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Collections of mutants usually contain more mutants bearing
multiple mutations than expected from the mutant frequency and
a random distribution of mutations. This excess is seen in a variety
of organisms and also after DNA synthesis in vitro. The excess is
unlikely to originate in mutator mutants but rather from transient
hypermutability resulting from a perturbation of one of the many
transactions that maintain genetic fidelity. The multiple mutations
are sometimes clustered and sometimes randomly distributed. We
model some spectra as populations comprising a majority with a
low mutation frequency and a minority with a high mutation
frequency. In the case of mutants produced in vitro by a bacterio-
phage RB69 mutator DNA polymerase, mutants with two muta-
tions are in �10-fold excess and mutants with three mutations are
in even greater excess. However, phenotypically undetectable
mutations seen only as hitchhikers with detectable mutations are
�5-fold more frequent than mutants bearing detectable muta-
tions, indicating that they arose in a subpopulation with a higher
mutation frequency. Excess multiple mutations may contribute
critically to carcinogenesis and to adaptive mutation, including the
adaptations of pathogens as they move from host to host. In the
case of the rapidly mutating riboviruses, the viral population
appears to be composed of a majority with a mutation frequency
substantially lower than the average and a minority with a huge
mutational load.

bacteriophage RB69 � multiple mutations � mutation rate � ribovirus

The idea that mutations arise at random is a common motif in
descriptions of the mutation process. In contrast, mutations

are almost always nonrandomly assorted among the sites at
which they can be detected. Here, we describe another kind of
nonrandom assortment: often, more mutants contain two or
more mutations than expected from a random process.

An excess of mutants with multiple mutations (‘‘multiples,’’
comprising doubles, triples, and so on) is of interest for at least
four reasons. First, it signals an aspect of genetic instability that
has received little attention. Second, it provides an insight into
the way that genetic diseases that require multiple mutations
(such as carcinogenesis) can proceed in the absence of a con-
ventional enhancer of mutagenesis such as a mutator mutation.
Third, it similarly provides an insight into the way that pathogens
that require multiple mutations to sustain an infection in a new
host can accumulate these mutations in bursts rather than
serially. Fourth, it provides a mechanism by which adaptive
evolution can proceed relatively rapidly when two or more
mutations are required, each of which is individually neutral or
deleterious.

Widespread Excesses of Mutants Bearing Multiple Mutations
Incidence of Multiples in Mutation Spectra. We examined numerous
spectra for their incidence of multiples and calculated the
expected frequencies of doubles and higher-order multiples.
Many of these spectra were gathered first to characterize the
fraction of spontaneous mutations that are base substitutions
(1), to which were added other spectra as encountered unsys-
tematically. Three kinds of mutations were excluded from
consideration: (i) tandem multiples, because they were deemed
likely to arise as single events; (ii) deletions that include most or
all of the reporter sequence, because they necessarily preclude

multiple mutations; and (iii) insertions of mobile elements,
because they might sometimes arise by mechanisms independent
of other kinds of mutagenesis. The experimentally observed
variables required to estimate the expected number of multiples
are the mutant frequency, F, and the number of sequenced
mutants, Ms. The expected average number of mutations per
reporter sequence, a, can be estimated from the first term of the
Poisson distribution, P (0) � the fraction of the population with
no mutations � e�a � 1 � F, whence a � �ln(1 � F). The
expected number of doubles among Ms sequenced mutants is
a2e�a�2 times the population size that yielded the sequenced
mutants, Ms�F. Thus, the expected number of doubles is E2 �
Msa2e�a�2F. The expected number of higher multiples can be
calculated sequentially from each previous term; for instance,
the number of expected triples among sequenced mutants is
E3 � E2a�3. The calculation also holds well when the fraction of
mutations detected is substantially �1.

Table 1 lists spectra with multiple mutations. The mutation-
reporter sequences represent endogenous genes and transgenes,
gene fragments and complete genes, in vivo and in vitro systems,
and phylogenetically diverse organisms. Some spectra could not
be considered because a value for F was not provided or it was
impossible to discern whether any of the mutations had arisen in
multiples. Because multiples usually occur in a small fraction of
the mutants, most of the spectra lacking multiples were relatively
small. Of the 38 spectra in Table 1 (including two entries that
pool spectra), 27 contain multiples in substantial to huge excess
over expectations, four have multiples in modest excess, and
seven have about the expected numbers of multiples. Excesses of
multiples occur in RNA and DNA viruses, cellular microbes, and
vertebrate tissues. Multiples are also generated in excess by
diverse polymerases in vitro. In most of these spectra, the
experimental procedures were unlikely to introduce additional
mutations during the processing of a mutant isolate (for instance,
by errors during amplification). Although we sometimes could
not distinguish between mutations that were known to be
detectable and those known or suspected to be undetectable in
the scoring system, the fraction of undetected base substitutions
in most spectra is only a fewfold more than the fraction that does
produce a phenotypic change (1), and, thus, the presence of
phenotypically silent mutations does not confound our general
conclusion: a striking excess of multiple mutations is a wide-
spread phenomenon.

In addition to mutations arising in replicating cells, which
dominate the entries in Table 1, mutation also occurs in non-
dividing stationary-phase cells (28, 29). Some of these mutations
also arise as multiples in a transiently hypermutating subpopu-
lation of the mutating cells (30, 31).

Transient or Heritable Hypermutation? An excess of multiples
suggests the existence of a hypermutating subfraction of the
population. Hypermutation might be driven either by a heritable
mutator mutation or by a transient condition, such as the
induction of an encoded mutator factor (as in the Escherichia coli
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SOS system) or an accident in some other DNA transaction; the
latter notion was described in ref. 32. Mutator mutations are
deleterious in most conditions (33–36) and are found at corre-

spondingly low frequencies in laboratory populations of, for
instance, E. coli and Salmonella typhimurium (37, 38). A general
argument suggests that excesses of multiples usually occur

Table 1. Mutants with multiple mutations in mutational spectra

System
Genotype or

strain
Reporter

gene F Ms E2 D T Notes Ref.

Tobacco mosaic virus WT MP 4.3 � 10�2 17 0.36 3 3 2
HIV-1 RT in vitro WT lacZ� 6.4 � 10�2 434 13.9 24 a, b 3

WT lacZ� 2.3 � 10�2 99 1.2 2 4
1.3 � 10�1 97 6.2 19 1 4

Bacteriophage RB69�T4 Exo� rI 2.0 � 10�2 72 0.72 3 c 5
PolA�S�T rI 2.7 � 10�2 147 2.0 3 c 5

T4 gp43 in vitro Exo� lacZ� 1.1 � 10�2 121 0.65 2 b 6
Herpes simplex virus WT supF 4.9 � 10�4 80 0.020 7 1 d 7

tk 6 � 10�5 66 0.0020 1 d 8
PAAr5 supF 1.0 � 10�3 87 0.045 4 2 7
Y7 supF 1.9 � 10�3 53 0.050 0 1 7

tk 4 � 10�2 66 1.3 6 8
Y7 Exo� supF 4.8 � 10�3 249 0.60 11 9
YD12 supF 1.5 � 10�3 77 0.059 2 7

Escherichia coli WT supF 2.1 � 10�7 38 0.000004 1 e 10
WT lacId 1.3 � 10�7 368 0.000024 2 11
mutD5 lacId 1.5 � 10�3 498 0.37 4 e 12
mutL lacId 3.5 � 10�5 243 0.0043 2 13
mutL lacId 1.2 � 10�5 196 0.0011 1 13
dnaE911 lacId 0.8 � 10�7 476 0.000019 1 11
dnaE173 rpsL 9.2 � 10�6 56 0.00026 1 1 14

E. coli Pol I(K) in vitro WT lacZ� 4.7 � 10�3 118 0.28 3 b, f 15
Y766A�S lacZ� 3.8 � 10�2 224 4.3 5 15

Saccharomyces cerevisiae WT SUP4-o 1.9 � 10�6 297 0.00028 2 16
rad1 SUP4-o 1.3 � 10�5 242 0.0015 1 16

Rat cell line WT cII 1.3 � 10�4 99 0.0064 1 g 17
Mouse cell line WT gpt 2 � 10�5 43 0.00043 0 1 (5) h 18
Chinese hamster cell line WT gpt 1.2 � 10�4 18 0.0011 2 i 19
Human cell line WT hprt 9 � 10�6 200 0.0009 6 1 j 20
Mouse tissue WT cII 9.5 � 10�5 182 0.0086 1 k 21

WT lacI 4.2 � 10�5 348 0.0073 2 l 22
WT lacI 2.3 � 10�5 435 0.0050 7 1 (5) m 23

Human tissue WT HPRT 1.9 � 10�4 82 0.0078 5 1 (4) 24
Rat hepatoma Pol � in vitro WT lacZ� 10.6 � 10�2 296 15.7 �16 b, n 25
Chick embryo Pol � in vitro WT lacZ� 7.3 � 10�2 144 5.2 �1 n 25
Rat Pol �*� in vitro WT HSV-tk 1.4 � 10�3 86 0.060 2 o 26

T79S HSV-tk 2.7 � 10�3 79 0.11 3 9 (�3) o 27
Y265C HSV-tk 4.4 � 10�2 79 1.7 31 14 (�3) o 27

The reporter gene is natural unless noted to be a transgene. WT, wild type; F, frequency of spontaneous mutants, adjusted where appropriate for the efficiency
of detecting mutants and for mutations that do not produce a phenotype; MS, number of sequenced mutants exclusive of those containing either large deletions
or insertions of mobile elements; E2, number of doubles expected from a random distribution of mutations; D, observed number of doubles; T, observed number
of triples or, for entries of the form n(m), number n of mutants with m mutations.
aHuman immunodeficiency virus reverse transcriptase.
bThe lacZ� system distinguishes between mutations that are or are not detectable when present as singles. Only detectable mutations are tabulated.
cBacteriophage T4 43� was replicated by a plasmid-encoded replicase (gp43) from the related bacteriophage RB69. Gp43 has both polymerase (Pol) and
exonuclease proofreading (Exo) sites. The PolA�S�T entry is the sum for three different substitutions at Y567 with very similar mutator properties, F being the
value for each mutant weighted by its MS.

dsupF is a tRNA transgene from E. coli of a type that may be generally hypermutable, whereas tk is an endogenous gene and displays an approximately normal
mutation rate.

eNo other multiples were observed among lacI mutants pooled from several wild-type or mutator strains with F � 2 � 10�7, Ms � 683, E2 � 0.00005 or with F �
2 � 10�6, Ms � 661, E2 � 0.0008.

fK indicates the Klenow fragment of Pol I. Y766A�S are mutator mutations.
gEmbryonic fibroblast cell line with a cII transgene from phage �.
hA9 cell line with a gpt transgene from E. coli. The five mutations were base substitutions scattered throughout gpt.
iOvary cell line with a gpt transgene from E. coli.
jTK6 lymphoblastoid cell line with a human hprt cDNA transgene at five different sites.
kMouse liver, lung, and spleen with a cII transgene from phage �.
lMouse liver with a lacI transgene from E. coli.
mNumerous mouse tissues with a lacI transgene from E. coli.
nBecause doubles were combined with duplications and complex mutations, the D values are ‘‘�.’’
oRecombinant enzyme made in E. coli and bearing an additional Gly-Ser at its 5� end.
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independently of mutator mutations. The observed frequency of
doubles equals the mutant frequency times the proportion of
doubles among mutants (FD � FD�Ms). Numerous reports over
several decades indicate that a mutator mutation increases the
value of F averaged across a gene by at most �102-fold,
stimulating some sites by much more and many others by much
less. At least in E. coli and S. typhimurium, the frequency of
mutator mutants in a laboratory population is �10�5 (36, 37).
Therefore, the frequency of doubles generated by mutators will
be �(102F)2(10�5) � 10�1F2, and the fraction of doubles gen-
erated by mutators among all doubles will be � FMs�10D.
Inspection of Table 1 reveals that this fraction is �0.1 for all of
the entries for which D is substantially greater than E2. Thus,
mutator mutations probably generate few of the observed mul-
tiples in mutational spectra.

Multiples Generated in Vitro
The RB69 System. For most spectra, collecting and sequencing
mutants requires months and too few multiples accumulate to
provide grist for analysis. One useful exception is lacZ� spectra
generated in vitro by mutator versions of the bacteriophage RB69
DNA polymerases, with or without polymerase accessory pro-
teins. With an engineered version of the polymerase whose
proofreading exonuclease has been inactivated (Exo�) and
whose insertion accuracy has been compromised by an active-
site replacement that stimulates base substitutions (PolY567A)
(5), lacZ� mutant frequencies are �10–2 (39, 40). Here, we
describe the multiples that arise in these spectra, sometimes in
�15% of the mutants. The lacZ� mutants were produced by the
mutant polymerase together with one of four combinations of
accessory proteins: none, gp32 � gp44�62, gp45 plus gp44�62,
and all four (gp32 being the single-stranded DNA-binding
protein or SSB, gp45 the processivity clamp, and gp44�62 the
clamp-loading complex.) The lacZ� system has been used so
extensively that experience has revealed which mutations are
detectable as singles and which are not (39, 41). Thus, two kinds
of mutations can be distinguished in these experiments. Almost
all mutants bear a detectable mutation within the target se-
quence, whereas almost all mutations that are undetectable as
singles are seen only in the presence of a detectable mutation and
may be considered to be hitchhikers.

The distributions of detectable mutations, and undetectable
mutations arising together with one or more detectable muta-
tions, are shown in Table 2. The upper half of the table shows
that multiples comprising detectable mutations arose on average
in 10.6-fold (range 9.2–12.7) excess of the predictions of a
random assortment. Triples, when seen, were in much greater
excess. Thus, a DNA polymerase copying a DNA template in
vitro, with or without accessory proteins, can produce a substan-
tial excess of multiples over the predictions of a random distri-
bution of mutations. The accessory proteins increased total
mutant frequencies by �1.5-fold and increased the frequency of
multiples by up to �2-fold (7.0% with no accessory proteins,
10.5% with gp32, 14% with gp45, and 15% with gp32 plus gp45),
perhaps reflecting the abilities of the accessory proteins to
improve processivity (A.B. and J.W.D., unpublished results).

The bottom half of Table 2 reveals that the distribution
changes markedly for undetectable mutations hitchhiking with
detectable mutations. The frequencies of mutants with unde-
tectable mutations among mutants with detectable mutations
(Fud) increased compared with the mutant frequencies of mu-
tants bearing one or more detectable mutations (Fd), the average
increase being 4.6-fold (range 4.0–5.3). However, the number of
pairs of otherwise undetectable mutations was always close to
the expectation for a random distribution of mutations, on
average only 1.006-fold in excess (range 0.8- to 1.3-fold).

Table 3 describes mutants generated by other RB69 DNA
polymerases both in vitro and in vivo (5, 39). In the lacZ� in vitro
system, the wild-type enzyme is too accurate to produce new
mutations. For the Exo� Pol� and Exo� PolY567A enzymes,
results with and without all four accessory proteins were pooled;
detectable doubles were produced in �6-fold excess, a little
lower than the average 10.6-fold excess produced by the Exo�

PolY567A polymerase (Table 2). In the rI in vivo system, a few
doubles were observed with the Exo� Pol� polymerase and with
Exo� polymerases bearing various substitutions at the Pol Y567
residue; probably too few mutants generated by the Pol� Exo�

enzyme were sequenced to detect multiples. The D�ED ratios
were �5 for the Exo� Pol� enzyme and averaged �1.7 for Exo�

enzymes with replacements at Y567. Thus, with the RB69 DNA
polymerase, more than expected numbers of multiples are seen

Table 2. Observed and expected distributions of detectable and undetectable mutations among mutants
generated by RB69 Exo� PolY567A DNA polymerase

Category

No APs gp32 � 44�62 gp45 � 44�62 All four APs

Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp.

Fd 0.0153 0.0232 0.0220 0.0220
Total d 213 213.00 474 474.00 304 304.00 333 333.00
Singles 198 211.36 424 468.46 262 300.63 283 329.31
Doubles 15 1.63 49 5.49 39 3.35 48 3.67
Triples 0 0.01 1 0.04 3 0.02 2 0.03

Fud 0.108 0.177 0.204 0.204
	FBPS 4.00 4.07 5.26 4.96
Total ud 23 23.00 84 84.00 62 62.00 68 68.00
Singles 22 21.71 76 76.06 54 55.29 61 60.53
Doubles 1 1.24 8 7.42 8 6.30 6 6.91
Triples 0 0.05 0 0.48 0 0.48 1 0.53

See text concerning the four different combinations of polymerase accessory proteins (APs). Obs., observed numbers of mutants; Exp.,
expected numbers of mutants assuming a Poisson distribution of mutations among mutants; F, mutant frequency; Fd, frequency of
mutants bearing at least one detectable mutation and Fud, frequency of mutants bearing at least one undetectable mutation among
mutants bearing a detectable mutation (for instance, in column 2, Fud � 23�213 � 0.108). Total d � total number of mutants with �1
detectable mutations. Total ud � total number of mutants with �1 undetectable mutations among the total d mutants. For base pair
substitutions (BPS), the target sequence comprises 244 detectable changes and 530 undetectable changes (see text). 	FBPS � factor of
increase in BPS mutant frequency in ud mutations compared with d mutations � (244FudPudBPS�530FdPdBPS) where PBPS � proportion of
BPS among mutations; almost all (0.995) of the ud mutations and �0.83 of the d mutations were base substitutions.
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with several different versions of the enzyme both in vitro and in
vivo.

Distributions of Multiples in Genetic Space. Different mechanisms
can be imagined that would tend to cluster or to scatter the two
components of a double within a mutation-reporter sequence.
We therefore examined the extent to which the two components
of each double were a random sample of the underlying spec-
trum of detectable mutations. We used the doubles generated in
vitro by the Exo� PolY567A enzyme with or without the four
accessory proteins, because that number of doubles was the
largest in any set. We explored two measures of genetic distance.
In the first, the distance Ds between any pair of mutations was
defined as the number of intervening sites at which mutations
were detectable by using the observed spectrum rather than all
detectable sites because of the strong biases with which muta-
tions are distributed in different spectra. In the second measure,
the distance Dm was defined as the number of observed muta-
tions between the two sites in that spectrum, thus reflecting not
only the number of mutable sites, but also their summed specific
mutabilities. In statistical tests (see Table 4, which is published
as supporting information on the PNAS web site), the hypothesis
that the two components of each double are distributed uni-
formly in either kind of genetic space was robust (P � 0.97).

In two other spectra, the components of multiples were
reported to be nonrandomly close to each other. The number of
multiples in the E. coli lacI gene established as a transgene in the
mouse far exceeded the predictions of the mutant frequency
(23), and the distances between mutations were distributed
exponentially, with half of the mutation-pairs separated by �120
bases in the �1,440-base mutational target (42). A spectrum of
HPRT mutations in human kidney epithelial cells was expected
to contain �0.01 doubles but contained six (including one
tandem double) plus one quadruple (24). The distributions of
numbers of bases between the components of doubles was 0, 1,
6, 13, 5,012, 7,023, and 25,024 (and, for the quadruple, 13, 214
and 4,886), a distribution that is clearly a nonrandom sample
from the spectrum (P � 0.002). In contrast, among HPRT
mutations recovered from patients treated for acute lymphocytic
leukemia by using agents that included both mutagens and
chemicals that select for HPRT mutants, Ms � 182, F � 0.0003,
E2 � 0.03, and numerous multiples were recorded, but the
mutations in a multiple appeared not to be clustered, and other
evidence suggested that they arose sequentially rather than in a
single cell division (43).

Deconstructing Spectra into Components with Different Mutation
Frequencies. An excess of multiples signals the existence of at
least two subpopulations with different mutation frequencies.
There are several ways to deconstruct a spectrum into hypo-
thetical subpopulations whose parameters comprise the size of
each subpopulation and its characteristic mutation frequency.

One of these methods is purely algebraic; for its more detailed
derivation, see Supporting Text, which is published as supporting

information on the PNAS web site. As before, F � the mutant
frequency and Ms � 
Mi sequenced mutants with i mutations
each. Let n � the total population. Let S1 � a majority
subfraction of the population with the lower mutation frequency
f1 and S2 � a minority subfraction with the higher mutation
frequency f2. Assuming random distributions of mutations
among mutants in each subpopulation, with no significant
contribution from the S1, f1 class to the multiples, then it follows
that f2 � 3M3�M2, S2 � 2FM2�Ms f2

2e�f2, S1 � 1 � S2, and f1 �
�ln[(1 � F � S2e�f2)�S1]. Similarly, S2 � 6FM3�Ms f2

3e�f2; if
there are only two significantly contributing subfractions in the
population, then these two measures of S2 should agree. The
main drawback of this method is the frequent paucity of triples
in mutant collections.

The other method is stochastic, a progressive fitting of the
parameters S1, f1, S2, and f2 (or more if necessary) to the data.
Parameters of mixtures of Poisson distributions were estimated
by an iterative Expectation-Maximization (E-M) method (44).
First, we selected the number of subpopulations, such as two.
Based on this number, the likelihood function of the mixture
distribution was maximized by using an E-M algorithm (45). The
procedure was repeated for all other plausible numbers of
populations that could be represented within the data, and the
likelihoods were compared. The most parsimonious set of
parameter estimates that achieved the maximum among all of
the maximized likelihoods was selected as the best representa-
tion of the data. The fit of the selected Poisson mixture was then
tested with a �2 goodness-of-fit test (46). Note that if a fit is
disappointing because of a few outlier mutants with a large
number of mutations, a third population can be designed with S3
and f3 chosen to introduce just those mutants.

Consider the data for tobacco mosaic virus (2), wherein F �
[(43 mutants)�(1820 clones)] (correction factor of 1.8 for in-
complete recovery of mutants) � 0.04253 and Ms � 17 com-
prising M1 � 11, M2 � 3, and M3 � 3. Application of the algebraic
method gives S1 � 0.9665, f1 � 0.01113, S2 � 0.0335, and f2 �
3, all biologically reasonable values with no significant contri-
bution (0.001 mutants) from class 1 to the multiples. However,
these values predict too few singles (6.3 instead of 11) and too
many multiples with four or more mutations (4.7 instead of 0),
and the P value for this fit is a modest 0.40. Application of the
stochastic method gives S1 � 0.9575, f1 � 0.0131, S2 � 0.0425,
and f2 � 1.2353, values similar to those provided by the analytical
method but predicting 11.0 singles, 3.8 doubles, 1.6 triples, 0.6
multiples with four or more mutations, and an impressive
goodness-of-fit P � 0.98. Many of the spectra listed in Table 1
can be similarly modeled, but with modest precision when
doubles are few and triples are absent.

A different picture emerged from a typical experiment by
using the in vitro lacZ� system with the Exo� PolY567A polymer-
ase and all four accessory proteins (part of the summed results
of Table 2), with F � 0.021, Ms � 149, M2 � 21, and M3 � 1 (but
all of these values must be corrected for the loss of 40% of the
original numbers of mutants in the assay system). The algebraic

Table 3. Multiples in other RB69 DNA polymerase constructs

System Reporter Polymerase F Ms E2 D

In vitro lacZ� Exo� Pol� 0.0027 333 0.45 3
Exo� PolY567A 0.0066 275 0.91 5

In vivo rI Exo� Pol� 0.000047 79 0.002 0
Exo� Pol� 0.027 72 1.0 5
Exo� PolY567A 0.036 75 1.4 4
Exo� PolY567S 0.039 35 0.7 1
Exo� PolY567T 0.051 37 1.0 0

See Table 1 legend for definitions of the parameters F, Ms, E2, and D.
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model failed because it generated a negative value for f1 and the
two ways of calculating S2 gave different answers. This failure
may reflect a small contribution of multiples from the low-
frequency class, the low ratio of triples to doubles, and perhaps,
the presence of more than two contributing subpopulations. If
this failure was due to a sampling error, and if the observed
numbers of triples and doubles were 3 and 19 instead of 1 and
21, then the algebraic method gives S1 � 0.936, f1 � 0.0117,
S2 � 0.064, and f2 � 0.474 but with goodness-of-fit P � 0.0001.
The best stochastic model yielded two subpopulations with S1 �
0.864, f1 � 0.000045, S2 � 0.136, and f2 � 0.2984 with P � 0.86.
Here, the extremely low value of f1 is biologically unreasonable,
and a higher value that still contributed very few mutations might
be more reasonable but would still be unconvincing. However, an
important insight into this system was obtained from the distri-
bution of hitchhiker mutations that are undetectable (produce
no mutant phenotype) by themselves. These mutants have an
average mutant frequency 4.6-fold higher than for mutants
bearing detectable mutations and presumably arose preferen-
tially within the subpopulation(s) with one or more higher
mutation frequencies. The hitchhiker mutations fit a Poisson
distribution well (21.9 doubles expected, 23 observed; 1.54 triples
expected, 1 observed), indicating that they arose mainly in a
subpopulation with a fairly uniform mutation frequency at least
5-fold higher than that for the average detectable mutation. This
result provides some limits to the parameters. Assume only two
subpopulations, so that F � f1S1 � f2S2 and S1 � S2 � 1. Because
F � 0.02 and, from Table 2, f2�F � 5, it follows that f2 � 0.1 and
f1 � (0.02 � 0.1S2)�(1 � S2). Nonnegative values of f1 require
that S2 � 0.2, which in turn implies that f1 � 0.02 � 0.1S2.
Overall, the difficulty in decomposing the RB69 data is instruc-
tive because it signals a poorly understood complexity to at least
this example of hypermutability.

The Biology of Multiples
Carcinogenesis. The full course of carcinogenesis requires more
mutations than can be attributed to conventional mutation
rates, even at the extreme of a Poisson distribution (47).
Surveys of tumors often reveal continuing high mutation rates
that signal mutator mutations but also usually reveal tumors
that do not display high mutation rates. Such tumors might
contain heritable mutators not detected by the method of the
moment (48, 49), but they may also arise during transient
bursts of hypermutability. Clear evidence for transient hyper-
mutability already exists in the large database of TP53 muta-
tions (50–52). More than 5% of tumors contain two or more
base pair substitutions in TP53 and many of these are silent
(synonymous) mutations. Altogether there are �10�4 muta-
tions per base pair, a value that would be immediately lethal
if sustained throughout the genome. Thus, transient TP53
hypermutability must also be localized.

Adaptive Evolution. The concept of multiple mutations that are
individually deleterious but advantageous when combined seems
to have been mentioned first by Haldane (53), who cited what
was also perhaps the first experimental example, from an
analysis of the genetics of lifespan in Drosophila (54). The barrier
to moving from a local fitness maximum to a higher adaptive
peak (55) could be reduced considerably by mutations that arise
in bursts. A similar situation arises in the case of a mutation
producing a mixture of beneficial and deleterious effects with a
net reduction in fitness that can be ameliorated by modifiers (ref.
56, pp. 463 and 471). In addition, two deleterious alleles that are
neutral when combined can become fixed under random drift
plus mutation pressure, provided they are tightly linked (57). It
was recently estimated that such compensating deleterious mu-
tations are common and tend to reside in the same protein (58),

which would reflect tight linkage and might suggest their origin
in a spatially delimited burst of hypermutation.

When the frequency of multiples is substantially higher than
the product of the individual frequencies, adaptive leaps
requiring multiple mutations can be greatly accelerated. This
result is particularly the case when the component mutations
are individually deleterious and thus cannot accumulate in the
population. Thus, transient phenotypic hypermutability is
likely to contribute to adaptive evolution. However, just as
mutator mutants are unlikely to become fixed by selection on
their adaptive mutations because they are soon separated from
their beneficial products and carry a considerable selective
disadvantage (34), transient hypermutability is unlikely to be
an adaptive trait that has been maintained by selection except
in those special cases such as the SOS response where it is
specifically encoded. Even in such cases, hypermutability may
be an unavoidable inefficiency in a process targeted to survival
rather than mutagenesis. On the whole, transient hypermut-
ability may simply represent the numerous ways in which
fidelity mechanisms often go awry, the cost of further reducing
their incidence exceeding the penalty paid for the resulting
deleterious mutations.

Microbial Pathogens. Although the frequency of mutator mu-
tants is very low among laboratory populations of bacteria,
numerous examples have accumulated of high frequencies
among fresh isolates of human bacterial pathogens (e.g., refs.
59 and 60). This enrichment for mutator mutants has been
modeled as the result of selection for very rapid rates of
adaptation (e.g., refs. 61 and 62). However, the frequency of
such mutator mutants is generally �0.2, so that most adapta-
tions to the new host may be achieved without the help of
mutator mutations. An alternative hypothesis, ref lecting the
strong selective disadvantage of mutator mutants in a stable
environment, is that many successful nonmutator pathogens
recently had a mutator mutation that was expelled by reversion
or recombination. However, escape from a mutator mutation
within the time frame of most single-host infections seems
unlikely. Thus, transient phenotypic hypermutability is likely
to contribute to microbial pathogenesis.

RNA Genomes. Based on limited data, riboviruses have genomic
mutation rates of 0.1–1.2 with a median of 0.76 per replication
or 1.5 per cycle of infection (2, 63). Small increases produce
mutational meltdown (64). Tobacco mosaic virus, the only
ribovirus for which a probably unbiased mutation spectrum is
available, has a genomic mutation rate �0.1 per replication (2).
Our analysis of multiples in tobacco mosaic virus suggests that
�96% of the population has a genomic mutation rate �0.03,
which means that most of the population may be considerably
more genetically stable than previously estimated. Approxi-
mately 4% of the tobacco mosaic virus population displays a
much higher mutation frequency, one that would correspond to
a genomic rate of almost 3, but even a single round of replication
at this error frequency would produce mostly dead genomes
unless the hypermutability was limited to only a portion of the
genome.

Because retroelements (retroviruses and retrotransposons)
have mutation rates only a fewfold lower than do riboviruses
(65), the above considerations apply to them as well.

Mechanisms. Faulty proteins are inevitable consequences of
cellular metabolism. Transient hypermutability might be gener-
ated by errors of transcription and�or translation that generate
proteins with altered primary sequences, errors of folding or
posttranslational modification that generate dysfunctionally ac-
tive or dominant-inactive proteins, and regulatory errors at any
level that overproduce or underproduce proteins, leading to
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their incorrect distribution within the cell or between dividing
cells. Any protein involved in replication fidelity could be thusly
affected, so that hypermutability could be generated by many
discrete mechanisms. Because proteins (and particularly faulty
proteins) turn over, their mutagenic impact can be brief. A faulty
polymerase, for instance, might produce a single, limited tract of
error-prone synthesis, thus delimiting the region of hypermuta-
tion. Another candidate mechanism would have a segment of
DNA synthesis begin in an error-prone manner, or fall into an
error-prone state after an initial error, by perpetuating an

anomalous interaction between normal enzyme and normal
substrates. The high frequencies of mutants and multiples in the
RB69 system may provide the first opportunity to address
questions of mechanisms in an efficient manner.
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