Skip to main content
. 2025 Apr 3;15:11488. doi: 10.1038/s41598-025-95492-y

Table 2.

Performance comparison of AFIENet pre-trained on MacBERT (%).

Model name THUCNews ChnSentiCorp ChemicalPro
Accuracy F1 Accuracy F1 Accuracy F1
MacBERT 94.56 94.56 90.60 90.60 88.57 88.49
AFIE-TextCNN 97.55 97.55 88.64 88.65 88.24 88.20
MacBERT + AFIE-TextCNN 97.91 (±0.3) 97.95 (±0.3) 89.97 (±0.2) 89.95 (±0.2) 88.68 (±0.1) 88.68 (±0.1)
AFIE-DPCNN 93.62 93.59 86.05 86.09 87.66 87.62
MacBERT + AFIE-DPCNN 94.32 (±0.2) 94.33 (±0.2) 87.41 (±0.1) 87.45 (±0.1) 88.56 (±0.3) 88.56 (±0.3)
AFIE-LSTM 91.60 91.56 85.45 85.12 84.52 84.42
MacBERT + AFIE-LSTM 92.12 (±0.2) 92.11 (±0.2) 85.97 (±0.1) 85.99 (±0.1) 85.37 (±0.2) 85.36 (±0.2)

AFIE-* indicates that both GE-Net and LA-Net in AFIE-Net use * as the feature extractor.

Models AFIE - * and MacBERT + AFIE - * serve as a comparison group. The result of the group with better experimental performance is also highlighted in bold.