Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1959 Apr;71(4):596–609. doi: 10.1042/bj0710596

Plant enzyme reactions leading to the formation of heterocyclic compounds. 3. Plant amine oxidase and the formation of pyrrolidine and piperidine alkaloids*

A J Clarke 1, P J G Mann 1
PMCID: PMC1196843  PMID: 13651102

Full text

PDF
596

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronoff S. Experiments on the Biogenesis of the Pyridine Ring in Higher Plants. Plant Physiol. 1956 Sep;31(5):355–357. doi: 10.1104/pp.31.5.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOULANGER P., COURSAGET J., BERTRAND J., OSTEUX R. Désamination de l'ornithine et de la lysine sélectivement marquées par l'azote lourd par la L-aminoacide-déshydrogénase du foie de dindon. C R Hebd Seances Acad Sci. 1957 Apr 24;244(17):2255–2256. [PubMed] [Google Scholar]
  3. BOULANGER P., OSTEUX R. Présence d'une L-diaminoacide-déshydrogénase dans le foie des Gallinacés. C R Hebd Seances Acad Sci. 1952 Mar 24;234(13):1409–1411. [PubMed] [Google Scholar]
  4. BOUTHILLIER L. P., LETELLIER G. The formation of 2-pyrrolecarboxylic acid from hydroxy-D- and allohydroxy-D-proline. Can J Biochem Physiol. 1956 Nov;34(6):1123–1129. [PubMed] [Google Scholar]
  5. CHANCE B., HERBERT D. The enzymesubstrate compounds of bacterial catalase and peroxides. Biochem J. 1950 Apr;46(4):402–414. doi: 10.1042/bj0460402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CLARKE A. J., MANN P. J. The oxidation of tryptamine to 3-indolylacetaldehyde by plant amine oxidase. Biochem J. 1957 Apr;65(4):763–774. doi: 10.1042/bj0650763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DEWEY L. J., BYERRUM R. U., BALL C. D. The biosynthesis of the pyrrolidine ring of nicotine. Biochim Biophys Acta. 1955 Sep;18(1):141–142. doi: 10.1016/0006-3002(55)90023-8. [DOI] [PubMed] [Google Scholar]
  8. Edson N. L. Ketogenesis-antiketogenesis: The influence of ammonium chloride on ketone-body formation in liver. Biochem J. 1935 Sep;29(9):2082–2094. doi: 10.1042/bj0292082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FINCHAM J. R. S. Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochem J. 1953 Jan;53(2):313–320. doi: 10.1042/bj0530313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HASSE K., MAISACK H. Die Reaktionsprodukte der enzymatischen Oxydation von Putrescin und Cadaverin. Biochem Z. 1955;327(4):296–304. [PubMed] [Google Scholar]
  11. MANN P. J. Purification and properties of the amine oxidase of pea seedlings. Biochem J. 1955 Apr;59(4):609–620. doi: 10.1042/bj0590609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MANN P. J., SMITHIES W. R. Plant enzyme reactions leading to the formation of heterocyclic compounds. 1. The formation of unsaturated pyrrolidine and piperidine compounds. Biochem J. 1955 Sep;61(1):89–100. doi: 10.1042/bj0610089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MANN P. J., SMITHIES W. R. Plant enzyme reactions leading to the formation of heterocyclic compounds. 2. The formation of indole. Biochem J. 1955 Sep;61(1):101–105. doi: 10.1042/bj0610101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MEISTER A., BUCKLEY S. D. Pyridine nucleotide-dependent reduction of the alpha-keto acid analogue of lysine to L-pipecolic acid. Biochim Biophys Acta. 1957 Jan;23(1):202–203. doi: 10.1016/0006-3002(57)90308-6. [DOI] [PubMed] [Google Scholar]
  15. MEISTER A. Enzymatic transamination reactions involving arginine and ornithine. J Biol Chem. 1954 Feb;206(2):587–596. [PubMed] [Google Scholar]
  16. MEISTER A., RADHAKRISHNAN A. N., BUCKLEY S. D. Enzymatic synthesis of L-pipecolic acid and L-proline. J Biol Chem. 1957 Dec;229(2):789–800. [PubMed] [Google Scholar]
  17. MEISTER A. The alpha-keto analogues of arginine, ornithine, and lysine. J Biol Chem. 1954 Feb;206(2):577–585. [PubMed] [Google Scholar]
  18. MUNIER R., MACHEBOEUF M. Microchromatographie de partage sur papier des alcaloides et de diverses bases azotées biologiques. III. Exemples de séparations de divers alcaloïdes par la technique en phase solvante acide (familles de l'atropine, de la cocaine, de la nicotine, de la sparteine, de la strychnine et de la corynanthine). Bull Soc Chim Biol (Paris) 1951;33(7):846–856. [PubMed] [Google Scholar]
  19. RADHAKRISHNAN A. N., MEISTER A. Conversion of hydroxyproline to pyrrole-2-carboxylic acid. J Biol Chem. 1957 May;226(1):559–571. [PubMed] [Google Scholar]
  20. REINOUTS VAN HAGA P. The biogenesis of tropane alkaloids. Biochim Biophys Acta. 1956 Mar;19(3):562–562. doi: 10.1016/0006-3002(56)90489-9. [DOI] [PubMed] [Google Scholar]
  21. SCHWEET R. S., HOLDEN J. T., LOWY P. H. The metabolism of lysine in Neurospora. J Biol Chem. 1954 Dec;211(2):517–529. [PubMed] [Google Scholar]
  22. SMITH M. E., GREENBERG D. M. Characterization of an enzyme reducing pyrroline-5-carboxylate to proline. Nature. 1956 Jun 16;177(4520):1130–1130. doi: 10.1038/1771130a0. [DOI] [PubMed] [Google Scholar]
  23. SMITH M. E., GREENBERG D. M. Preparation and properties of partially purified glutamic semialdehyde reductase. J Biol Chem. 1957 May;226(1):317–327. [PubMed] [Google Scholar]
  24. STETTEN M. R. Mechanism of the conversion of ornithine into proline and glutamic acid in vivo. J Biol Chem. 1951 Apr;189(2):499–507. [PubMed] [Google Scholar]
  25. Vogel H. J., Bonner D. M. ON THE GLUTAMATE-PROLINE-ORNITHINE INTERRELATION IN NEUROSPORA CRASSA. Proc Natl Acad Sci U S A. 1954 Aug;40(8):688–694. doi: 10.1073/pnas.40.8.688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. YURA T., VOGEL H. J. On the biosynthesis of proline in Neurospora crassa: enzymic reduction of delta1-pyrroline-5-carboxylate. Biochim Biophys Acta. 1955 Aug;17(4):582–582. doi: 10.1016/0006-3002(55)90423-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES