Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Apr;349:375–387. doi: 10.1113/jphysiol.1984.sp015161

Alterations in the oxygen deficit-oxygen debt relationships with beta-adrenergic receptor blockade in man.

R L Hughson
PMCID: PMC1199342  PMID: 6429319

Abstract

The effects of beta-adrenergic receptor blockade (100 mg oral metoprolol) or matched placebo on gas exchange kinetics were studied in six males. Ventilation and gas exchange were monitored in four transitions for each treatment from loadless pedalling (0 W) to a selected work rate (100 W) and back to 0 W. Breath-by-breath data were averaged for analysis. Oxygen uptake (VO2) kinetics were significantly slowed at the onset of exercise and recovery by beta-blockade. This resulted in larger oxygen deficit and oxygen debt (671 +/- 115, 586 +/- 87 ml O2, respectively) for beta-blockade than for placebo (497 +/- 87, 474 +/- 104 ml O2). In addition, oxygen deficit was significantly larger than oxygen debt during beta-blockade tests. These results can be explained by greater utilization of oxygen and creatine phosphate stores as well as anaerobic glycolysis at the onset of 100 W exercise with beta-blockade. Carbon dioxide output (VCO2) kinetics were significantly slowed by beta-blockade only at the onset of exercise. Expired ventilation (VE) kinetics were not affected by beta-blockade. At 0 W, VE was significantly reduced by beta-blockade. Heart rate was lower at all times with beta-blockade. Kinetics of heart rate were not affected. These data for VO2 kinetics at the start and end of exercise indicate that even in moderate-intensity exercise, lactic acid production can contribute significantly to energy supply. The use of the term ' alactic ' to describe the deficit and debt associated with this exercise is not appropriate.

Full text

PDF
385

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnard R. J., Foss M. L. Oxygen debt: effect of beta-adrenergic blockade on the lactacid and alactacid components. J Appl Physiol. 1969 Dec;27(6):813–816. doi: 10.1152/jappl.1969.27.6.813. [DOI] [PubMed] [Google Scholar]
  2. Beaver W. L., Lamarra N., Wasserman K. Breath-by-breath measurement of true alveolar gas exchange. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1662–1675. doi: 10.1152/jappl.1981.51.6.1662. [DOI] [PubMed] [Google Scholar]
  3. Brooks G. A., Hittelman K. J., Faulkner J. A., Beyer R. E. Temperature, skeletal muscle mitochondrial functions, and oxygen debt. Am J Physiol. 1971 Apr;220(4):1053–1059. doi: 10.1152/ajplegacy.1971.220.4.1053. [DOI] [PubMed] [Google Scholar]
  4. Brundin T. Effects of beta-adrenergic receptor blockade on metabolic rate and mixed venous blood temperature during dynamic exercise. Scand J Clin Lab Invest. 1978 May;38(3):229–232. doi: 10.3109/00365517809108416. [DOI] [PubMed] [Google Scholar]
  5. Cain S. M. Exercise O2 debts of dogs at ground level and at altitude with and without beta-block. J Appl Physiol. 1971 Jun;30(6):838–843. doi: 10.1152/jappl.1971.30.6.838. [DOI] [PubMed] [Google Scholar]
  6. Cerretelli P., Shindell D., Pendergast D. P., Di Prampero P. E., Rennie D. W. Oxygen uptake transients at the onset and offset of arm and leg work. Respir Physiol. 1977 Jun;30(1-2):81–97. doi: 10.1016/0034-5687(77)90023-8. [DOI] [PubMed] [Google Scholar]
  7. Chasiotis D., Sahlin K., Hultman E. Regulation of glycogenolysis in human muscle at rest and during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Sep;53(3):708–715. doi: 10.1152/jappl.1982.53.3.708. [DOI] [PubMed] [Google Scholar]
  8. Cowan C. R., Solandt O. M. The duration of the recovery period following strenuous muscular exercise, measured to a base line of steady, mild exercise. J Physiol. 1937 Jun 3;89(4):462–466. doi: 10.1113/jphysiol.1937.sp003492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Epstein S., Robinson B. F., Kahler R. L., Braunwald E. Effects of beta-adrenergic blockade on the cardiac response to maximal and submaximal exercise in man. J Clin Invest. 1965 Nov;44(11):1745–1753. doi: 10.1172/JCI105282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HENRY F. M. Aerobic oxygen consumption and alactic debt in muscular work. J Appl Physiol. 1951 Jan;3(7):427–438. doi: 10.1152/jappl.1951.3.7.427. [DOI] [PubMed] [Google Scholar]
  11. HENRY F. M., DEMOOR J. C. Lactic and alactic oxygen consumption in moderate exercise of graded intensity. J Appl Physiol. 1956 May;8(6):608–614. doi: 10.1152/jappl.1956.8.6.608. [DOI] [PubMed] [Google Scholar]
  12. HOHWU CHRISTENSEN E., HOGBERG P. Steady-state, O2-deficit and O2-debt at severe work. Arbeitsphysiologie. 1950;14(3):251–254. doi: 10.1007/BF00933842. [DOI] [PubMed] [Google Scholar]
  13. Harris R. C., Edwards R. H., Hultman E., Nordesjö L. O., Nylind B., Sahlin K. The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch. 1976 Dec 28;367(2):137–142. doi: 10.1007/BF00585149. [DOI] [PubMed] [Google Scholar]
  14. Hughson R. L., MacFarlane B. J. Effect of oral propranolol on the anerobic threshold and maximum exercise performance in normal man. Can J Physiol Pharmacol. 1981 Jun;59(6):567–573. doi: 10.1139/y81-085. [DOI] [PubMed] [Google Scholar]
  15. Hughson R. L., Morrissey M. A. Delayed kinetics of VO2 in the transition from prior exercise. Evidence for O2 transport limitation of VO2 kinetics: a review. Int J Sports Med. 1983 Feb;4(1):31–39. doi: 10.1055/s-2008-1026013. [DOI] [PubMed] [Google Scholar]
  16. Hughson R. L., Morrissey M. Delayed kinetics of respiratory gas exchange in the transition from prior exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Apr;52(4):921–929. doi: 10.1152/jappl.1982.52.4.921. [DOI] [PubMed] [Google Scholar]
  17. Juhlin-Dannfelt A. C., Terblanche S. E., Fell R. D., Young J. C., Holloszy J. O. Effects of beta-adrenergic receptor blockade on glycogenolysis during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Sep;53(3):549–554. doi: 10.1152/jappl.1982.53.3.549. [DOI] [PubMed] [Google Scholar]
  18. Knuttgen H. G., Klausen K. Oxygen debt in short-term exercise with concentric and eccentric muscle contractions. J Appl Physiol. 1971 May;30(5):632–635. doi: 10.1152/jappl.1971.30.5.632. [DOI] [PubMed] [Google Scholar]
  19. Leitch A. G., Hopkin J. M., Ellis D. A., Clarkson D. M., Merchant S., McHardy G. J. Failure of propranolol and metoprolol to alter ventilatory responses to carbon dioxide and exercise. Br J Clin Pharmacol. 1980 May;9(5):493–498. doi: 10.1111/j.1365-2125.1980.tb05845.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Linnarsson D. Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand Suppl. 1974;415:1–68. [PubMed] [Google Scholar]
  21. Linnarsson D., Karlsson J., Fagraeus L., Saltin B. Muscle metabolites and oxygen deficit with exercise in hypoxia and hyperoxia. J Appl Physiol. 1974 Apr;36(4):399–402. doi: 10.1152/jappl.1974.36.4.399. [DOI] [PubMed] [Google Scholar]
  22. Lundborg P., Aström H., Bengtsson C., Fellenius E., von Schenck H., Svensson L., Smith U. Effect of beta-adrenoceptor blockade on exercise performance and metabolism. Clin Sci (Lond) 1981 Sep;61(3):299–305. doi: 10.1042/cs0610299. [DOI] [PubMed] [Google Scholar]
  23. MacFarlane B. J., Hughson R. L., Green H. J., Walters D. J., Ranney D. A. Effects of oral propranolol and exercise protocol on indices of aerobic function in normal man. Can J Physiol Pharmacol. 1983 Sep;61(9):1010–1016. doi: 10.1139/y83-151. [DOI] [PubMed] [Google Scholar]
  24. Morrison S. C., Kumana C. R., Rudnick K. V., Haynes B., Jones N. L. Selective and nonselective beta-adrenoceptor blockade in hypertension: responses to changes in posture, cold and exercise. Circulation. 1982 Jun;65(6):1171–1177. doi: 10.1161/01.cir.65.6.1171. [DOI] [PubMed] [Google Scholar]
  25. Mustchin C. P., Gribbin H. R., Tattersfield A. E., George C. F. Reduced respiratory responses to carbon dioxide after propranolol: a central action. Br Med J. 1976 Nov 20;2(6046):1229–1231. doi: 10.1136/bmj.2.6046.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nilsson A., Hansson B. G., Hökfelt B. Effect of metoprolol on blood glycerol, free fatty acids, triglycerides and glucose in relation to plasma catecholamines in hypertensive patients at rest and following submaximal work. Eur J Clin Pharmacol. 1978 Mar 17;13(1):5–8. doi: 10.1007/BF00606673. [DOI] [PubMed] [Google Scholar]
  27. Orr G. W., Green H. J., Hughson R. L., Bennett G. W. A computer linear regression model to determine ventilatory anaerobic threshold. J Appl Physiol Respir Environ Exerc Physiol. 1982 May;52(5):1349–1352. doi: 10.1152/jappl.1982.52.5.1349. [DOI] [PubMed] [Google Scholar]
  28. Patrick J. M., Pearson S. B. beta-Adrenoceptor blockade and ventilation in man. Br J Clin Pharmacol. 1980 Dec;10(6):624–625. doi: 10.1111/j.1365-2125.1980.tb00523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pearson S. B., Banks D. C., Patrick J. M. The effect of beta-adrenoceptor blockade on factors affecting exercise tolerance in normal man. Br J Clin Pharmacol. 1979 Aug;8(2):143–148. doi: 10.1111/j.1365-2125.1979.tb05812.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Petersen E. S., Whipp B. J., Davis J. A., Huntsman D. J., Brown H. V., Wasserman K. Effects of beta-adrenergic blockade on ventilation and gas exchange during exercise in humans. J Appl Physiol Respir Environ Exerc Physiol. 1983 May;54(5):1306–1313. doi: 10.1152/jappl.1983.54.5.1306. [DOI] [PubMed] [Google Scholar]
  31. Piiper J., Spiller P. Repayment of O2 debt and resynthesis of high-energy phosphates in gastrocnemius muscle of the dog. J Appl Physiol. 1970 May;28(5):657–662. doi: 10.1152/jappl.1970.28.5.657. [DOI] [PubMed] [Google Scholar]
  32. Reybrouck T., Amery A., Billiet L. Hemodynamic response to graded exercise after chronic beta-adrenergic blockade. J Appl Physiol Respir Environ Exerc Physiol. 1977 Feb;42(2):133–138. doi: 10.1152/jappl.1977.42.2.133. [DOI] [PubMed] [Google Scholar]
  33. Richter E. A., Ruderman N. B., Galbo H. Alpha and beta adrenergic effects on metabolism in contracting, perfused muscle. Acta Physiol Scand. 1982 Nov;116(3):215–222. doi: 10.1111/j.1748-1716.1982.tb07133.x. [DOI] [PubMed] [Google Scholar]
  34. Stainsby W. N., Barclay J. K. Exercise metabolism: O 2 deficit, steady level O 2 uptake and O 2 uptake for recovery. Med Sci Sports. 1970 Winter;2(4):177–181. [PubMed] [Google Scholar]
  35. Twentyman O. P., Disley A., Gribbin H. R., Alberti K. G., Tattersfield A. E. Effect of beta-adrenergic blockade on respiratory and metabolic responses to exercise. J Appl Physiol Respir Environ Exerc Physiol. 1981 Oct;51(4):788–793. doi: 10.1152/jappl.1981.51.4.788. [DOI] [PubMed] [Google Scholar]
  36. Wasserman K., Whipp B. J., Koyl S. N., Beaver W. L. Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol. 1973 Aug;35(2):236–243. doi: 10.1152/jappl.1973.35.2.236. [DOI] [PubMed] [Google Scholar]
  37. Whipp B. J. Rate constant for the kinetics of oxygen uptake during light exercise. J Appl Physiol. 1971 Feb;30(2):261–263. doi: 10.1152/jappl.1971.30.2.261. [DOI] [PubMed] [Google Scholar]
  38. Whipp B. J., Seard C., Wasserman K. Oxygen deficit-oxygen debt relationships and efficiency of anaerobic work. J Appl Physiol. 1970 Apr;28(4):452–456. doi: 10.1152/jappl.1970.28.4.452. [DOI] [PubMed] [Google Scholar]
  39. Whipp B. J., Ward S. A., Lamarra N., Davis J. A., Wasserman K. Parameters of ventilatory and gas exchange dynamics during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jun;52(6):1506–1513. doi: 10.1152/jappl.1982.52.6.1506. [DOI] [PubMed] [Google Scholar]
  40. Whipp B. J., Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol. 1972 Sep;33(3):351–356. doi: 10.1152/jappl.1972.33.3.351. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES