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Accurate and rapid identification of perturbed pathways through
the analysis of genome-wide expression profiles facilitates the
generation of biological hypotheses. We propose a statistical
framework for determining whether a specified group of genes for
a pathway has a coordinated association with a phenotype of
interest. Several issues on proper hypothesis-testing procedures
are clarified. In particular, it is shown that the differences in the
correlation structure of each set of genes can lead to a biased
comparison among gene sets unless a normalization procedure is
applied. We propose statistical tests for two important but differ-
ent aspects of association for each group of genes. This approach
has more statistical power than currently available methods and
can result in the discovery of statistically significant pathways that
are not detected by other methods. This method is applied to data
sets involving diabetes, inflammatory myopathies, and Alzhei-
mer’s disease, using gene sets we compiled from various public
databases. In the case of inflammatory myopathies, we have
correctly identified the known cytotoxic T lymphocyte-mediated
autoimmunity in inclusion body myositis. Furthermore, we pre-
dicted the presence of dendritic cells in inclusion body myositis and
of an IFN-��� response in dermatomyositis, neither of which was
previously described. These predictions have been subsequently
corroborated by immunohistochemistry.

microarrays � gene ontology � normalization � correlated data �
inflammatory myopathies

Extracting clear and coherent hypotheses from genome-wide
expression data remains an important challenge. Much of the

initial work has focused on the development of techniques for
accurate identification of differentially expressed genes and their
statistical significance in a variety of experimental designs (1).
However, the main difficulty in analysis lies not in the identification
of differentially expressed genes but in their interpretation. At-
tempting to understand individual genes on a list of significant
genes is demanding and laborious. Also, a comparison of gene lists
from random subsets of a data set in simulation studies clearly
shows that the gene list based on a small number of samples can be
highly variable and that studying each gene separately may be
ineffective in many cases (2, 3). The problem is compounded when
the pathway of interest involves moderate effects that are not
captured by the genes near the top of the list. Therefore, recent
efforts have focused on the discovery of biological pathways rather
than individual gene function, with the development of methods
that are robust to the inaccuracies of specific gene estimates and
provide a more expansive view of the underlying processes.

In the most common approach, genes are first ordered
according to their evidence for differential expression, by one
of many statistical methods available. Then, a short list of
specified length containing the top genes is examined against
each of the predefined sets of genes representing different
pathways, to determine whether any set is overrepresented in
the short list compared with the whole list. Suppose there are
B0 differentially expressed genes from the total of B genes, and

m0 genes of the pathway that involves m genes are among the
differentially expressed genes. To examine the evidence of
association in this case, Fisher’s exact test based on the
hypergeometric distribution or its large-sample approximation
�2 test is typically used. Given its simplicity, numerous soft-
ware and web sites provide this capability, most often by using
Gene Ontology as the source of gene sets. Examples include
GENMAPP (4), CHIPINFO (5), GOMINER (6), ONTO-TOOLS (7), and
FUNCASSOCIATE (8).

This approach is reasonable but has at least three shortcomings,
some of which are pointed out in ref. 9. First, only the most
significant portion of the gene list is used to compute the statistic,
treating the less-relevant genes as irrelevant. Second, the order of
genes on the significant gene list is not taken into consideration.
Simply counting the number of gene set members contained in the
short list leads to loss of information, especially if the list is long and
the difference between the more significant and the less significant
is substantial. Third, the correlation structure of gene sets is not
considered at all. This last issue is perhaps not as conspicuous as the
first two, but it is an important aspect to consider in assessing
statistical significance. We discuss this issue extensively in the
present work.

An alternative and more successful technique should consider
the distribution of pathway genes in the entire list of genes (9–12)
as well as adjust for the correlation structure. In the innovative
Gene Set Enrichment Analysis (GSEA) method (13), the following
steps are applied: (i) all genes are ranked by using a signal-to-noise
ratio; (ii) for each gene set, the distribution of gene ranks from the
gene set is compared against the distribution for the rest of the
genes by using the enrichment score (ES) based on a one-sided
Kolmogorov–Smirnov statistic; (iii) class labels are permuted to
generate a null distribution of ES; and (iv) statistical significance of
the observed score is assessed for the top-ranking gene set by
comparison with the null distribution of maximum scores from each
permutation. By considering the distribution of the gene ranks
belonging to each gene set over the entire list, this method is a clear
improvement over previous ones. However, the effect of the
gene-set size and the influence of other gene sets not under
consideration can be counterintuitive in some instances (14). Its
normalization and permutation procedures also may lead to inac-
curate assessment of statistical significance.

A successful approach for finding significant pathways depends
on two components: (i) an accurate and powerful statistical method
to discover significant patterns for a group of genes and (ii) a
comprehensive and well-characterized pathway information
mapped to microarray probes. In this work, we introduce a previ-
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ously undescribed statistical framework (Fig. 1). We present two
related hypotheses that test for complementary aspects of the gene
sets and develop a testing procedure for each case. In particular, we
point out that a normalization step is necessary to account for the
different correlation structure of gene sets before they can be
compared. The proposed approach includes a correct estimate of
the statistical significance for each group of genes in addition to
correct rank order, with proper adjustment for multiple testing
based on q values (15). The advantages of the method are demon-
strated on data sets from studies on diabetes, inflammatory my-
opathies, and Alzheimer’s disease (AD). The examples are carried
out by using �600 gene sets we have collected from pathway
databases (Biocarta, KEGG, and BioCyc) and pathway-specific
microarray annotations (www.superarray.com), as well as �5,000
gene sets from Gene Ontology.

Methods
Hypothesis Testing Framework. The overall objective of the analysis
is to test whether a group of genes has a coordinated association
with a phenotype of interest. In terms of formal statistical language,
there are two ways to formulate the null hypothesis.

1. Hypothesis Q1: The genes in a gene set show the same pattern
of associations with the phenotype compared with the rest of
the genes.

2. Hypothesis Q2: The gene set does not contain any genes
whose expression levels are associated with the phenotype of
interest.

Q1 and Q2 are related but not equivalent. When there is a significant
proportion of genes associated with the phenotype of interest, a
gene set would contain genes with association, even if the gene set
is purely a random subset from the entire gene list. A less obvious
but important fact, however, is that even if all the genes of the entire
list are not associated with the phenotype of interest, the observed
association of genes within a gene set could have a different
distribution compared with that of the genes outside the gene set
because of the special correlation structure among the genes in a
given gene set.

We give a simple example to illustrate this second point. Assume
that we only have three genes whose expression levels are inde-
pendent with the phenotype of interest. Suppose the expression
levels of the first two genes are positively correlated with a
high-correlation coefficient, e.g., 0.95, and the expression level of
the third gene is independent with that of the first two genes.
Moreover, we assume that the test statistics, e.g., t statistics, for
testing association between three genes and the phenotype, ti, i �
1, 2, 3, have the same marginal distribution. Let ri, i � 1, 2, 3 be the
ranks of ti, i � 1, 2, 3. If we consider a gene set that consists of the
first two genes, then the ranks of the genes in this gene set {r1, r2}
can take six possible combinations: {1, 2}, {2, 1}, {1, 3}, {3, 1}, {2,
3}, and {3, 2}. However, because t1 and t2 are highly correlated, we
would expect that r1 and r2 are more likely to be close to each other
than otherwise. Therefore, the probability of observing {r1, r2} �
{1, 3} would be smaller than that of {r1, r2} � {1, 2}, which suggests
that {t1, t2} is not a random sample from {t1, t2, t3}.

An essential difference between Q1 and Q2 is that Q1 compares
the association strength for genes in a gene set with the association
strength for genes outside the gene set, whereas Q2 only focuses on
the associations of genes within the gene set. The disadvantage of
Q1 is that a gene set without any gene associated with the phenotype
may be identified as demonstrating a special pattern of the asso-
ciations, and the identified gene set list is often much longer than
that according to Q2. The results from Q1, therefore, should be
interpreted with the awareness that some gene sets are statistically
significant because of correlation structure among expression pro-
files of its member genes. As a ranking criterion, Q2 also has its own
limitation: When there is a significant proportion of genes associ-
ated with the phenotype of interest, large gene sets corresponding
to irrelevant pathways could contain many genes associated with
the phenotype by chance and be ranked highly according to Q2.

Mathematical descriptions of the hypothesis-testing procedures
are presented in Appendix. Here, we describe the ideas briefly. The
two statistics we introduce for Q1 and Q2 are Tk and Ek, respectively,
for the kth gene set. Large magnitude indicates high significance,
and the sign indicates the direction of change in expression. To
obtain Tk, a measure of association ti is first computed between each
gene i and the phenotype of interest. Then, for the kth set, these
association measures of genes in that set are summed. To get
statistical significance of the statistic, it is compared against the
distribution under the null hypothesis, obtained by permuting the
association measures. For Ek, the procedure is similar, but the null
distribution is generated by permuting the phenotypes across
samples. If the data are represented by a matrix where the rows are
genes and columns are samples, the permutations of the null
distributions of Tk and Ek correspond to permuting rows and
columns, respectively. Because ti values are correlated, a special
weighting function may also be used in the summation. The details
are discussed in Appendix.

The original GSEA procedure generates the null distribution of
the ES by permuting the phenotype (group labels) with Q2 as the
implicit null hypothesis, although the claimed null hypothesis is that
the differences between two states of genes in the gene set are
randomly distributed in the list of all differences. As discussed
before, Q1 and Q2 answer related but different questions. The fact
that it generates the null distribution of the test statistic under
hypothesis Q2 while using the Kolmogorov-Smirnov statistic to test

Fig. 1. Outline of the methodology. An extensive collection of pathway
information is assembled from various databases; a statistical test is applied to
find relationships between the expression levels and the phenotype, and then
two different testing procedures are used to find statistically significant
pathways. Proper adjustments for correlation structure and multiple testing
are critical.
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hypothesis Q1 results in loss of power. Furthermore, to test Q2, it
seems counterintuitive to use the expression levels of genes outside
the gene set as done in GSEA. All of the genes of interest are within
the gene set, and the test result should not be influenced by genes
outside the set.

Normalization for Comparing Gene Set Scores. After the test statistics
Tk and Ek are computed for testing hypotheses Q1 and Q2, respec-
tively, we rank the K gene sets in order of their significance and
control for the inflated Type I error due to multiple comparisons
of gene sets. It is tempting to use a permutation-type procedure as
in Significance Analysis of Microarrays (16), where a regularized t
statistic is computed for each gene, and its significance is deter-
mined by how each observed order statistic compares with the
mean of the same order statistic in permuted samples. The diffi-
culty, however, is that unlike in the Significance Analysis of
Microarrays procedure for regular microarray data, the null distri-
butions of the test statistics (Tk or Ek) for different gene sets are not
the same. It is therefore unfair to rank the gene sets simply by the
observed raw test statistics. For example, when we test hypothesis
Q1, the null distribution of T1, . . . , TK could be very different
because of different gene set sizes and correlation structure. This
effect is a subtle but critical issue.

This phenomenon is observed, for example, in the application of
GSEA to a diabetes data set (13). Focusing on the difference
between the 17 normal glucose tolerance and 18 Type 2 diabetes
mellitus subjects, we repeated the analysis with the same prepro-
cessing steps and the same gene sets. When we simulated the null
distribution of raw ES for each gene set by permuting the group
labels with 1,000 permutations, we indeed found that the null
distributions are markedly different, with their standard deviations
(SDs) ranging from 25 to 110. This result implies that the same ES
for different gene sets could suggest evidence of different strengths
for association of interest and that the raw ES across different gene
sets should not be compared directly. The marked difference in
distributions is due to the complex correlation structure of genes
within different gene sets. The highest ranked gene set representing
oxidative phosphorylation, for example, contains genes that are
tightly regulated and hence highly correlated. When we plot the SDs
of the approximated null distribution for ES vs. the observed ES
(Fig. 2), we see a clear positive correlation. In fact, the three highest
gene sets by ES are the same three with the largest variance in the
null distribution.

To remedy this problem, we suggest a simple standardization that
results in normalized statistics NTk and NEk, which have the same
null distributions for all gene sets. We then can rank the gene sets
by NTk, and a resampling procedure similar to the one in Signifi-
cance Analysis of Microarrays can be carried out to approximate
the joint null distribution of ordered {NT1, . . . , NTK}. See Appendix
for a mathematical description.

Results
Example I: Reanalysis of Diabetes Data. We carry out a more
comprehensive analysis of the data set described above to illustrate
the properties of the method, especially in relation to GSEA. To be
sure that the differences observed are only due to the main feature
of the algorithm, we make a couple of adjustments. First, the
original GSEA was a one-sided approach to identify gene sets
containing down-regulated genes in Type 2 diabetes mellitus sub-
jects, but we implement a two-sided test. Second, we use the t
statistic as the difference metric for individual genes.

For the measure of significance, we estimated the q value from
the permutation procedure for each gene set, resulting in the
identification of eight gene sets significant at the 0.05 level. As
discussed in Appendix, the q value is the counterpart of the p value
in the multiple testing scenario. Some of the test statistics and their
corresponding ranks for 26 gene sets, including the five top-ranked
gene sets for each procedure, are listed in Table 1. One statistic

shown is the normalized ES (NES), applying the normalization step
described above to ES. Interestingly, the oxidative phosphorylation
gene set is still ranked first, but the rest of the rankings for ES and
NES are substantially different, confirming the necessity of stan-
dardization. Overall, even when the various test statistics produced
similar rankings, only some of them yielded statistically significant
findings. In particular, we find that none of the NES based q values
are �0.1. This loss in power is not surprising: In GSEA we tested
the hypothesis Q2, from which we generated the null distribution,
by using the Kolmogorov–Smirnov test, which is designed to test Q1
and hence is less powerful.

The final interpretation requires consideration of both NTk and
NEk. As described earlier, the correlation structure in gene sets can
give false positives in NTk; conversely, NEk can be influenced by the
gene set size. Therefore, the gene sets that rank high in both
categories are the best candidates. It appears that all procedures
point to gene set OXPHOS (oxidative phosphorylation), whose
members tend to be expressed relatively higher in normal glucose
tolerance subjects. This finding is consistent with the previous
conclusion (13) and also is supported by another gene set
(MAP00190) and the mitochondria gene sets. Of particular interest
are two gene sets that are significant by NTk and NEk criteria (q
value � 0.01), even though their rankings by ES are not as high.
MAP00910 group has 19 genes related to amino acid metabolism
that are up-regulated in Type 2 diabetes mellitus patients, which has
been repeatedly reported (17). c22-U133 is more difficult to inter-
pret because it refers to a cluster in ref. 18 consisting of heteroge-
neous set of genes. It contains many mitochondrial genes as well as
those related to protein and carbohydrate metabolism and tran-
scription. Further investigation is needed to identify targets of
interest.

Example II: Inflammatory Myopathies. We examined 49 muscle
samples consisting of 23 from patients with inclusion body
myositis (IBM), 13 from patients with dermatomyositis, and 13
from normal subjects (NORM). After a global normalization, we
eliminated those genes whose expression levels were below the

Fig. 2. A scatterplot of the SDs of null distributions for the ES vs. the observed
ES for the diabetes data. Each point represents a gene set. The Pearson
correlation coefficient is 0.55. Without proper normalization among different
gene sets, a high score may be due to its wide null distribution, which depends
on the size and correlation structure of the gene set.
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trimmed mean of the sample in all patients, which resulted in
10,526 genes. We used 926 gene sets whose size is between 20 and
500 based on these genes; to compare the gene expression levels
between NORM and dermatomyositis, we used the t test for
individual genes. We identified 272 and 829 gene sets with q
value � 0.01 according to NTk and NEk, respectively. Similarly,
we compared the expression levels between NORM and IBM

and identified 269 and 378 gene sets with q value of �0.01
according to NTk and NEk, respectively. The gene sets are
ordered by their average ranks for NTk and NEk.

The pathogenesis of dermatomyositis has been modeled as a
humorally mediated disorder initiated by autoantibody-mediated
muscle capillary destruction and ischemia of muscle (19). Our
analysis (Table 2) indicates a major disturbance of transcription of

Table 1. Analysis of diabetes data

Gene set Set size ES NES NTk NE*k

OXPHOS (oxidative phosphorylation)† 106 1 1 1 4
human-mitoDB† 440 2 22 2 11
Mitochondria† 450 3 25 3 7
c18-U133 (muscle development‡)† 202 4 18 4 19
c20-U13 (macromolecule metabolism‡)† 216 5 26.5 6 36
MAP00190 (oxidative phosphorylation)† 53 6 21 5 13
MAP00910 (nitrogen metabolism)†§ 19 11 2 8 2
MAP00330 (arginine and proline metabolism) 41 12 3 31 14
MAP00500 (starch and sucrose metabolism) 13 13 5 20 5
c22-U133 (cell growth and maintenance‡)†§ 84 18 24 7 1
MAP00631 (1,2-Dichloroethane degradation)¶ 8 31 4 66 67
MAP00960 (alkaloid biosynthesis II) 3 48 16 21 11
c29-U133 (musculoskeletal movement‡)§ 102 82 60 82 3

The five top-ranked sets for each statistic are shown, ordered by the ES rank. ES and normalized ES give
substantially different ranks.
†q value is �0.05 according to NTk.
‡A brief summary; many categories of genes are present in these clusters.
§q value is �0.05 according to NE*k, a variation of NEk that is used for increased power [see NEk(�k) in Supporting
Text].

¶MAP00631�MAP00053 (Ascorbate and aldarate metabolism) are identical gene sets after filtering.

Table 2. Analysis of inflammatory myopathy data

Gene set category Pathway Set size NTk Rank NEk Rank

Normal (NORM) vs. Dermatomyositis
Customarray†‡ Interferon ��� response 107 �10.61 8 �4.71 4
GO:0019883†‡ Antigen presentation, endogenous antigen 25 �7.56 38 �4.95 2
GO:0030106†‡ MHC class I receptor activity 23 �7.30 43 �5.05 1
GO:0019885†‡ Antigen processing, endogenous antigen via MHC class I 29 �7.12 45 �4.80 3
GO:0019882†‡ Antigen presentation 49 �5.88 70 �4.09 8
GO:0045298†‡§ Tubulin 21 �5.55 77 �4.54 5
GO:0030705†‡§ Cytoskeleton-dependent intracellular transport 31 �4.96 85 �4.25 7
GO:0005874†‡ Microtubule 32 �4.80 89 �4.31 6
GO:0015075† Ion transporter activity 219 11.09 4 �1.11 790.5
GO:0008324† Cation transporter activity 190 11.12 3 �0.92 806
GO:0006091† Energy pathways 217 12.95 2 �0.90 808
GO:0015399† Primary active transporter activity 175 10.24 10 �1.00 803
GO:0015980† Energy derivation by oxidation of organic compounds 140 10.71 7 �0.88 809
GO:0015077† Monovalent inorganic cation transporter activity 144 10.51 9 �0.74 816
KEGG† Ribosome 153 13.09 1 �0.46 825
GO:0015078† Hydrogen ion transporter activity 140 10.89 6 �0.62 820
KEGG† Oxidative-phosphorylation 130 10.94 5 �0.52 822

NORM vs. IBM
GO:0030106†‡ MHC class I receptor actitivy 23 �14.69 3 �8.59 1
GO:0019882†‡ Antigen presentation 49 �16.12 1 �7.07 4
GO:0019883†‡ Antigen presentation, endogenous antigen 25 �14.2 4 �8.30 2
GO:0030333†‡ Antigen processing 52 �15.68 2 �6.82 5
GO:0019885†‡ Antigen processing, endogenous antigen via MHC class I 29 �13.84 5 �7.76 3
Customarray†‡ Interferon ��� response 107 �12.77 7 �5.07 9
Biocarta†‡ CTL-mediated immune response against target cells 23 �8.90 10 �6.08 6
GO:0045012†‡ MHC class II receptor activity 23 �8.42 12 �5.48 7
Customarray†‡ Dendritic antigen presenting cell 158 �13.33 6 �4.50 14
GO:0019886†‡§ Antigen processing, exogenous antigen via MHC class II 22 �7.95 17 �5.37 8
GO:0003735† Structural constituent of ribosome 211 9.01 9 �0.53 797
KEGG† Ribosome 153 9.40 8 0.06 840.5

†q value is �0.01 according to NTk.
‡q value is �0.01 according to NEk.
§GO:0045298�GO:0046785 (microtubule polymerization), GO:0030705�GO:0007018 (microtubule-based movement), and GO:0019886�
GO:0019884 (antigen presentation, exogenous antigen) are identical gene sets after filtering.
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interferon-���-inducible genes, not predicted by the current model
of this disease. The same finding also was made based on separate
analyses of this data set, and subsequent immunohistochemical
studies of muscle tissue confirmed a key role in the pathogenesis of
proteins encoded by these genes (20).

IBM has been modeled as having cytotoxic T lymphocyte
(CTL)-mediated destruction of MHC class I antigen expressing
myofibers (19). Our analysis predicts that this model is largely
correct, with enrichment of genes encoding MHC class I antigen
presentation and the category ‘‘CTL-mediated immune response
against target cells.’’ Additionally, the analysis predicts the presence
of dendritic cells in IBM muscle, which was not previously de-
scribed. These results have been subsequently corroborated by
immunohistochemistry, which showed a substantial number of
dendritic cells infiltrating IBM muscle. The details of this obser-
vation will be reported separately (S.A.G., unpublished data). We
emphasize that this finding is not evident from the list of differen-
tially expressed genes but was found by the proposed method.

Example III: AD Data. Recently, the pathogenesis of AD was studied
based on gene expression of hippocampal specimens, with 22 AD
subjects and 9 controls (21). For all subjects, Mini Mental Status
Examination (MMSE) scores as well as neurofibrillary tangle
scores were obtained. We applied our method to this data set,
concentrating on the MMSE score as the phenotype and excluding
the control group. In the two previous examples, the phenotype was
a class label, and the t statistic was used to measure the strength of
association between the expression values and the phenotype. In
this example, because the MMSE score is a continuous variable,
Fisher’s z, 1�2 log{(1 � �)�(1 � �)}, is used as a metric for
association, where � is the Pearson correlation coefficient between
expression level and MMSE. The same filtering procedure used in
the previous example was applied.

Strikingly, according to our analysis, MMSE score showed a
strong positive correlation with calcium ion transport and calcium
channel activity. More than 80% of the genes in each group were
in fact up-regulated in the subjects with high MMSE scores.
Destabilization of calcium signaling has been shown to be central to
the pathogenesis of AD (22). Calcium ion transport group also was
found to be significant by the authors of ref. 21, but only by marginal
significance (p value � 0.0482). The second most significant group
was ‘‘signal transduction in cancer,’’ which contains numerous genes
related to apoptosis, such as TP53, BAX, BCL2, AKT, and TNF.
This group showed negative correlation with MMSE score or,
equivalently, positive correlation with severity of AD. The third
category ‘‘Tumor metastasis’’ also contained a number of genes
implicated in AD including matrix metalloproteinase 2, 3, and 9
(MMP9), MAP2K4, TGFB1, and ERBB2; previously, MMP9
concentration was found to be elevated in cerebrospinal fluid of AD
patients (23). Others on the list included several classes of genes
related to energy metabolism including mitochondrial electron
transport pathways, which showed positive correlation with MMSE
score. This finding supports the mitochondria-mediated pathophys-
iology of AD (24). The table containing the top 10 gene sets in NTk
and NEk (ordered by their average ranks) and more information on
the three data sets in this section can be found in Supporting Text
and Tables 3 and 4, which are published as supporting information
on the PNAS web site.

Discussion
The proposed method allows for the detection of subtle processes
that are not likely to be revealed by examining a small list of highly
significant genes. No technique for identifying differentially ex-
pressed genes can circumvent the problem of small sample sizes that
arises in nearly all microarray studies, but by examining the pattern
for a group of genes, it is possible to mitigate the effect of errors on
individual gene estimates. By applying proper normalization and
considering both Q1 and Q2, the proposed approach selects those

gene sets that are likely to be relevant, with good statistical power.
Valid statistical tests have been previously described (10, 25), but we
emphasize the need to test both aspects: a gene set with tightly
correlated genes, but otherwise unimportant, can appear significant
if only Q1 is tested; when a high fraction of genes are associated with
the phenotype, a large gene set can appear significant by chance if
only Q2 is tested. We have found that ordering by the average rank
of the two statistics can be a useful heuristic in ranking gene sets.

For this approach to be successful, a large collection of carefully
curated information on pathways must be available. Although Gene
Ontology has been a useful source in this regard, pathways involving
multiple processes and functions are not well represented. In this
work, we have collected several hundred pathways from public
databases and demonstrated their utility. In the future, a coordi-
nated effort to define the pathways and to map the gene identifiers
of each pathway to the target sequence IDs of each array type will
be essential. Defining the relationships among the gene sets them-
selves and organizing them also would facilitate interpretation,
especially given the hierarchical structure in Gene Ontology.

We have considered three examples in which the phenotype of
interest was a class label or a continuous variable, but the same
approach also can be used for more complicated phenotypes. For
example, for multiclass comparisons, we can use the F-statistic from
ANOVA-type comparisons. If the phenotype is the right censored
survival time, the standardized log-rank test statistic can be used.

Appendix
Testing Procedure for Q1. For this hypothesis, we can test whether the
observed associations of genes in a gene set is a random sample
from the background distribution of all observed associations.
Because we have multiple gene sets under consideration, once we
perform a statistical test for a specific gene set, we can rank the gene
sets according to the strength of the statistical evidence against the
null hypothesis Q1.

We first introduce some notations. Let the indices i and j denote
the ith gene and jth sample, with i � 1, . . . , B and j � 1, . . . , n for
B genes and n subjects. We assume that the phenotype of interest
is measured by {z1, . . . , zn} for the n subjects, with the resulting
association measure ti between the ith gene and the phenotype of
interest.

We also assume that Gki, k � 1, . . . , K and i � 1, . . . , B, indexes
the corresponding K gene sets of interest, i.e., Gki � 1 if the kth gene
set contains ith gene and 0 otherwise. With the prespecified gene
set information, the data can be represented as the following matrix:

�
t1 t2 · · · tB

G11 G12 · · · G1B

· · · · · · · · · · · ·
GK1 GK2 · · · GKB

�.

If we view Gi1, . . . , GiB and t1, . . . , tB as B independent and
identically distributed copies of random variable Gi and t, respec-
tively, then testing whether the observed associations of genes in the
kth gene set is a random sample from the background distribution
is equivalent to testing the independence between Gi and t. Various
statistical tests can be used here.

To detect possibly moderate but coordinated associations for
genes in a gene set, the specific alternative is likely to be a location
(mean) shift from the background distribution. Therefore, a test
against the omnibus alternative (any type of deviation from the
reference distribution) such as the Kolmogorov–Smirnov test,
which is used in GSEA, is not the most appropriate candidate in
terms of power. Instead, we suggest the t test or the Wilcoxon rank
test, both of which are more powerful for detecting location
difference between two distributions. If we use the t test, the test
statistics for kth gene set can be written as
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Tk �
1

mk
�
i�1

B

Gkiti,

where mk � ¥i�1
B Gki, the number of genes in the kth gene set. Under

the null hypothesis, Tk should be centered at Ê(t) � B�1¥i�1
B ti.

Because different gene sets may or may not share the same genes,
Tk, k � 1, . . . , K are dependent. Their null distributions can be
generated by permuting {t1, . . . , tB}. To be more specific, under the
null hypothesis that t is independent with (G1, . . . , GK), the null
distribution of (T1, . . . , TK) can be approximated by the empirical
distribution of (T*1, . . . , T*K), where

T*k �
1

mk
�
i�1

B

Gkit*i, i � 1, . . . , K,

and {t*1, . . . , t*B} is permuted {t1, . . . , tB}.
This procedure is therefore different from GSEA in two respects.

First, we favor the t test in view of the analysis objective. More
importantly, permuting the phenotype {z1, . . . , zn} does not give the
correct null distribution for Q1, and therefore we propose to
permute the association metric {t1, . . . , tB}.

Testing Procedure for Q2. We propose a test for Q2 based on
expression levels of genes within the gene set. One simple test
statistic is the average of association metric ti of genes in the gene
set

Ek �
1

mk
�
i�1

B

Gkiti.

It is important to note that although the formula for Ek is the
same as that of Tk for testing Q1, their probability interpretations
and hence their testing procedures are quite different. In Tk, ti is
deterministic and the gene set structure is random; in Ek, the
opposite is true.

Because ti approximately follows N(0, 1) when the expression
is independent of phenotype, it is tempting to conduct a test by
using the approximation �mkEk � N(0, 1), under hypothesis Q2.
However, the approximation is not valid even under the null
hypothesis because of the potential correlations among ti. Because
the genes in the same gene set are functionally related, their
expression levels and association metric ti are likely to be depen-
dent. Therefore, permutation methods should be used to approx-
imate the null distribution of (E1, . . . , EK), where phenotypes
{z1, . . . , zn} are permuted, as was done in the original GSEA.

The power of the test against a certain alternative could be
improved by using a more general linear combination of the form

(1�mk)¥i�1
B Gkiwkiti, where wki are appropriate weights used to

combine mk test statistics while accounting for the correlations in
ti. This procedure is described in Supporting Text.

Standardization of Gene Set Scores. Assuming F1�, . . . , FK� are the
estimated null distributions of T1, . . . , TK by permutation, we first
find the corresponding transformations �k� � ��1{Fk�}, k �
1, . . . , K, where �� is the cumulative distribution function for
standard normal. This transformation results in the null distribution
of NTk � �k(Tk) being N(0, 1) for all k.

Multiple Testing Adjustment. Because the testing procedure is car-
ried out for hundreds of gene sets, it is critical to apply a proper
adjustment to control for type I error. In our analysis, we use the
q value, which is a counterpart of the p value in the context of false
discovery rate, to assess the statistical significance of associations
for each gene set (15). Family-wise error rates, such as those
obtained by the Bonferroni or the Westfall–Young method, are too
stringent. A simple version of the q value for the kth gene set is

p̂0

�m�1
M �i�1

B I	�S*im���Sk�


M�i�1
B I	�Si���Sk�


,

where p̂0 is an estimated upper bound for the proportion of null
hypotheses, Si is the observed test statistic for the ith gene set, S*im
is the permuted test statistic for the ith gene set in the mth permuted
sample, m � 1, . . . , M, and I{�} is the indicator function giving 1 if
the argument is true and 0 otherwise.

There are different ways to estimate p̂0 in the literature, most
involving a subjectively chosen smoothing parameter. Here, we
adopt a previously undescribed, objective approach. We first com-
pute {p1, . . . , pB}, p values testing the association for all gene sets.
Because the marginal density function f0(p) for p values is nonin-
creasing, f0(1 � �) is an upper bound for the proportion of null
hypotheses, and its estimator can be used to replace p̂0. We propose
to estimate f0(p) by the left derivative of the smallest concave
function greater than the empirical distribution function of {p1, . . . ,
pB} (least concave majorant). This value is the nonparametric
maximum likelihood estimator (NPMLE) of f0(p). Therefore p̂0 can
be replaced by f̂0(1 � �) for a prespecified small �, e.g., 0.05, where
f̂0(p) is the aforementioned NPMLE of f0(p).
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