Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982 Oct;331:537–546. doi: 10.1113/jphysiol.1982.sp014389

Amino acid efflux from rabbit ileal enterocytes.

J Y Paterson, F V Sepúlveda, M W Smith
PMCID: PMC1197766  PMID: 7153918

Abstract

1. A method is described for converting tissue concentrations of amino acid, determined autoradiographically using sections of rabbit distal ileum, into measurements of total uptake. 2. Using this method the quantity of amino acid recovered from the villus core following short-term incubation with tritiated amino acid was shown to be directly related to the intra-enterocyte concentration of amino acid determined at a site immediately adjacent to the basal membrane. No evidence was obtained for saturation of efflux across the basal membrane of the enterocyte. 3. Amino acid efflux from the mucosa to the villus core, calculated for a constant intra-enterocyte concentration of substrate, was found to be greater for methionine and leucine than for alanine, serine, lysine or arginine. 4. The distribution of amino acids within the core of the villus following efflux from the enterocyte could not be explained by diffusion alone. 5. It is suggested that quantitative autoradiography can be used as an alternative method to study mechanisms responsible for amino acid movement across the basal membranes of enterocytes. Advantages and limitations of the technique are discussed.

Full text

PDF
538

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Danisi G., Tai Y. H., Curran P. F. Mucosal and serosal fluxes of alanine in rabbit ileum. Biochim Biophys Acta. 1976 Nov 11;455(1):200–213. doi: 10.1016/0005-2736(76)90164-4. [DOI] [PubMed] [Google Scholar]
  2. Hajjar J. J., Khuri R. N., Curran P. F. Alanine efflux across the serosal border of turtle intestine. J Gen Physiol. 1972 Dec;60(6):720–734. doi: 10.1085/jgp.60.6.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heneghan J. B., Robinson J. W., Menge H., Winistörfer B. Intestinal obstruction in germ-free dogs. Eur J Clin Invest. 1981 Aug;11(4):285–290. doi: 10.1111/j.1365-2362.1981.tb02118.x. [DOI] [PubMed] [Google Scholar]
  4. King I. S., Sepúlveda F. V., Smith M. W. Cellular distribution of neutral and basic amino acid transport systems in rabbit ileal mucosa. J Physiol. 1981;319:355–368. doi: 10.1113/jphysiol.1981.sp013913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kinter W. B., Wilson T. H. AUTORADIOGRAPHIC STUDY OF SUGAR AND AMINO ACID ABSORPTION BY EVERTED SACS OF HAMSTER INTESTINE. J Cell Biol. 1965 May 1;25(2):19–39. doi: 10.1083/jcb.25.2.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Mircheff A. K., van Os C. H., Wright E. M. Pathways for alanine transport in intestinal basal lateral membrane vesicles. J Membr Biol. 1980 Jan 31;52(1):83–92. doi: 10.1007/BF01869009. [DOI] [PubMed] [Google Scholar]
  7. Munck B. G., Schultz S. G. Interactions between leucine and lysine transport in rabbit ileum. Biochim Biophys Acta. 1969 Jun 3;183(1):182–193. doi: 10.1016/0005-2736(69)90142-4. [DOI] [PubMed] [Google Scholar]
  8. Munck B. G., Schultz S. G. Lysine transport across isolated rabbit ileum. J Gen Physiol. 1969 Feb;53(2):157–182. doi: 10.1085/jgp.53.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Paterson J. Y., Sepúlveda F. V., Smith M. W. A sodium-indpendent low affinity transport system for neutral amino acids in rabbit ileal mucosa. J Physiol. 1980 Jan;298:333–346. doi: 10.1113/jphysiol.1980.sp013084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Paterson J. Y., Sepúlveda F. V., Smith M. W. Distinguishing transport systems having overlapping specificities for neutral and basic amino acids in the rabbit ileum. J Physiol. 1981;319:345–354. doi: 10.1113/jphysiol.1981.sp013912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paterson J. Y., Sepúlveda F. V., Smith M. W. Distribution of transported amino acid within rabbit ileal mucosa. J Physiol. 1982 Oct;331:523–535. doi: 10.1113/jphysiol.1982.sp014388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Paterson J. Y., Sepúlveda F. V., Smith M. W. Stoichiometry versus coupling ratio in the cotransport of Na and different neutral amino acids. Biochim Biophys Acta. 1980 Dec 12;603(2):288–297. doi: 10.1016/0005-2736(80)90375-2. [DOI] [PubMed] [Google Scholar]
  13. Paterson J. Y., Sepúlveda F. V., Smith M. W. Two-carrier influx of neutral amino acids into rabbit ileal mucosa. J Physiol. 1979 Jul;292:339–350. doi: 10.1113/jphysiol.1979.sp012854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Riecken E. O., Zennek A., Lay A., Menge H. Quantitative study of mucosal structure, enzyme activities and phenylalanine accumulation in jejunal biopsies of patients with early and late onset diabetes. Gut. 1979 Nov;20(11):1001–1007. doi: 10.1136/gut.20.11.1001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Robinson J. W., Menge H., Schroeder P., Riecken E. O., van Melle G. Structural and functional correlations in the atrophic mucosa of self-emptying blind loops of rat jejunum. Eur J Clin Invest. 1980 Oct;10(5):393–399. doi: 10.1111/j.1365-2362.1980.tb00051.x. [DOI] [PubMed] [Google Scholar]
  16. Schultz S. G., Curran P. F. Coupled transport of sodium and organic solutes. Physiol Rev. 1970 Oct;50(4):637–718. doi: 10.1152/physrev.1970.50.4.637. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES