Table 8.
AUC comparison of models in the training set
| Marker 1 | Marker 2 | Z value | P value | AUC difference | 95% CI |
|---|---|---|---|---|---|
| XGBoost | AdaBoost | 1.342 | 0.18 | 0.013 | -0.006-0.032 |
| XGBoost | Random Forest | 6.118 | <0.001 | 0.157 | 0.107-0.208 |
| XGBoost | SVM | 6.904 | <0.001 | 0.156 | 0.112-0.200 |
| XGBoost | LASSO | 2.058 | 0.04 | 0.018 | 0.001-0.036 |
| AdaBoost | Random Forest | 5.861 | <0.001 | 0.144 | 0.096-0.193 |
| AdaBoost | SVM | 6.375 | <0.001 | 0.143 | 0.099-0.187 |
| AdaBoost | LASSO | 0.594 | 0.553 | 0.005 | -0.012-0.022 |
| Random Forest | SVM | -0.059 | 0.953 | -0.001 | -0.049-0.046 |
| Random Forest | LASSO | -5.936 | <0.001 | -0.139 | -0.185 - -0.093 |
| SVM | LASSO | -6.497 | <0.001 | -0.138 | -0.179 - -0.096 |
Note: AUC, area under the curve; XGBoost, eXtreme Gradient Boosting; AdaBoost, Adaptive Boosting; SVM, Support Vector Machine; LASSO, Least Absolute Shrinkage and Selection Operator.