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ABSTRACT

The problem of detecting DNA motifs with functional
relevance in real biological sequences is difficult due
to a number of biological, statistical and computa-
tional issues and also because of the lack of know-
ledge about the structure of searched patterns. Many
algorithms are implemented in fully automated pro-
cesses, which are often based upon a guess of input
parameters from the user at the very first step. In this
paper, we present a novel method for the detection
of seeded DNA motifs, composed by regions with a
different extent of variability. The method is based on
a multi-step approach, which was implemented in a
motif searching web tool (MOST). Overrepresented
exact patterns are extracted from input sequences
and clustered to produce motifs core regions, which
are then extended and scored to generate seeded
motifs. The combination of automated pattern dis-
covery algorithms and different display tools for the
evaluation and selection of results at several analysis
steps can potentially lead to much more meaningful
results than complete automation can produce.
Experimental results on different yeast and human
real datasets proved the methodology to be a prom-
ising solution for finding seeded motifs. MOST web
tool is freely available at http://telethon.bio.unipd.it/
bioinfo/MOST.

INTRODUCTION

Transcriptional control mechanisms have been investigated in
different organisms for at least three decades. Nevertheless,
our understanding of how regulatory information is encoded
in DNA sequence is still fragmentary. Even knowing the
sequence of region(s) controlling the expression of a gene,
it is very difficult to formulate reliable predictions about its
tissue-specific or developmental stage-specific expression (1).

Since comparative genome analysis revealed a surprising
constancy in genetic content among Eukaryotes, it has been

recently suggested that biological complexity of organisms
could arise more from increased elaboration of gene expres-
sion regulation than from an increased number of genes
in genomes (2). Given the combinatorial nature of transcrip-
tion regulation, with an estimation of as many as 3000
transcription factors in humans, the regulatory complexity
of the human genome is considerable. On the other hand,
experimental studies of transcriptional regulation are time
consuming and, in general, focused on single genes. In
the post-genomic era, a major challenge is represented by
deciphering expression regulation of thousands of annotated
genes in genomes, which could be achieved by combining
computational analysis of large-scale expression data and
functional information on genes with knowledge of complete
genomic sequences.

Gene expression is controlled by specific interactions
between regulatory proteins, transcription factors and short
sequences in the regulatory regions of genes to which they
bind. Control regions are modular and the regulatory output of
a sequence depends on the specific combination of its elements
as well as, partially, on the order and on the orientation in
which they occur.

The search for common elements in upstream regions of
genes known to have common biological function and/or
expression could be a valuable tool for the discovery of
novel transcription factor binding sites. It could be reasonably
assumed that genes with similar expression are frequently
co-regulated and that genes with related function are often
similarly expressed and, possibly, regulated in a coordinate
way. Moreover, it is known that, in general, tissue-specific or
developmental stage-specific gene expression is regulated by a
relatively small number of transcription factors. Available data
on gene expression and function could be used to select sets
of genes putatively co-regulated, which could be searched for
common sequence elements in their regulatory regions, by
pattern discovery techniques.

The problem of identifying novel regulatory short DNA
sequences (‘patterns’) within DNA sequences is not trivial.
Given a set of k unaligned sequences, a distance measure d and
a threshold value t for d, a typical problem in pattern discovery
is to find all patterns that occur in at least q sequences out of
k within distance t from the sequence (3). These patterns are
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conserved but not exact, since they may include nucleotide
mutations, insertions or deletions.

Statistical measures of overrepresentation, such as Z-scores,
have also been proposed to find candidate motif patterns
within and among sequences. For exact patterns, an optimal
linear time and space solution for the extraction of surprising
solid words (i.e. no mismatches or insertions or deletions are
allowed) has been achieved by the annotation of a suffix tree
with expected and counted number of occurrences (4,5).

Recently, algorithms based on dynamic programming have
been proposed, to compute expectation of patterns with mis-
matches, with a fixed or variable length, to relax the solid
words constraint (6). Another Z-score-based algorithm is
implemented in YMF (7), where flexibility of the pattern is
achieved by considering a broader alphabet including also
degenerate symbols.

Comparison of some different pattern discovery approaches
(8) showed that the structure of the planted motif plays an
important role in the performance of the algorithms and that
there is room for consistent improvement for pattern discovery
software. In fact, most programs perform better on synthetic
than on real sequences and are more efficient when analysing
sequences of yeast rather than of higher Eukaryotes (9).

Regulatory sequence elements are in general from 5 to 25 nt
long (3,10), often separated by unconserved sequences. A
recent systematic analysis of consensus sequences describing
sequence elements binding transcription factors limited to the
mammalians and vertebrates subsets of TRANSFAC data (11)
showed that the length of the most frequent motifs was 12 bp.
As already known (10), it also showed that different regulatory
elements binding the same transcription factor are very similar
but not identical and that variable positions are more rare in
the central part of regulatory elements. More in detail, 80%
of considered motifs showed only invariant positions in their
central regions and no central asymmetry was observed in the
distribution of variable positions (12).

A shortcoming of pattern discovery approaches could be
found in the a priori establishment of the ‘quorum’ and of
the search parameters, such as pattern length and number of
allowed wildcards or distance of occurrences from the model.
In addition, it is well known that patterns with biological
significance could be subtle, with a ‘borderline’ statistical
significance (13). Increasing the distance and/or decreasing
the quorum produces the output of very large number of
false positives and, at the end, too many results. A promising
solution to the problem of output explosion could be the use of
biological knowledge and human judgement before, during
and after applying pattern discovery algorithms. This could
be achieved with a flexible method integrating different pat-
tern discovery procedures to be completed step by step in
an interactive way. The method presented in this paper, and
implemented in the web tool MOST (motif searching web
tool), is based on several analysis steps leading to extraction
and visualization of putative regulatory motifs.

MATERIALS AND METHODS

Seeded motifs

Regulatory sequence motifs are often composed by regions
with different levels of variability. We define a seeded motif as

a motif in which it is possible to identify at least two regions
with a different level of variability. In particular, in this paper
we focus on symmetrical distributions, hence to regulatory
motifs that are characterized by a core region (central, less
variable) and two side regions (more variable). The motif M
can then be seen as a composition, as follows:

M ¼ s1cls2

where cl is the core region of length l, while si, i ¼ 1, 2 are
the side regions of length l0i. In principle, l01 can differ from l02,
but for the sake of simplicity we will consider them to be
equal in the following sections. To identify seeded motifs,
we developed a multi-step approach.

Identification of surprising exact patterns

The first step consists of the identification of exact patterns
(solid words). A word is considered surprising if its score,
computed according to some selected scoring function, is
greater than a given threshold. The scoring function used
in the evaluation of surprise measures the difference between
counted and expected frequencies of words among sequences.
In particular, we used the following scores:

z1 wð Þ ¼ Occobs wð Þ
Occexp wð Þ

z2 wð Þ ¼ Seqobs wð Þ
Seqexp wð Þ

z3 wð Þ ¼
Seqobs wð Þ � Seqexp wð Þ
� �2

Seqexp wð Þ

where Seqobs and Seqexp are the counted and expected number
of sequences, respectively, in which the word w occurs, and
Occobs and Occexp are the counted and expected number of
occurrences in the considered group of sequences.

Building the motif core

Motifs core regions are weakly variable but not necessarily
completely invariant. Thus, surprising solid words extracted
from the input sequences are grouped in clusters of similar
words. This is achieved by a ‘k-means’ like clustering algo-
rithm. The measure of similarity is given by the likelihood of
belonging to the given cluster. Each cluster is represented by
the profile matrix of the words that belong to the cluster. We
indicate with wi[pos] the symbol in position pos of word wi and
with Mj [symbol][position] the value of the profile matrix of
cluster Cj in correspondence of a given symbol and position.

The probability for a word wi to belong to a given cluster Cj

is calculated according to the following metric:

Tij ¼
Pl

pos¼1 Mj wi pos½ �ð Þ pos½ �
l

that is a measure of how likely is to see a symbol in any
position of the word wi in the corresponding position of
the cluster Cj profile. If the value of Tij is greater than a
given threshold then the word can be assigned to all the
clusters for which the relation holds, or, alternatively, to the
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cluster with maximum probability, depending on the user
preference.

To evaluate the quality of the clustering the square-error
criterion is used:

E ¼
Xk

j�1

X
w2Cj

jw � mij2

where E is the sum of the square error for all the words
considered in each cluster. The term |w�mi| needs some
clarification. Dealing with words, we identify the mean of
the cluster with the profile. So the distance between a word
and the centre of the cluster it belongs to is given by the
complement to 1 of the probability that the word belongs
to the cluster: 1 � Tij. The process iterates until the error
converges or a maximum number of iterations is reached.

Side regions selection

Once the core motifs have been identified, the contiguous
regions lying at the left and right side of them are taken
into consideration for further processing. As expected, by
simply considering all the possible extensions, consensus of
extended motif would show a structure like NNNN-CoreCon-
sensus-NNNN. To remove the noise, we select a subgroup of
extended words producing an ‘optimal’ motif consensus
sequence, according to some heuristics. Two scoring func-
tions, called Fixed Value function (FV) and MultiValue
(MV) function, were developed, which are both based on
the observation that the core regions of functional motifs
are often much more conserved than boundary regions.

The weight assigned to each position i is a function of both
the nucleotide that occurs at that position i (e.g. A) and its
location in the extended word (e.g. 2 nt from the core region).

Let w ¼ w1w2. . .wm, with wi 2 S, be an extended word
of the cluster Ck. The score of the cluster Ck is produced as
follows. To the most frequent nucleotide symbol in each posi-
tion (e.g. A) is assigned a maximum weight maxi, which
depends on the localization of the position in the extended
word. The second most frequent nucleotide is given a smaller
value, and so on.

Let fi(s) be the function assigning a fraction of the maximum
weight to each nucleotide (symbol s of the alphabet) depend-
ing on its frequency with respect to frequency of the other
symbols at the same position i. For example, if A is the most
frequent symbol at position 5, and C the second most fre-
quent symbol at position 5, we could have f5(A) ¼ 1.0 and
f5(C) ¼ 0.85. In general, the weight corresponding to a posi-
tion i is given by:

weight wi‚ ið Þ ¼ f i wið Þmaxi

For positions in the core region the value of maxi is equal to 1.
The two scoring functions differ in the way in which the
maximum weight is assigned to lateral positions.

The FV function assigns a unique maximum value for all
side region positions, which is given by a fixed positive value
lower than 1.

maxi ¼
1 i 2 core

k < 1 i 2 side

�

The MV function assigns to each position in lateral regions a
maximum value lower than 1, which decreases with distance
from the core region:

maxi ¼
1 i 2 core

h ið Þ i 2 side

�

where h(i) < h(i + 1) for left side regions, and h(i) > h(i + 1)
for right side regions.

For a given word w, belonging to a given cluster, we
calculate the global score:

score ¼
Xm

i¼0

weight wi‚ ið Þ

For each cluster Cj we compute the maximum score maxCj

that can be achieved by a word that perfectly matches the
consensus string of the cluster. The threshold used to select
the words is a fraction of this maximum score:

Tj ¼ p · max Cj

The parameter p is a percentage value that the user will input at
the appropriate step. If the score value is greater than a given
threshold, then the extended word is kept, otherwise it is
discarded.

RESULTS

MOST web tool

We developed a multi-step semi-automatic tool for the iden-
tification of seeded motif (MOST; http://telethon.bio.unipd.it/
bioinfo/MOST/). MOST was implemented mainly using Java
programming language and Java Servlet technology, but it also
includes C++ and Perl modules.

For each of the three main phases of analysis of MOST
(exact patterns extraction, clustering, extension and scoring),
different parameters could be set. In addition, at different
points the user is allowed to browse results and to select
those that seem interesting and promising for subsequent ana-
lysis. This is achieved by different tabular representations of
results as well as by a graphical interface for visualization of
motifs positions in the input sequences. MOST architecture is
shown in Figure 1.

Solid word extraction is the first step of the analysis, and it is
critical for the success of motif detection. In our implementa-
tion, we used the Verbumculus Software Tool (5) developed in
C++. Verbumculus is based on a suffix tree data structure that
makes possible to extract overrepresented exact patterns from
a set of input sequences. The annotation of the tree with the
calculated values of expectation and variance is performed in
overall linear time. For a detailed description of the algorithm,
we refer to the cited bibliography (4,5). For our purposes we
used a simplified version of Verbumculus, by limiting the
choice of scores to those related to multiple sequences ana-
lysis, that are the most significant in this context, and extract-
ing only fixed length words. The threshold value is a critical
parameter, as it affects the following processing phases, and
must be chosen carefully. The results of the first step are
summarized in a table of solid words. It is possible to sort
the results according to score, expected and observed number
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of occurrences, and expected and observed number of
sequences in which words occur. The order of the results will
be crucial in the initialization of the clusters in the next step.

The third step requires the user to input clustering paramet-
ers, such as number of surprising words to cluster, maximum
number of clusters and threshold for assigning a word to a
cluster. Moreover, it must be selected whether a specific word
can be assigned to several clusters or exclusively to a single
cluster. If the number of words to consider (Nmax) is smaller
than the output size of the previous step, then only the first
Nmax words will be clustered. The maximum number of
clusters sets the size of the output.

The results of the clustering phase are shown in a summary
table reporting, for each cluster: profile, total number of occur-
rences, total number of sequences in which at least one cluster
word appear and core motif consensus quality. By clicking on
a motif consensus sequence, details related to the correspond-
ing cluster are displayed in another window (cluster profile
matrix, list of words included in the cluster and, for each solid
word, number of occurrences and number of sequences in
which the word is found). In order to help the user to appro-
priately select thresholds and focus on the most interesting
clusters, we developed a tool to visualize the position in the
sequences of up to 10 different clusters. We limited the num-
ber of concurrent visualizations to avoid the confusion that
could arise from the usage of several similar colours. The
positions at which the words of the considered cluster occur
in the input sequences are represented by coloured triangles
placed at the beginning of each occurrence. Visualization in
both direct and reverse strand is allowed. Results can be sorted
by consensus quality, number of occurrences, number of
sequences in which the core motif occurs and number of
strings pertaining to the core motif cluster. Some results,
which are considered noise or not interesting, can be deleted.

They will not be considered in the further analysis step of
motif cores extension and selection.

Parameters for the extension of core motifs and selection of
extended motifs must be set, namely the single side extension
length, the function to be used to score lateral nucleotide
positions and the threshold percentage of the maximum
score that has to be reached by a word in order to be kept
in the cluster. A summary table gives then information about
extended motifs: profile matrix, number of strings included in
the group determining the motif, number of occurrences of
extended motif, number of sequences in which motif occurs
and consensus quality. Motif consensus sequence is linked to
detailed information about motif composition. Sorting and
visualization of motifs location is also possible at this final
stage.

Benchmark tests

Experimental evaluation of the power of the method was
conducted with different datasets and under various testing
conditions, in order to study the influence of specific search
parameters on results. Different groups of promoter sequences,
for which it is known which regulatory signals should be
detected, were used as positive control datasets. In particular,
we analysed with MOST:

(i) a public yeast benchmark dataset, developed by Tompa
et al. (9) for a systematic assessment of pattern discovery
tools; each of the eight groups of sequences contained
some instances of a given signal.

(ii) a custom produced dataset, consisting in a group of 37
human promoter sequences, subgroups of which contained
some instances of one of nine different signals (Mixed
signals dataset).

Yeast datasets. We considered eight yeast datasets, construc-
ted by Tompa et al. (9), such as groups of sequences contain-
ing known instances of signals at known positions. Datasets
included three different types of sequences: three groups of
real yeast genomic promoter sequences containing known
transcription factors binding sites (yst04r, yst05r and
yst08r), four groups of randomly chosen yeast genomic pro-
moter sequences in which the binding sites were planted
(yst01g, yst02g, yst06g and yst09g) and one group of
sequences randomly generated according to a Markov chain
of order 3, constructed from yeast promoter sequences, in
which the binding sites were planted (yst03m). We analysed
such datasets by using the following conditions: solid words of
6 bp represented in a number of sequences at least twice than
expected were searched in both strands of DNA sequences
[z2(w) score set to 2.0]. Obtained solid words were clustered
by using the algorithm assigning a word to a unique cluster,
and the similarity threshold was set to 80%. Resulting clusters
were used as input to the ‘extension and selection’ phase, for
which the MV function was adopted with a 95% scoring
threshold. The analysis was repeated by using the same set-
tings but with the 80% scoring threshold for the MV function
of the ‘extension and selection’ phase.

For each dataset (e.g. yst01g: nine sequences of 1000 bp
containing seven instances of the yst01 signal), the sensitivity
of each experiment (proportion of signal instances detected)
and of different phases has been evaluated. First of all we
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Figure 1. Multi-Step architecture of MOST.
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searched, in the list of overrepresented extracted solid words,
all substrings of length six of the known instances of the signal
included in the sample of promoters. A signal instance has
been considered detected in the list of overrepresented solid
words if at least one of its substrings was contained in the list.

Then, in order to evaluate how well extracted motifs rep-
resent known signal, we recorded the proportion of known
instances of the signal represented in ‘core motifs’ clusters
and in ‘extended motifs’. Moreover, for both the clustering and
the ‘extension and selection’ phases, the maximum number
of signal instances represented in a unique cluster (maximal
cluster) was recorded, together with the number of maximal
clusters. Results of MOST evaluation on yeast datasets are
reported in Table 1.

In average, 83% of signal instances were represented in
extracted solid words and then in clusters corresponding to
core motifs, also when adopting the quite stringent threshold
for the overrepresentation score (2.0). It should be noticed that,

for each dataset, among different clusters obtained, it exists
an unique cluster, corresponding to a motif model, containing
words representing in average the 63% of signal instances (for
four out of eight datasets, in the maximal cluster more than
71% of signal instances are represented). After the ‘extension
and selection’ phase for generation of extended seeded motifs,
the number and the dimension of clusters slightly decreases
and the average sensitivity associated to the maximal cluster
decreases to 0.42 and to 0.54 for the 95% and the 80% thresh-
olds, respectively. This behaviour was expected for signals
with short instances, such those in Yeast benchmark dataset.
Nevertheless, these experiments showed that short signals can
be quite efficiently found by MOST already after the comple-
tion of the clustering phase which leads to the extraction of
core motifs.

Mixed signals dataset. A group of human gene promoter
sequences containing each one at least one transcription factor

Table 1. Results of MOST evaluation on yeast datasets

Dataset Yst01g yst02g yst03m yst04r yst05r yst06g yst08r yst09g Total Average

Number of sequences 8 4 8 6 3 7 11 16
Sequence length 1000 500 500 1000 500 500 1000 1000
Number of known signals 6 5 18 7 4 7 14 13 47

Phase 1: solid words extracted 65 255 286 162 337 214 88 40
Phase 2: clusters

(80% similarity threshold)
50 126 141 84 157 111 46 31

Phase 3A: ext. clusters
(95% threshold for
the MV function)

50 123 137 81 154 106 44 29

Phase 3B: ext. clusters
(80% threshold for
the MV function)

50 126 141 84 157 110 46 31

Phase 1: signals found
in solid words

2 5 14 6 4 7 10 12 38

Phase 2: signals found
in clusters

2 5 14 6 4 7 10 12 38

Phase 3A: signals found
in ext. clusters

0 5 10 7 3 5 7 6 30

Phase 3B: signals found
in ext. clusters

1 5 16 7 4 7 9 11 40

Phase 1 0.33 1.00 0.78 0.86 1.00 1.00 0.71 0.92 0.83
Phase 2 Sensitivity 0.33 1.00 0.78 0.86 1.00 1.00 0.71 0.92 0.83
Phase 3A 0.00 1.00 0.56 1.00 0.75 0.71 0.50 0.46 0.67
Phase 3B 0.17 1.00 0.89 1.00 1.00 1.00 0.64 0.85 0.84

Phase 2
Maximum number of

signals per cluster
1 4 9 5 3 6 8 8 28

Number of maximal clusters 2 1 1 1 1 1 1 1
Sensitivity 0.17 0.80 0.50 0.71 0.75 0.86 0.57 0.62 0.63
Phase 3A
Maximum number of

signals per cluster
0 1 5 4 3 5 4 3 18

Number of maximal clusters - 11 3 2 1 1 1 4
Sensitivity 0.00 0.20 0.28 0.57 0.75 0.71 0.29 0.23 0.42
Phase 3B
Maximum number of

signals per cluster
1 3 8 3 3 6 4 7 24

Number of maximal clusters 1 1 1 3 1 1 2 1
Sensitivity 0.17 0.60 0.44 0.43 0.75 0.86 0.29 0.54 0.54

Datasets are identified by the names originally used by Tompa et al. For each dataset, the total number of sequences included the length of promoter sequences,
and the number of signals included is reported. Rows from four to seven describe results obtained by MOST different analysis steps and, for the third step, with
different conditions. The following eight rows show the number and the proportion (sensitivity) of known signals per dataset represented in results of the previously
described analysis steps. In the last part of the table, the number and the proportion (sensitivity) of known signals represented in the maximal cluster are shown, for
each dataset.
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binding site, which specific activity has been experiment-
ally proven (as recorded in TRANSFAC database), has
been analysed by MOST as positive control dataset. Promoter
sequences were localized after the most probable transcription
start site prediction, according to spliced expressed sequence
tag data and Acembly gene boundaries.

In total, 37 genomic sequences of 550 bp have been con-
sidered, containing 45 known transcription factors binding
elements, pertaining to 8 different transcription factors
(AP-1, c-Myc, CREB, CRE-BP1, CTF, E2F, E2F-1 and
HIF-1) (Table 2). Two couples of transcription factors recog-
nized similar sequences (CREB and CRE-BP1, E2F and
E2F-1, respectively). In the 37 sequences, the number of
known instances per signal ranged from four to nine; the
minimum length of signal instances was 6, the average was
8.5 and the mode 8.

We evaluated the sensitivity of the first step of MOST, with
different measures and conditions adopted for the extraction
of overrepresented solid words from input sequences. The
z1(w) score (observed occurrences/expected occurrences) and
the z2(w) score (observed sequences/expected sequences) were
tested. Experiments were conducted with different stringency
of the corresponding threshold, which ranged from 1.0 to 3.0
(Table 3).

The sensitivity has been evaluated again as the proportion
of signal instances detected and was calculated for each given
signal or for the whole group of signals. We calculated the
sensitivity of MOST first step under different conditions over
the whole group of mixed signals. Results of these experiments
are reported in Table 3. The value of 0.91 was reached, when
the z1(w) score was adopted and the threshold was set to 1,
producing the extraction of 1164 six nucleotides long solid
words represented at least as expected in the considered
promoter sequences.

The results of the second analysis phase of MOST were then
considered in order to evaluate how well clusters of solid
words (extracted motifs) represent specific groups of instances
of given signals. The sensitivity was calculated analytically
for each of the nine signals.

The clustering has been performed under different condi-
tions starting from the previously cited group of 1164 solid
words. Cluster analysis was conducted by adopting the algo-
rithm assigning words to one or more individual clusters.

In different experiments, the similarity threshold was set to
60 and 80%, without using an upper bound for the number
of clusters, thus obtaining 55 and 272 clusters, respectively.
Results of clustering experiments consist of sets of words,
each corresponding to an extracted motif, associated to a
matrix of nucleotides frequencies in motif positions, and to
a consensus sequence. For each experiment, the maximum
number of known instances of each specific signal (e.g.
AP-1 group of nine signal instances) represented in a unique
cluster has been recorded (Table 4). The maximum number of
sequences represented in a single cluster, over the total number
of sequence elements, pertaining to the same factor and found
in the 1164 overrepresented words dataset (resulting from
the phase 1) was obtained. The average sensitivity resulted
0.85 when an 80% clustering threshold was adopted, whereas
it was 0.56 with a 60% similarity threshold. Results obtained
with the 80% threshold (272 clusters) are quite good: more
than 85% of sequence elements pertaining to a specific tran-
scription factor are represented in at least one of the obtained
clusters.

Solid words pertained to these 272 core motifs clusters were
further considered and used as input for the third analysis
phase. The ‘extension and selection’ analysis was performed
by extending selected motif cores of 1 nt on each side both
with a 95% and with a 80% score threshold, adopting the MV
extension function. The maximum number of sequences rep-
resented in a single ‘extended motif’ cluster, over the total
number of sequence elements, pertaining to the same factor
and found in the 1164 words overrepresented solid words
dataset, was calculated. The average of obtained values was
0.58 for experiments with the 95% threshold and 0.68 when
an 80% threshold was applied.

Table 2. Description of transcription factors binding sites, whose activity was

experimentally proven, represented in the group of human promoter sequences

composing the Mixed signals benchmark dataset

Transcription
factor

Sequence elements
Number Average

length
Minimum
length

Maximum
length

AP-1 9 9.6 7 17
c-Myc 4 8.0 6 14
CREB 4 8.5 8 10
CRE-BP1 7 8.3 7 10
CTF 4 6.8 6 7
E2F 5 9.0 8 12
E2F-1 5 9.8 8 12
HIF-1 7 7.4 6 8

For each transcription factor, the number of binding sites in the considered group
of sequences, their average, minimum and maximum length are reported.

Table 3. Results of MOST evaluation on Mixed signals dataset

No. of 6 bp words TP FN Sensitivity

Occobs/Occexp

1.0 1164 41 4 0.91
1.1 1152 41 4 0.91
1.3 929 37 8 0.82
1.5 710 36 9 0.80
1.7 560 35 10 0.78
2.0 382 29 16 0.64
2.2 334 27 18 0.60
2.5 221 27 18 0.60
3.0 109 4 41 0.09
Seqobs/Seqexp

1.0 1173 34 11 0.76
1.1 999 34 11 0.76
1.3 773 34 11 0.76
1.5 579 34 11 0.76
1.7 469 28 17 0.62
2.0 246 21 24 0.47
2.2 293 18 27 0.40
2.5 102 4 41 0.09
3.0 48 1 44 0.02

Experiments on MOST first step: identification of surprising words. The sensi-
tivity of MOST first phase, carried out with different overrepresentation
measures, was evaluated. All the 6 bp sequences representing known binding
sites, or all of the substrings of binding sites whose length exceeded six, were
searched in the list of 6 nt strings extracted as overrepresented, according
to different measures and different thresholds (first column). The sensitivity
has been calculated as the number of known sites represented in the list over the
total number of known sites [sensitivity ¼ TP/(TP+FN); TP, true positives;
FN, false negatives].

e135 Nucleic Acids Research, 2005, Vol. 33, No. 15 PAGE 6 OF 8



DISCUSSION

For the development of our methodology and software, we
introduced a model of seeded sequence motif. We focused on
motifs with a central region showing low variability and two
more variable lateral regions. This choice, motivated by bio-
logical knowledge, should facilitate the discovery of sequence
motifs with true biological function in the regulation of gene
expression. The surprising solid words dataset that is produced
by the first sieving step consists of a subset of words that are
overrepresented in the DNA sequences under consideration,
according to the selected measure and thresholds. The size of
this dataset deeply influences the results of clustering and
obtained core motifs. It is expected that, when analyzing
appropriate groups of promoter sequences, the sharing of
solid words among different promoters is significantly higher
than in random sequences of the same composition and length.
Actually the user could do different attempts of building a
set of surprising solid words by different measures. It is also
possible to extract all solid words appearing in the considered
sequences at least exactly as expected and to postpone to the
following analysis steps the identification of most interesting
words. In fact, the obtained surprising solid words can be
ordered according to different parameters and a selected subset
of surprising words can be used as input for the following
steps. In the MOST web tool implementation, the maximum
number of extracted solid words is bounded by an internal
limit on the maximum size of the output file. Properties of
core motifs obtained by clustering solid words may be deeply
modulated according to input size (number of words clustered)
and to its characteristics, to the setting of clustering parameters
(maximum number of clusters, word assignment to single or
multiple clusters) and to the selected similarity threshold. The
group of such obtained core motifs could be further analysed in
order to select a ‘particularly interesting’ subset of core motifs
to be used for the following analysis phases. The selection
could be performed on the basis of different properties of

motifs (e.g. motif occurrences, consensus quality, sequence
composition, absolute and relative position in the promoters)
by exploiting the provided facilities for the manipulation of
clusters, allowing reordering and deletion of core motifs.
Moreover, graphical display of motif occurrences in input
sequences can be used to identify in which sequences they
are found and may facilitate the inspection of relative positions
of different elements. Analysis can be possibly repeated with
different settings or on a more homogeneous dataset, such as a
group of promoters sharing one or more specific motifs. The
extension and scoring phase allows to identify, from each
group of solid words representing a core motifs, a restricted
number of extended words which optimize the consensus
sequence of the extended motif. Identified motifs generally
are less variable in the core region but, depending on the
settings of the extension and scoring phase, homogeneously
variable motifs or motifs with poorly variable side regions
could also be identified.

Our testing of performances of the method on different
benchmark datasets gave quite positive results. The first data-
set consisted in eight different groups of yeast sequences
of length ranging from 500 to 1000 bp, containing known
instances of signals at known positions. In this way, we tested
the efficiency of MOST in finding signals of different strength
in more or less numerous groups of promoter sequences. The
second benchmark dataset, based on real human sequences,
was designed to be fairly representative of those possibly
analysed by future MOST users. In particular, genomic
sequences of gene promoters were selected such that each
of them contained at least one element known to bind one
of the nine different transcription factors, by experimental
evidence. Promoter sequences were localized by TSS anno-
tation via integration between information on alignment
between genomic DNA and cDNA, which is the most widely
used system and which was proven to lead to the identification
of reasonably well functional promoters (14). The Mixed
signals benchmark dataset comprised sequences containing

Table 4. Results of MOST evaluation on Mixed signals dataset

Clustering Transcription Known instances
similarity threshold factor Maximum

per cluster
Phase 1
found

Total Maximum per cluster/
phase 1 found

Maximum per
cluster/total

80% AP-1 7 8 9 0.88 0.78
C-MYC 4 4 4 1.00 1.00
CREB 3 4 4 0.75 0.75
CREB-BP1 6 6 7 1.00 0.86
CTF 3 4 4 0.75 0.75
E2F 4 4 5 1.00 0.80
E2F-1 3 5 5 0.60 0.60
HIF-1 5 6 7 0.83 0.71
Total 35 41 45 Average 0.85 Average 0.78

60% AP-1 1 8 9 0.13 0.11
C-MYC 1 4 4 0.25 0.25
CREB 3 4 4 0.75 0.75
CREB-BP1 7 6 6 1.00 0.86
CTF 2 4 4 0.50 0.50
E2F 3 4 5 0.75 0.60
E2F-1 4 5 5 0.80 0.80
HIF-1 2 6 7 0.33 0.29
Total 23 41 45 Average 0.56 Average 0.52

Experiments on MOST second step: clustering of exact patterns for building the motif core. In two clustering experiments, core motifs were built by grouping 1164
surprising words with similarity threshold set to 60 and 80%, respectively. The number of known sequence elements pertaining to each specific group (e.g. AP-1 group
of nine elements) represented in obtained clusters is reported.
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binding sites for different transcription factors. Moreover,
binding sites were of various lengths, and more than one
known binding site is included in some sequences. Different
groups of sequences containing at least one instance of a
specific motif were merged with other groups of sequences
containing instances of different motifs, thus obtaining that
positive control signals were dispersed and appeared only in a
fraction of sequences under consideration.

A limitation of some motif extraction tools is that they
request too many parameters as input of a single step, and
their output is determined mostly on the basis of this large
number of parameters. Changing one parameter value means
that complete processing has to be performed again. Hence,
the possibility to browse partial results and refine the analysis
should save considerable amount of time and may allow the
production of more meaningful results. Based upon the above
considerations, a modular architecture was the natural choice
for the design of MOST. Moreover, the modular design of
MOST makes easy the possible extension of the tool in the
future, or the modification of the implementation or the set-
tings of a specific module. In particular, more scoring func-
tions are actually under study and will be possibly added in the
future. The possibility to merge clusters or delete words within
each cluster could also be considered.
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