited from each ancestral strain—at
each locus. In principle, this approach can be extended
to detect genes in which trait-influencing alleles are dis-
tributed differentially between human subpopulations.
If we type marker loci to infer ancestry at each locus,
we can test for association of locus ancestry with any
traits that have been measured in a sample of admixed
individuals. Since inference is based on locus ancestry
rather than on linkage disequilibrium, this approach is
named simply “admixture mapping.”

Theory of Admixture Mapping

To extend the methods used for linkage analysis of an
experimental cross to admixed human populations, three
main problems must be overcome. First, individual his-
tories of admixture cannot be under experimental con-
trol and are usually unknown. We cannot, for instance,
design a study that is based on sampling only F2 inter-
crosses. Gene flow from ancestral subpopulations into
an admixed population generates variation of admixture
proportions between individuals. This generates associa-
tions of the disease or trait with states of ancestry (or
alleles) at loci that are not linked to a trait locus. This
problem can be reduced to one of controlling for con-
founding by parental admixture proportions. To elimi-
nate this confounding, we condition on parental admix-
ture proportions (which can be estimated from the in-
dividual’s own genotype data) when testing for associa-
tion between trait and ancestry (McKeigue 1998). Since
some confusion has arisen on this point (Zhu et al.
2004), the argument is spelled out here. Associations
between states of ancestry at different loci are generated,
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because ancestry at each locus on a gamete depends on
the proportion of the parent’s genome that has ancestry
from each subpopulation. Because genes at unlinked loci
segregate independently, locus-ancestry associations that
are independent of parental admixture proportions can-
not be generated unless the loci are linked (McKeigue
1998). This argument holds regardless of the history of
admixture: it does not matter whether there has been
continuous gene flow or isolation since the first genera-
tion of admixture. A similar argument underlies the
“structured-association” approach to controlling for
population stratification in ordinary genetic-association
studies (Pritchard and Donnelly 2001).

The second problem is that human ethnic groups are
not inbred strains, between which Wright’s fixation in-
dex (FST) is 1 by definition. FST distances between human
subpopulations originating on different continents are
typically in the range of 0.1–0.2 (Cavalli-Sforza et al.
1994), which implies that only 10%–20% of shared
allelic diversity has been lost since these subpopulations
separated. Marker loci such as FY, at which different
alleles have been fixed in West Africans and Europeans,
are rare. Thus, we cannot infer the number of gene
copies inherited from each ancestral subpopulation sim-
ply by typing a single marker locus. This problem can
be overcome by combining data from all markers on
each chromosome in a multipoint analysis to infer an-
cestry at each locus. As with multipoint methods for
classic linkage analysis, in which segregation indicators
at each locus are inferred by combining information from
all markers on each chromosome (Lander and Green
1987), the proportion of information extracted can be
increased to any required level by increasing the density
of the marker map.

The third problem is that the ancestral groups that
underwent admixture may be unavailable for study or
may not be known precisely. Estimates of the allele fre-
quencies in each subpopulation are thus subject to un-
certainty. For instance, we cannot sample the exact mix
of West African subpopulations that contributed genes
to the modern African American population. Allele fre-
quencies in modern unadmixed West African and Eu-
ropean populations may vary from the ancestry-specific
allele frequencies—the allele frequencies given African
and European ancestry at the locus—within the African
American population. This problem can be overcome by
combining data from unadmixed and admixed popula-
tions to re-estimate the ancestry-specific allele frequen-
cies within the admixed population under study (Hog-
gart et al. 2004; Patterson et al. 2004). This also yields
estimates of the “dispersion” between allele frequencies
in the unadmixed populations and the corresponding
ancestry-specific allele frequencies within the admixed
population under study (Hoggart et al. 2004; Patterson
et al. 2004).

Design Considerations

The design of admixture-mapping studies depends on
the size of the effect associated with locus ancestry and
the number of generations since admixture. For a binary
trait, the size of the effect associated with locus ancestry
can be quantified by the ancestry-risk ratio—the ratio of
risk in individuals with two gene copies who have ancestry
from the high-risk subpopulation to risk in individuals
with zero gene copies who have ancestry from this sub-
population—that the locus contributes. Under the sim-
plifying assumption of a model in which risk increases
multiplicatively with each copy of the high-risk allele,
the effect associated with locus ancestry depends on only
the ancestry-risk ratio (McKeigue 1998). To calculate the
required sample size for a given statistical power, under
the assumption of a perfectly informative marker map,
the investigator need specify only the ancestry-risk ratio
and the population admixture proportions. A practical
lower limit for the size of effect that can be detected by
admixture mapping is an ancestry-risk ratio of ∼1.5,
which would require a few thousand affected individuals
to detect (Hoggart et al. 2004; Patterson et al. 2004).

The average number of generations since admixture
can be estimated from marker data for the admixed popu-
lation under study. This determines the density of mark-
ers required to extract a given proportion of information
about locus ancestry, the mapping resolution (for a given
effect size and sample size), and the number of indepen-
dent hypotheses that are tested in a search of the entire
genome (Hoggart et al. 2004).

Comparison with Established Approaches

In the specific situations in which it can be applied,
admixture mapping has several advantages over estab-
lished approaches to localization of disease-susceptibility
genes. In comparison with family linkage studies, ad-
mixture mapping has higher statistical power to detect
genes of modest effect if risk alleles in these genes are
distributed differentially between subpopulations. Illus-
trative comparisons are given by McKeigue (1998) and
by Montana and Pritchard (2004). Thus, for instance,
a locus at which the haplotype-risk ratio is 2 can con-
tribute an ancestry-risk ratio as high as 4 (when low-
risk and high-risk alleles are differentially fixed in the two
subpopulations) but can contribute a sibling-recurrence–
risk ratio only as high as 1.13 (when the frequency of
the high-risk allele is 34%). In this extreme case, !200
affected individuals are required for detection of the lo-
cus by admixture mapping, but at least 4,000 pairs are
required for detection of it in an affected–sib-pair design
at the same statistical power. This statistical-power ad-
vantage has a fundamental statistical basis: linkage analy-
sis of a cross is based on a direct (fixed-effects) compari-
son, whereas family linkage studies are based on an
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indirect (random-effects) comparison that is less efficient
(Lander and Schork 1994).

In comparison with association studies, admixture
mapping has two key advantages. First, it typically re-
quires only 2,000–3,000 ancestry-informative markers
for a genome search (McKeigue 1998; Smith et al. 2004),
compared with estimates of at least 250,000 markers for
whole-genome association studies (Carlson et al. 2004).
Second, admixture mapping is less susceptible to allelic
heterogeneity. The ability to detect a disease locus de-
pends only on whether the pool of high-risk alleles is
distributed differentially between subpopulations; it does
not matter whether there are a few common risk-asso-
ciated alleles or many rare risk-associated alleles at the
locus under study (Terwilliger and Goring 2000). In con-
trast, SNP association studies of common diseases de-
pend critically on the “common disease–common vari-
ant” hypothesis (Terwilliger and Weiss 1998).

What Problems Have Been Solved?

Although the theory that underlies admixture mapping
was outlined several years ago (McKeigue 1998), its ap-
plication has awaited the availability of genomewide
panels of markers informative for ancestry between con-
tinental groups and statistical methods that combine in-
formation from these markers to infer ancestry.

Statistical and Computational Methods

Realistic statistical models for genotype data from ad-
mixed populations are too complex to be easily fitted
by classic methods but can be handled with Bayesian
computationally intensive methods. Three Bayesian pro-
grams—STRUCTURE (Falush et al. 2003), ADMIXMAP
(Hoggart et al. 2003, 2004), and ANCESTRYMAP (Pat-
terson et al. 2004)—have been described for multipoint
statistical modeling of genotype data from admixed popu-
lations. Classic likelihood-based programs (Zhang et al.
2004; Zhu et al. 2004) have also been developed, but
those cannot exploit the hierarchical dependence of in-
dividual-level parameters on population-level parame-
ters, nor do they allow for uncertainty in model param-
eters, such as allele frequencies.

The Bayesian programs and one of the classic programs
(Zhang et al. 2004) are based on a statistical model in
which K subpopulations contribute to the gene pool of
the admixed population, and variation of ancestry on each
gamete is generated by K independent Poisson arrival
processes, one for each subpopulation. In this model, it
is as if states of ancestry from each subpopulation “ar-
rive” at random as we progress along the chromosome,
and locus ancestry is determined by the last arrival. The
ratios between the intensities of these arrival processes
are specified by the admixture proportions of the parent.

The sum of intensities of the arrival processes can be
interpreted as the average number of generations since
admixture: this is estimated to be approximately six per
morgan in the African American population (Hoggart
et al. 2004; Patterson et al. 2004). The density of mark-
ers required to achieve a given map-information content
is directly proportional to this sum-of-intensities param-
eter. This basic model can be extended to include re-
gression models for binary or quantitative traits (Hog-
gart et al. 2004). Two elegant computational innovations
that have made feasible the analysis of large data sets
with dense marker maps are the introduction of a hidden
Markov model forward-backward algorithm for sam-
pling ancestry states on each chromosome (Falush et al.
2003) and a Rao-Blackwellized estimator that exploits
this algorithm to calculate test statistics (Patterson et al.
2004).

To test for linkage in an affected-only design, we com-
pare the observed and expected proportions of gene cop-
ies that have ancestry from the high-risk subpopulation
at the locus under study. To test the null hypothesis that
the ancestry-risk ratio is 1, either a score test (Mc-
Keigue et al. 2000; Hoggart et al. 2004) or a likelihood-
ratio test (Patterson et al. 2004) can be calculated. These
tests are asymptotically equivalent in large samples. The
affected-only test statistic proposed by Montana and
Pritchard (2004) is equivalent to the score test but with
the score variance estimated by simulation rather than
calculated from the likelihood.

Similar approaches can be used to construct tests that
compare cases and controls or to construct tests for link-
age with a quantitative trait. Other types of outcome vari-
able, such as survival times, could be handled within the
framework of generalized linear models. To detect modi-
fier loci that influence the severity of a Mendelian disease
such as sickle-cell anemia, we could sample affected in-
dividuals of mixed descent and test for linkage with se-
verity of disease, measured as a quantitative trait.

Identification of Markers Informative for Ancestry

In principle, any type of marker—STRs, insertion-de-
letion polymorphisms, or SNPs—can be used for admix-
ture mapping if their allele frequencies differ between the
ancestral subpopulations. Marker information content
for ancestry can be measured by the score variance
(Fisher information) (McKeigue 1998; Molokhia et al.
2003; Pfaff et al. 2004) or by the expected log-likelihood
ratio (Kullback-Leibler information) (Rosenberg et al.
2003; Smith et al. 2004) contributed by typing a gamete
at the marker locus. These measures can be calculated
from the ancestry-specific allele frequencies, expressed
as a proportion of the information about ancestry that
would be extracted by a perfectly informative marker,
given a uniform prior distribution. The symbols f (Mc-



4 Am. J. Hum. Genet. 76:1–7, 2005

Keigue 1998) and In (Rosenberg et al. 2003) have been
used for Fisher and Kullback-Leibler ancestry-informa-
tion content, respectively. These measures rank markers
similarly, with respect to information content for an-
cestry, although their absolute values differ. For two sub-
populations, the average f value of stable diallelic marker
polymorphisms is related to the FST distance, as f p

). Thus, if the average FST distance betweenF /(2 � FST ST

European and West African populations is ∼0.15 (Cav-
alli-Sforza et al. 1994), the average f value of randomly
chosen SNPs between these two subpopulations would
be ∼0.08.

As in classic multipoint-linkage analysis, the adequacy
of the marker panel for admixture mapping can be evalu-
ated by an information-content map. This measures, at
each locus, the ratio of the observed information (about
the ancestry-risk ratio) extracted by an affected-only study
that uses this marker panel to the complete information
that would be extracted if locus-ancestry and parental-
admixture proportions were observed directly. The ob-
served information and complete information are evalu-
ated when the affected-only score test is calculated (Hog-
gart et al. 2004). This calculation can be extended to
partition the missing information into two components:
(1) uncertainty about locus ancestry arising from inade-
quate marker coverage of the region containing the locus
under study and (2) uncertainty about model parameters
such as parental admixture and allele frequencies.

To assemble panels of markers that are informative for
ancestry between populations originating on different
continents, it is necessary to screen large numbers of
marker loci. Smith et al. (2004) have assembled such
a panel for admixture mapping in populations of mixed
West African and European descent. They screened
450,000 SNPs for which allele-frequency data were avail-
able and chose 3,075 informative markers to achieve a
target level of coverage of the genome. The average in-
formation content of these markers for West African
versus European ancestry was 35% (measured by the f
value) and 28% (measured by In), which corresponds to
an average–allele-frequency differential of 0.56. From
this panel, they selected a subset of 2,154 SNPs opti-
mized for admixture mapping. They calculated the av-
erage map-information content of this panel in African
Americans to be 71% when there was no uncertainty
about model parameters but only ∼50% when estimated
from real data. They attributed this discrepancy to un-
certainty about the ancestry-specific allele frequencies.
As genotype data for these markers in African Ameri-
cans accumulate, it should be possible to reduce this
uncertainty.

Montana and Pritchard (2004) suggest that, as multi-
plexed assays capable of scoring 10,000 SNPs at low cost
become available, it may be unnecessary to preselect
markers that are highly informative for ancestry. Their

simulations show that, as one would expect, the density
of markers required to achieve a given map-information
content is inversely proportional to the ancestry-informa-
tion content of the individual markers. On this basis, in
populations of mixed West African and European an-
cestry, a panel of 10,000 unselected SNPs, which would
have an average f value of 0.08, would be equivalent to
a panel of 2,000 ancestry-informative SNPs with an av-
erage f value 0.40. Apart from the lower genotyping
workload, however, there are other advantages in the
use of a panel of markers preselected to be informative:
markers for which allele frequencies vary within conti-
nental groups can be excluded, the marker spacing can
be large enough to ensure no allelic association within
subpopulations, and the computational burden is re-
duced. To reduce costs further, a two-stage genotyping
strategy can be used (Hoggart et al. 2004)

What Problems and Challenges Remain?

How Robust Will Admixture Mapping Be to Violation
of Model Assumptions?

The first methods to be developed for linkage analysis
of complex traits in human families were highly sus-
ceptible to false-positive results when model assump-
tions were violated (Ott 1992; Babron et al. 1993; Freimer
et al. 1993; Göring and Terwilliger 2000). Can we avoid
a similar experience with admixture mapping? The Bayes-
ian statistical methods developed for admixture mapping
are more flexible than the approaches used in early link-
age analysis and allow diagnostic tests for violation of
the assumptions that underlie the statistical model to be
constructed (Hoggart et al. 2004). When these diagnos-
tics indicate violation of model assumptions, the statis-
tical model can be respecified to relax these assumptions.

The most serious problems are likely to arise with
affected-only tests, which assume that the frequencies of
locus-ancestry states do not vary across the genome within
the admixed population under study. As Montana and
Pritchard (2004) note, this assumption may be false when
the admixed population has been small enough for locus-
ancestry–state frequencies to drift. The effect of such
drift is to inflate the variance of the affected-only test
statistic. Use of a case-control design overcomes this
problem but increases fourfold the number of individ-
uals who have to be genotyped to detect an effect of
given size. Instead, one could test the assumption of
homogeneity of locus-ancestry–state frequencies across
the genome by evaluating the affected-only test in a con-
trol group. When this test yields evidence for drift, data
from unlinked loci could be used to correct the score
variance by a “genomic control” approach, as suggested
by Zhu et al. (2004). As in ordinary association studies
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(Devlin and Roeder 1999), such a correction also would
account for cryptic relatedness between cases.

The statistical model for variation of ancestry on chro-
mosomes that is specified by current programs for mod-
eling admixture does not correspond exactly to any bio-
logical model, even when admixture occurs in a single
generation, followed by random mating (McKeigue
1998). The fit of data to this simple statistical model is
likely to be especially poor when there has been continu-
ous gene flow. It is possible, in principle, to fit a more-
complex model for ancestry on chromosomes. Intuitively,
however, one would expect that increasing the density of
markers would make inference about locus ancestry more
robust to violation of the model assumptions, just as in-
creasing the density of markers used in multipoint family-
linkage analysis makes inference about segregation robust
to misspecification of allele frequencies.

Assembling Marker Panels for Admixture between Less
Genetically Distant Populations

The cost of screening large numbers of SNP loci to
identify those with extreme allele-frequency differentials
can be reduced by measuring allele frequencies in pooled
DNA samples, especially if multiplexed assays are avail-
able. Between populations that are separated only by
a small genetic distance, such as Europeans and South
Asians, SNPs that are highly informative for ancestry may
be difficult to identify by this approach. A possible sup-
plemental strategy is to construct compound marker loci
that consist of two or more tightly linked SNPs and to
model the unobserved haplotypes to extract information
about ancestry (Hoggart et al. 2004).

Extension to Pedigrees

Although sampling unrelated individuals is the most
efficient design for admixture mapping, many existing
collections of DNA and clinical data are based on simple
pedigrees, such as affected sib pairs. Developing ways
to exploit these collections for admixture mapping most
efficiently will require extension of current statistical-
analysis programs to deal with pedigrees. For this, we
can combine the model developed for admixture in un-
related individuals with the hidden Markov model de-
veloped for multipoint analysis of linkage in pedigrees
(Lander and Green 1987). Thus, we can specify a model
in which the variation of ancestry at marker loci on each
founder chromosome and the variation of segregation
indicators at these loci in each meiosis arise from in-
dependent Markov processes. This is straightforward in
principle but, in practice, will present some statistical and
computational challenges for implementation.

Fine Mapping Where Linkage Has Been Detected

Calculations suggest that the resolution of admixture
mapping for effects of the size that the study is powered
to detect will typically be !5 cM (Hoggart et al. 2004).
The next step will be fine mapping. Standard tests for
allelic association are not reliable for fine mapping of a
gene that contributes to ethnic variation in disease risk
because, in an admixed population, allelic associations
with the disease will typically extend over long distances.
This problem can be overcome by constructing a test for
allelic association that conditions on locus ancestry rather
than on parental-admixture proportions. Thus, for in-
stance, in an African American sample that has been
typed with ancestry-informative markers across the re-
gion under study, we can stratify the sample of gametes
by ancestry (West African or European) at the locus un-
der test, and we can test for association at alleles at this
locus with disease within each stratum. Another possible
approach to fine mapping of genes that underlie ethnic
differences in disease risk is to test for evidence of recent
selection pressure (Sabeti et al. 2002), given that, when
risk alleles at a locus have become differentially distrib-
uted between populations, this is often a consequence
of differential selection pressure, as with loci that af-
fect malaria susceptibility.

Range of Applications

Populations

Admixture mapping can be applied only when admix-
ture has been occurring at least two generations. The
most obvious applications are to populations formed by
admixture between groups originating on different con-
tinents that occurred as a result of European maritime
expansion during the past few hundred years. These in-
clude populations formed by two-way and three-way
admixture between Europeans, West Africans, and Na-
tive Americans in the Americas and populations formed
by two-way admixture of Europeans with indigenous
populations in Australia, the Pacific Islands, and polar
regions.

In other parts of the world, admixture between popu-
lations that are less genetically distant (as measured by
FST) and that are separated only by land barriers has
occurred more slowly over a longer time period. Ex-
amples include the Tibeto-Burman populations of south-
ern China, formed by admixture of northern Chinese
immigrants with indigenous populations during the past
2,600 years (Wen et al. 2004), and the Roma popula-
tions of southeastern Europe, formed by admixture of
migrants from southern Asia with indigenous Europeans
during the past 1,000 years (Gresham et al. 2001). Ad-
mixture mapping in these populations will be more chal-
lenging, because markers informative for ancestry are
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more difficult to identify when FST distances are small
and because higher marker densities are required to ex-
tract information about ancestry when admixture has
occurred over a long period of time.

Diseases and Traits

There are relatively few diseases (McKeigue 1997;
Patterson et al. 2004) for which epidemiological criteria
(based on migrant studies and the relationship of risk to
individual admixture proportions) support genetic ex-
planations for ethnic variation in risk. However, these
diseases include some leading causes of morbidity and
mortality, such as type 2 diabetes, hypertension, obesity,
coronary disease, and prostate cancer. The most wide-
spread ethnic variation in disease risk is for type 2 di-
abetes: in comparison with Europeans, high-risk groups
include Native Americans (Knowler et al. 1978), Pacif-
ic Islanders (Zimmet et al. 1977), indigenous Austra-
lians (Wise et al. 1976), South Asians (McKeigue et al.
1991), and Peninsular Arabs (Al-Mahroos and Mc-
Keigue 1998). Although the most obvious applications
of admixture mapping are to diseases for which risk
varies between ethnic groups, the approach is not nec-
essarily limited to such diseases. It is possible that loci
at which risk alleles are distributed differentially between
populations exist even when no difference in overall dis-
ease risk can be detected: for instance, when two or more
loci have effects in opposite directions.

Conclusion

Most of the technical problems in admixture mapping
have now been solved. When admixed populations and
panels of markers informative for ancestry are available,
admixture mapping can be applied to localize and, ulti-
mately, identify genes that contribute to ethnic variation
in any measurable trait. This raises some issues about
informed consent and the interests of research partici-
pants. For instance, when admixture mapping leads to
the discovery of an allele that is unique to a group de-
fined by biogeographical ancestry and that is associated
with a trait perceived as undesirable, misuse of this result
could jeopardize the interests of the group in which the
allele occurs. When studying the genetic basis of disease
susceptibility, the value of discoveries that lead to ad-
vances in the control of disease may outweigh such ob-
jections. Application of admixture mapping to traits that
are not of direct medical relevance, such as psychological
traits, is likely to be more controversial and may under-
mine people’s willingness to participate in research. In-
dividuals who donate DNA for admixture-mapping stud-
ies should be made aware that their DNA can be used
to study the genetic basis of ethnic variation in any trait
that has been measured in them. Although community
consultation is good practice in any research that de-

pends on the active participation of a population group
(see the Bioethics Resources on the Web site), a require-
ment for additional consent at the group level would
raise further difficulties (Juengst 1998; Weijer et al. 1999).
The groups under study in admixture mapping do not
necessarily correspond to those whose interests might be
jeopardized by misuse of research results, and the de-
marcation, for purposes of consent, of groups defined
by biogeographical ancestry is contrary to current notions
of equality between individuals (Juengst 1998). The abil-
ity of researchers to gain acceptance for research on the
genetic basis of ethnic variation in disease risk may depend
on how discoveries in this area are exploited.
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