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INTRODUCTION 

Professor H. S. JENNINGS (1916) has published the numerical re- 
sults for a variety of breeding prob1ems.l The present writer (ROBBINS 
1917) considered some more general problems, suggested in every case 
by JENNINGS’S paper, and showed how results obtained by JENNINGS 

came by specializing the general problems. This paper dealt only with 
a typical Mendelian factor. 

In  Part I breeding 
problems will be considered in which a sex-linked character is involved. 
Part I1 consists of problems in breeding parents to offspring, a typical 
Mendelian character being involved. Each of these problems has been 
suggested by JENNINGS’S work. 

The present paper is a continuation of this work. 

PART I. BREEDING PROBLEMS INVOLVING SEX-LINKED CHARACTERS 

a. Random matkg 
For a sex-linked character there are but two types of individuals of 

They may be indicated by A- and a---, while 

The 

the heterozygous sex. 
in the homozygous sex the usual three types, AA, Aa, aa, occur. 

‘The paper referred to deals with problems involving one pair of factors. 
same author has since published a paper on two factor problems (JENNINGS 1917). 
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Limiting the discussion to the case in which the male is the hetero- 
zygous sex, consider the problem of random mating in a population, 

Males: U A- + l i t  U-, 
Females: Y A4L4 + s -4a + t aa 

with the restriction that U + i i p  = Y + s + f. This restriction is for 
convenience rather than from necessity since it is evident that the propor- 
tions will be the same if it is omitted and we assume that each male has 
an equal chance with every other one of fertilizing a female and that a 
male may mate with more than one female. I t  should be stated once 
for  all that in any expression for numbers of different types of indi- 
viduals, or gametes, it is only the ratio of the coefficients that is of in- 
terest. We  wish to know,how the population will be divided between 
the possible types after n random matings. 

The two types of males in any generation, A- and a-, can.occur 
only by unions of the “bar” (-) of the males with the A and a gametes 
of the females of the preceding generation. For this reason it is essen- 
tial to count the A and a gametes in the females of each generation. 
In the original population the female gametes are, 

(7+$/2)A + ( t+s/z)a.  

I t  is convenient to use the notation, 
I >  27+s==M; 2t+s==Ar; r+s+ t=qt + e K .  
Then the female gametes in the original population are in the propor- 
tion MA+Na, and therefore the males of the first generation are rep- 
resented by M A - + N e .  T o  form a female, the A or a gamete of 
the male must unite with A or a gamete of the female. The possible 
ways in which this can occur gives immediately that the three types of 
females occur in the proportion 

Mw AA + (Mu + S z i ) J a  + Nv an. 
JVe will uniformly reduce the proportions so that the sum of the co- 
efficients of the types is unity. Thus we have ior the first generation: 

M u  Mv+Nu NU 
An + - arr . 

2p 2K2 
Females: --AA + 

2K2 

Similar argument gives the following results for the second and third 
generations. 
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Second generation : 

M+2u N+2v - A-+- a - ~ U U , A -  + Vza-. 

M(M+zu)  

Males: 
4K 4K 

M (N+2v)  +N(M+2zt) 
A a  + 

8K2 AA + Females : 
8K2 

aa. 
N (N+2v)  

8K2 
- ____ u1~2AA + (hv2 + ~ 1 ~ 2 ) A a  + V i V z U .  

Third generation : 

a- =u3A- + VsU,-. 
3N+2v 

A - + -  Males: - 3M+2U. 
8K 8K 

+ 
(M+2U)  (3N+277) + (N+2V) (3M+zu)  

(M+zu> ( 3 M + 2 + 4 A  
Females : 

32K2 

UU 
(N+2Z.') (3N+zv)  

32K2 Aa + 
32K2 

z ~ ~ u ~ A A  + ( ~ 2 ~ 3  + ~2u3)Aa + ~ b ~ 3 a a .  

In the expressions after the identity signs above, un and v, are to indi- 
cate the proportions of A-.- and a- individuals in the mth generation. 
It is evident from the second form of the expressions for females that 
the composition of the females in the nth generation can be written 
down when the compositions of the males for the nth and (*I ) th gen- 
erations are known. 

Inspection shows that u3 = ( U , ~ + U ~ ) / ~  and v3 = (vl+v2)/2. This 
fact or at least the data for another generation or two suggests that we 
have for all values of n, 

21,- 1 + 24,- 2 un- l+nn-2 ,  
U, = ; v*= 

2 2 
2 )  

We shall prove that this is actually the case,>and that the females of 
the lzth generation are represented by r,AA + s,Aa: + t,au if we let 

r, = u,u,-1; 
4) s,= 1EnVn-l + v,u,-,; 

t, = v,v,-,. 

We wish to show that random mating in the population 
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5) Males: u,A- + v,a--, 
gives a population obtained by replacing n by %+I in 5 ) .  
composition of the females in 5) is 

Substituting the values of Y,, s,~, t, from 4), this becomes 

Females: rnAA + s,Aa + tnaa, 
The gametic 

(Y,+S?l/2 1 A + ( tn+s,/2 a. 

Simplifying, and remembering that u,+v, = U,-~+V,-~ = I ,  we have, 

Un + 3,- 1 
a. 

2 
A +  

21,+21,-1 

2 

Then the males of the (n+I) th  generation are represented by 

U7&+%1 vn + %In- 1 
A- + a-. 

'7 
I 2 

Thus we have shown that u,+~ = (U,+ ~ ~ - ~ ) / 2  and vnT1 = (vn+vn-1) 1'2. 

As for the females, consideration of the crosses involved gives for  
(n+ I ) th generation (U,+ u,)AA + (zb,+ v, f v,,+ I %)Aa 4- (un+  I v,)aa. 
Thus Y , + ~  = u,+~ U,; s , + ~  = Z L , + ~ V ,  + v,+~ U,; = z',~+~ 7',. Q. E. D. 

So far we have proved that the fractions giving the proportions of 
the two types of males in any generation are the averages of the cor- 
responding fractions in the two preceding generations. We  have ex- 
plicit expressions for these fractions for only three generations. To  
get the general expressions we need to solve the recurrence equation, 
6 )  2.1, = (%-1+Un-2>/2, 

subject to the conditions, u1 = M/2K; u2 = ( M + 2 2 ~ ) / 4 K .  This solu- 
tion is 

7 )  

Similarlv, 

u + M  2u-M I 

3K 2 
( - - - - > ' I  U, = ___ + 

3k' 

v + N  2 ~ - N  I 

3K 2 

From these values of U,, 'U, we can immediately calculate r,, s,, t ,  by 
use of equations 4). 

Discussion 

(--)". v, = + 
3K 

I. It should be noticed that these results do not depend directly upon 



APPLICATIONS OF MATHEMATICS TO BREEDING 77 

the values of r, s, t, the numbers determining the nature of the original 
female population. They are, however, clearly dependent upon the 
gametic composition of the original female population. Otherwise 
stated, two original female populations, however different, will give the 
same results providing that the gametic composition of the two is the 
same. 

2. I t  is well known that for a non-sex-linked character the propor- 
tions in random mating are fixed after the first generation. It should 
be noted that this is not in general the case for a sex-linked character. 
A special case will be considered presently in which the proportions 
are fixed. 

3. As the number of generations increases, the population approaches 
a k e d  composition in which all types are present except in very special 
cases : 

Vi-N 
3K 

v,=-. 
Limit u+M. Limit 

U, =- n= 00 3K ' Z=CQ 

(u+M) (v+N) Limit Limit 
n= 00 9Kz ; n=m s,=2 

Some particular cases: The meaning of these formulae will be made 
clearer by application to particular cases. Let u=r,  v = t ,  s=o. 
Then M ~ 2 r  + s = 2r and N z z z t  + s = 2t; K E r + s 4- t = 
r + t. Substituting in equation 7 ) ,  8) and 4), 

r t 
-; v, = - - - 3r - u+M 

U,=-- 
3K 3( r+ t )  r+t r+t' 

( r+ t )2  ( r+ t I2  (r+t> 2' 

r2 2rt t2 
r, = ~ ;s,=- ,. t, = ~ 

These results were obtained by JENNINGS (1916, Q 57). 

Substituting in 7) and S), 
A g a i n , l e t s = I , u . =  ~ , r = t = v = o .  T h e n M = N = K =  I. 

p 1 -  (-1 ) 

3 x 2 ,  

2"-(-1)" 

3 x 2 ,  

u n = ~ + + . ( - ~ ) n =  

v,= g - s. (-%),= - 

It has been shown by the present writer (ROBBINS 1917) that the nth 

term of JENNINGS'S G series (1916, p. 54) is G, = 
2,-(-I ) 

3 
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Using this notation we have, 
GWl G, 

%=- ; v, = -. 
Substituting in equations 4) to obtain the numbers for the female popu- 
lation we have 

2, 2" 

Gn+1 G, 
r,, = u,,un-l = - 

22fl-1 ' 

Using Bn = 2", these expressions check with those obtained by JENNINGS 

(1916, 5 58). Using the formulae above for the limiting values of 
U,,, v,,, or taking the limits of the expressions obtained for this particular 
case, 

and 

t -1 
Limit 

71-  9 ' 
s - 4 .  Limit Limit 

Y, = $ ; n= 00 n - 9 ,  n= 00 

Equations 7) and 8) show clearly that in general the proportions in 
random mating are not fixed. We have found a special case, however, 
in which they are fixed. The question naturally arises, what is the con- 
dition that must be satisfied in order that the proportions be fixed? 
From equation 7) we read immediately that for the proportions to be 
fixed we must have 224 = M. This condition is also sufficient since if U,, 

is constant, vn( E I -U,) is also constant. In other words, i f  in the 
original population the proportion of dominant males equals the pro- 
portion of A gametes in the females, the proportions for  random mating 
are fixed. 

b. Assortative mating 
Given the population, 

Males : 
Females: r AA + s An + t aa, 

U A- + v a-, 

what is the composition of the nth generation if A- males mate with 
AA and A a  females and a- males mate with aa females? It is at once 
evident that the values of U and v have nothing to do with the future 
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proportions so long as U and v are not zero. We  assume that one male 
may mate with more than one female. 

As in the case of random mating, the two types of males in any gen- 
eration appear in the same proportion as do the two types of female 
gametes in the preceding generation. In  getting the numbers for females 
it is essential to remember that for assortative mating there will be 
Y + s dominants to t recessives. I t  is also convenient to notice that the 
AA females are in number equal to the A female gametes in the pre- 
ceding generation and that the proportion of heterozygous females is 
halved at each succeeding generation. These facts enable one to show 
very easily that the composition of the nth generation is, 

2"( r+s)-s S+2? 
Males : A-+- a- ,. 

2n( r+s)-s S t 
Females : 

2°K 2nK 

AA +- Aa + -a@. 
P K  2 "A- K 

in which K = r + s + t. 
Discussion 

The heterozygous female tends to disappear and in the limiting popu- 
lation the ratio of the dominants to recessives, in males and females 
alike, is the ratio of dominants to recessives in the original female popu- 
lation, i'.e., r + s to t. 

In applying these formulae i t  should be remembered that in deriving 
them we assumed that neither U nor 'U was zero. To  apply the formulae 
with safety i t  is therefore necessary to study the crosses in detail until 
both dominant and recessive males appear. 

A particular case. Let r = t = I ; s = 2 ,  and assume the existence 
of both types of males in the original population. This gives, 

3 X 2n-1- I I +2n-1 
A-+- a-; 

? ? L + l  2n+l 
Males : 

I 

3 x 2*-l-- I I 
Females : A A + - A a + g a a .  

2n+l  2n+l  

These are the results obtained by JENNINGS (1916, Q 60). 

generation has the composition, 
If dominants alone are selected, it can readily be shown that the nth 
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s S 
Aa. 

2”(r+s)  
Females: [I - IAA + 

2”(  Y+S) 

These formulae may also be obtained from the corresponding ones for 
mating dominants with dominants, recessives with recessives, by set- 
ting t = 0. 

c. Brotlzcr and sister nzating 
i. Random mating 

Given a family consisting of 
zt A- + v a-, Males: 

Females: rAL4 + s Aa + t aa, 
what will be the composition of the nth generation if  matings are re- 
stricted to brothers with sisters? It is necessary here to consider the 
different types of families which will arise. These are tabulated below. 

T y p e  of cross  

AA X A- 
Aa X A- 
aa X A- 
AA X a- 
Aa X a- 
aa X a- 

I 
Composition of resulting fami ly  j 

.___ 

If we find the number of families of the different types in the nth 
generation we can readily count up the number of individuals of differ- 
ent types. Let b,, c, . . . . . . g,l be the proportion. of families of type 
b, c, . . . . . g respectively in the nth generation, so chosen that b, + $c, + 
d, + e, + fn + g, = I .  I t  is useful to study the outcome of brother 
and sister mating in families of the various types. This study enables 
us to write down the following recurrence relations : 
9) 4 b n  4 b n - i  + Cn-19 
10) 4% cn-I + 4eia-~ + fn-1, 
1 1 ) 4dn = fn-1, 

1 2 )  4 6  = cn-1, 
13) 4fn = 44-1 + Cn-1 + fn -19  

14) 4g9‘ = &~-i + fn-1. 
Using P,, E K 3 (  1+v/’3)“ + K4( I-G),, the solutions of this sys- 

tem of equations are 
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K,+ (-I ) '"'Kz P n - 1  
en = + -- 

4" 2n+2 

The composition of the .nth generation is, 
Males: %,,A- + Vn+, 

Females : Y, AA + s, AU + tn  au, 
in which 

2bn+cn+2en+fn - I +K5 (-1 "K2 
U ,  = 9 

2 2 3 X2" 

c n + 2 d n + f n + 2 g n  I-K, (-1>"K2 
21 1 

9 

3x2" 
+ - -- V" = 

2 2 

Zbn-fCn I+K, (-1)"KZ P n t 1  -- + 3X2"'I 4n+l ' 
y,=------ - 

2 2 

cn+2&+2es+fa - pn+,  

2 2X4n 
22) s,= - 

f n S 2 g n  ~--Kri (-1)"KZ f"t1 

2 2 3 X 2*+l 4w1 
_ _ _  t = - - - -  - 

Discussion 

I. The heterozygous female tends to disappear. This follows from 
the fact that s, involves the proper fractions (1+f i ) /4  and 
(1-fi)/4 to higher and higher powers as vz increases. 
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2 .  In the limiting population the ratio of dominants to recessives, in 

Substituting M =  I in equations 15)-20) and solving for K, .  . . . .K5, 
males and females alike, is ( 1+K6)/z to ( 1-K6)/2. 

K ,  = 2 (el-dl) +cl+,. 
K ,  = 2(e,--d,)-cl+f,. 

I 
K ,  = \/3 [ ( d , + e , )  ( v2-1 + C , + f l l .  

I 
K,  = -y- [ ( d l f e , )  (V:+I~-~-l-tlI. vi 
I(, = k-g, + el-6, +c,-f1 

3 
In terms of r, s, t, zi, v we have 

SZL tu r 5' Pd tv 

K L  KL K L  
;g,=- ; f 1 = z  K L  * 

c, = - ;d,=----- ; e , = -  b 1 = 7 ;  
ru 
kL 

in which h' = r + s + t and L = U + U. 

Consider the problem of brother and sister mating 
in the family obtained by crossing AA with a-. \Vhat we have called 
the original family will consist in this case of equal numbers of Aa and 
.4- individuals. Thus r = t = v = 0; s = zi = I. Thus b,  = 6, = e ,  
= f l  = g, = o ; c, = r .  Calculating the constants, K ,  = I ; K ,  = -I ; 

Particular cases. 

(-1)" ( I + v - $ ) n + l - - (  I - \ / p + l  

3 x 2 n + 1  
tn=s+- -  v-j x 4"+l 

( 1 + V.5) n- ( I-v/'s> 
1'5x2" 

The nth term of the Fibonacci series is F,, = 

Using F,, and G, we have for the composition of the nth generation 
5; I' r 

J 7 k l  Males: -A-  + - a-- 
2* 2" 
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This problem is worked by JENNINGS (1916, $ 69). 
It should be apparent that one value of the developments here given 

is to find the limiting values of the proportions in the composition of 
the nth generation. To make this clear, suppose we start with a family 
in which r = I ,  s = 2, t = 3, U. = 4, v = 5. (Any other numbers would 
do equally well.) Then 

8 I2 5 I O  I5 4 
bl =-; ~ 1 -  , 1- 9 1- > 1- .tg1=-* 

54 54 54 54 54 54 

K5=--- f .  
54 54 

- - * d  - - - * ' e  --.f - _ .  

4 15 5-12f8-IO 7 -- - 
I 62 27' 

I+K, IO I-K, 17 
2 27 2 27 

_ _ _ _ - a  -- - 
9 - .  - 

Then the limiting proportions are : 
I O  I7 
27 27 

Males: -A- + -a-; 

IO I 7  
27 27 

Females: -AA + -m. 

This is to show how easily we can get the limiting proportions without 
calculating a number of terms in the series involved. 

.. 
11. Assortative mating 

The problem of assortative mating is almost trivial in case of a sex- 
This is because only three types of matings can occur. 

The recurrence rela- 
linked factor. 
They are A A  X A-, Aa X A- and aa X a-. 
tions involved are 

bn = bn-1+Cn-1/2 
c, = cn-1/2 
gn = gn-1. 

The solutions are 
b 11 = b + C~-CJZ~-'. 

c, = c1/2n4. 

gn = I-b,-c, E g, .  
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The composition of the nth generation is 
Males : [bl+cl-cl/2n]A- 4- [c,/2"+glla-. 
Females : [ bl+c1-c1/2"]AA + c,/znAa+glaa. 

It is evident that the heterozygous female tends to disappear as n in- 
creases indefinitely. 

d. M&ng parent by offspving 
A rather simple problem showing the application of the method of 

recurrence relations is that of analyzing the population resulting from 
mating sons to mothers and daughters to fathers. The only possible 
types of families resulting from such mating are those which we have 
called b, c, f and g families. A family of type d arises from a cross 
between aa and A-. This cannot occur in the present problem since 
an aa female cannot be the mother of an A- male, nor can an A- be 
the father of an aa. For similar reasons no families of type e can occur. 
The recurrence relations of the problem are as follows: 

4bn = &,-lfcn-l; 
4cn = 2cn-1+fn-1 ; 
4 f n  = C n - 1 f 2 f n - 1  ; 
4gn = 4gn-l+fn-l. 

The solutions are, 
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Substituting the values of b,. . . . .g, this becomes : 

I-K, K ,  
] a-. ]A--+ [-+- Males: [--- 

Females: [- 

K1 I + K ,  
2 6x4" 2 6 x 4 "  * 

2 3 x 4"" 

I + K ,  + K1-2K2X3"+l 
IAA + K2(%/4>"Aa + 

I-IC, Kl+2K2X3"+l 

2 3 x 4"+l 
[-- ] aa'. 

It is evident from these results that the heterozygous female tends to 
disappear and the homozygous types approach the proportion, ( I  +K3)/2 
dominants to ( 1-K8)/2 recessives. 

A A  is crossed with U- and then the 
daughters are mated to their father and the sons to their mother. As 
a result of the original cross we have individuals of types Aa and A- 
in equal numbers. Now we have the crosses A u X e  and A A X A -  
to give what we call our first generation. Thus we have, 

Evaluating the constants, 

Finally, the population of the nth generation is, 

C o d e r  a particular case. 

bl = fl = % ; c1 = g, = 0. 

Kl = -2; K2 = % ; K ,  = s. 
I I 

Males: [% + - ]A- + cs -~ I-. 
3 X4" 3x4"  

6 x 4 "  4" 6x4"  

1-3" 
1 m. 

3"-l Females : [ % - ___ 1+3" ] A A  + -AtI + [S + ~ 

PART 11. BREEDING PARENTS T O  OFFSPRING-TYPICAL FACTOR 

a. Breeding half of offspring to one parent a d  half to the other 

Suppose a breeding problem is started by making a certain cross and 
that thereafter half the resulting family is bred to one parent and half 
to the other. What is the composition of the nth generation, if a typical 
Mendelian trait is being considered? 

The cross 
A A X a a  cannot occur because neither A A  nor aa can have the other 
as parent. The crosses which occur and the resulting families are 
tabulated below. 

Only five types of families can exist in any generation. 
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Type of cross Composition of resulting Type of family 
family 

(AA,  Aa, aa)  
A A X A A  ( 1 ,  0 9 0 )  0 
A A X A a  ( 5 4 7 5 ,  0 )  P 
A a X a a  ( o , % , % )  U 
aa X aa ( 0 ,  0 ,  I )  v 

A a X A a  ( % ,  %,%) r 

Our problem now is to consider what results when in a family of 
each type half the individuals are bred back to one and half to the other 
of the members of the cross which produced the family. I t  is evident 
that families of type o give rise to families of this type only. In  fam- 
ilies of type p the individuals are equally divided between the types 
AA and Aa. This family came from a cross between AA and Aa. 
Breeding AA back to A A  gives an o family; breeding AA back to Aa 
gives a p family; breeding A a  back to AA gives a p family and breed- 
ing Aa back to Aa gives an r family. Thus the offspring of a p family 
will be in families of types 0, p,  7 in the ratio % : : %. Similar de- 
tailed consideration of the offspring of families of types r, U, U enable 
us finally to write down the recurrence relations, 

23 1 40, = @n-1 f pn-1; 
24 1 4Pn 2Pn-1 + m - 1 ;  

25 ) 4rn = Pn- i  + zrn-1 + un-1; 

2 6 )  4un = 2 ~ 1 , _ ~  + rn-l ; 

The solutions of these equations are, 
27) 421s = 4 r ' n - i  + %-i. 

1 +K2 K l  Pn+ 1 ___-____- 
2n+2 2x4". 

U,,  = 
2 

28) 
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in which P,, = K3(2+v/2)n+K4(2-q5)n. Evaluating the constants, 

K1= 2(P1--u1). 

P, + U,, + V% 
z+V/a - 33)  K ,  = 

P1+%-V% 
2--v(-5 

K ,  = 

The composition of the nth generation is 
34) [0n+Pn/2+~n/41AA + [ (pn+rn+un)/2]Aa+ 

[ rn/4+un/z +vn I aa* 
Substituting from equations 28)-33)  into expression 34), the rzth gen- 
eration is 

P"+1 I-K, Pn+l 

2 4"" 2x4, 2 4"" 
Aa + [- - -]au. [- - -]AA + ~ 

I+& P*+l 
3 5 )  

Discussion 

The heterozygous individuals tend to disappear regardless of the na- 
The homozygous types approach a fixed ture of the original cross. 

proportion as 11. increases indefinitely : 
I-K, 

A A  + ~ au. 
1 +K, 

2 2 

It should be noted that ol.. . .U, are proportional to the numbers of 
families of the different types after the first breeding of offspring to 
parent has occurred. 

JENNINGS considered some special cases of this problem but was un- 
able to get a simple expression for the numbers involved. The first case 
which JENNINGS considers is a cross between AA and ua followed by 
breeding back to parents. The result of the first cross is a family of 
individuals all of type Aa. Half of these are bred to AA and half to aa, 
giving two types of families p, U. equal in numbers. Thus, o1 = vl = 
rl = 0; p ,  = U ,  = $. Substituting in equations 3 3 ) ,  

K ,  = K ,  = 0; K,  = I / ( Z + V ~ )  ; K ,  = 1/(2-+). 

Substituting these values of the constants in expression 3 5 ) ,  and re- 
membering that P,  = K ,  (2+ ViZ)* + K ,  (2---\E) % we have, 

I 
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(2+ q 2 ) * 1 +  ( 2 - G ) ? L  
(..la)*, = 

(au.), = % -  

2 X4" 
(2+ \rz)n+ (2-v:) 

4"" 
These formulae give the results which JENNIXGS (1916, 5 53) has, 

when we substitute n = I ,  2, 3, . . . . , enable us to calculate the propor- 
tions for any value of n independent of other values of n, and give us 
at  once the limits approached. In this case the limiting population is 
,%AA + s u a .  

It may be worth while to calculate the limiting population for another 
special case. The original cross is AA X Aa giving a p family, half 
of which is to be bred back to AA and half to Aa,. This gives as our 
first generation g o  + sp + gr; i.e., 

0, = g; p1 = 5; r,  = s ;  U, = v1 = 0. 
K2 = 0, - v, + ( p ,  - 2 1 , ) / 2  = g + = 3. 

Then ( I  +K2) /2 = 3/4 ; ( 1-K2)/2 = and the limiting population is 
$i AA + % aa, 

which is at  least suggested by JENNINGS'S result for the 10th generation 
(JENNINGS 1916, § 55j. 

b. Breeding ofsprirtg t o  younger parent 
The various problems in breeding offspring to the younger parent 

may be made to depend upon three special problems of this sort. Only 
five types of families can occur. A family all members of which are 
Aa: individuals cannot occur since the parents of such a family must be 
A A  and aa and neither of these latter types can be the offspring of the 
other type. Since o and v families remain pure by this system of breed- 
ing, we need only consider the outcome of families of types p, r, U. 

Suppose we start by breeding the members of a p family to their AA 
parent. The first generation will consist of families of types o and p 
in equal numbers. In later generations the offspring of the 0 families 
will be in families of type o. T o  get the contribution of the p families 
to the second generation we mate with the Aa parent. Thus it is evident 
that the problem under consideration can be made to depend upon the 
one begun bp mating a p family to the A a  parent. Then any problem 
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in breeding offspring to the younger parent can be made to depend upon 
three special problems of mating to the younger parent, the breeding 
being started in the respective problems by mating, 

i. members of an r family to the Aa parent, 
ii. members of a p family to the A a  parent, 

111. members of a U family to the A a  parent. 
(Of course it is evident that both parents of an Y family are of type Aa.) 

It should be stated that the results for each of these problems are 
given by JENNrNGs (1916, $0 52, 47, 50). The excuses for the follow- 
ing pages are that proofs are given, and that the methods used, which 
have important points of difference from any so far used, may be of use 
elsewhere. 

i. If we mate the members of an r family to either parent, Aa, the 
first generation consists of families of types p ,  r, U in the proportion 
indicated by gpAA + %r + %aaa The subscripts on p and U indicate 
the type of parent to which we are to breed next. The second genera- 
tion will be 

... 

% o + % p  A a  + % P A A + % Y + % %  aa t - % U A a f % V .  

Notice that because of the symmetry of the problem we will have, 
on = v,; pn = h. Notice also that part of the families of type p are 
bred to the AA parent and part to the Aa parent. This threatens to 
introduce a complication which it is wise to avoid. There are the same 
number of p and U families to be bred to Aa. Since p and U families 
have compositions indicated by (s, 5, 0 )  and (0, 5, G ) ,  one of each 
is equivalent in composition to two families of composition (x, s, %), 
i.e., two r families. Then so far as the present problem is concerned, 
the p and U families which are to be bred to the Aa parents may be re- 
placed by Y families. Let Pn represent the families of type p to be bred 
to the.AA parent. Let a, represent the families of type U to  be bred to 
the aa parent. Let Fn = rn+pn-jjn+u,-z&. Then it is easy to show 
that 
36) 2 0 n  = 20,+l+$nn-l ; 
37) 
38) 

40 ) v, = 0,. 

4Pn Tn-1; - 
ZF,, = rn-1+2&-1 ; - 

39 1 an= P m ;  

If we let P, = K , ( I + ~ / ~ ) " + K , ( I - ~ / ~ ) " ,  the solutions of this 
system are, 
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jj, = an = Pn-,/4" ; 
rn = PJ4" ; 
0, = ?I, = %-Pn+,/47k+1. 

- 41) 
42 1 
43 1 

For our problem p1 = % ; P, = ; these values determine K ,  and K 2  
to be K ,  = ( I  +v\/5)/z v3 and K ,  = -( 1-v3)/2\/3 and P, be- 
comes Pn= [ (1+~"5)~+ ' - (1 -~3)~+ ' ] /2~~ .  Since F,, = [ ( I +  
v\/s)n-( 1-v/5"]/2~~X vx, we have P,, = 21zFn+1. The composition of 
the nth generation is 

Substituting from the above equations, this becomes, 

Incidentally it may be noted that the problem of mating AL4 with aa, 
then mating half of progeny back to AA and half to aa and then breed- 
ing to the younger parent is essentially the present problem. (Compare 
JENNINGS 1916, $45.) 

first generation will be %pAA + SV. 

g o  + M p A a  + 

.. 
11. If we mate the members of a p family with the A a  parent, the 

The second generation will be 

of result of mating v by Aa. 

The lack of symmetry in this and later results shows that the method of 
problem i. cannot he used readily. However, inspection of this ex- 
pression for the second generation is the key to the situation. Let (#), 
stand for the composition of the nkh generation in the problem under 
discussion and similarly, let ( r ) ,  stand for the composition of the nth 
generation in problem i. Then from the second generation we read, 

45 1 ( P > n  j/o + % ( P ) n - ?  + % ( r I n - 1 .  

46 ) 

47 1 

Replacing n by n-2 we have 

Substituting from 46) into 45), 

I t  is evident that this process can be continued until ( p )  has a subscript 
zero or unity on the right, according as n is even or odd. If n is even 
we have, 

( P > n - ,  = 540 + % ( P > n - ,  + % ( V I S - 3 .  

( # I n =  MO + 1/16o + I / ' I ~ ( P ) ~ +  + % ( r I m - 1  + % (r),t-:t. 
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2" 

If n is odd, 

( r ) ,  is 
pression 
portions 

the result in problem i., and is the distribution given in ex- 
44). (AA) , ,  (Aa),, (aai), will be used to represent the pro- 
of the corresponding types of individuals in the nth generation. 

If n is even, 
50)  
The terms of the Fibonacci series satisfy the relation 

(Aa) ,  = [ I+F,+l+F,.l+. . . . . +F5+F3]/2n+1. 

F, = F,-,+F,-,. Then, 

F, = F,+F, = F,+F,+Fo = F,+F, since Fo = 0. 
F, = F5+F4 = F,+F,+F,; it is seen immediately that 

51) F,, = F,,-i+F2,-3+. . +F3+F, and similar equations show that, 

In  words these equations are equivalent to:  The sum of any number 
of successive odd (even) terms of the Fibonacci series, beginning math 
F ,  (F,+F,)  is the next higher term. 

F2 = F,+Fo; 

52) FZtt-l= F2n-2+F2?t-4+ * * * +F4+F2+F1. 

Since F, = I, this enables us to write 50) in the form 
53 1 ( A a ) ,  = Fnt2/2"+'. 
We have shown that 53) holds when n is even. Exactly similar work 
with equation 49) shows that 5 3 )  is correct for n odd. Calculating the 
values of ( A A ) ,  and (aa), we have, 

2"+'+ (-1 )%-3Fnt2 - G?tt3-F~+2 
- 54) ( A A ) , =  3 X 2"+, 2n+2 
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2 e + 2 - ( - ~ )  “ - 3 F n + 2  - Gn+2-Fn+2 
- 55) (aa>n = 3 X 2n+2 2n+2 

iii. The results for this problem are those for ii. with A A  and ay1; 

interchanged. 
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