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INTRODUCTION 

Professor H. S. JENNINGS ( 1 9 1 6 ,  1917) has published two papers 
in GENETICS, giving numerical results for different systems of breeding 
in which the inheritance of Mendelian factors is in question. The first 
paper deals with one-factor problems, the second with two-factor prob- 
lems. The present author has dealt with more general one-factor prob- 
lems ( ROBBINS 1917, 1918) suggested by JENNINGS’S work. Similarly 
the present paper follows JENNINGS’s lead in two-factor problems. 

Part I gives the results for  random mating for the most general 
problem of two linked factors. Part I1 is a less satisfactory solution 
of the problem of selection with regard to one of two linked factors. 
Part I11 gives the results for the general problem of self-fertilization. 

The work of JENNINGS on random mating shows how useful it is to 
deal with the four kinds of gametes involved instead of the ten kinds of 
individuals. Of course, at any stage of the game we can find the pro- 
portions of the different types of individuals from our knowledge of the 
gametes of the parents. 

I. RANDOM MATING 

a;. Linkage c in. each set of gawetes 
Let A, a represent respectively the dominant and recessive factors of 
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a simple Mendelian pair ; similarly let B,  b represent respectively the 
dominant and recessive factors of a second simple Mendelian pair. With 
respect to these two sets of factors we will have four types of gametes. 
Let p,, q,, s,,, t ,  be respectively proportional to the number of AB, 
A b ,  aB, ab gametes that will combine to produce the ( ? z + ~ ) t h  generation. 
X zygote will be represented by the juxtaposition of the letters repre- 
senting the gametes which unite to produce the zygote. If a zygote 
produces r gametes of each of the types which united to produce it, for 
each, gamete of the type obtained by interchanging a pair of the factors in 
the original gametes, there is said to be a linkage Y between the factors. 
For instance, if a zygote ABab  produces gametes in the proportion 
T A B  + A b  + aB + rub, the factors have a linkage r .  Using this nota- 
tion, JENNINGS has expressed the proportions of gametes in the (IZ+ 
1) th  generation in terms of those in the nth generation in his table 9 
(JENNINGS 1917, p. 144) : 

376 

r pn-1 = (Y+I) p n  ( f i n  + q n  + s n )  + r j n  tn + q n  s n ,  

qn+l = ( Y + I )  q n  ( f i n  + q n  + t n )  + r q n  sn + Pn t n ,  

SnLl - - ( Y 3 - I )  S n  ( f i n  + Sn + ti,) + y qn s n  + f i n  tn ,  1 t n + l  = ( Y + I )  tn (4n + sn + t n )  + r f i n  fn + q n  sn .  

I >  

The form of these equations is decidedly simplified if we choose p, 
. . . . t,, such that 

and use the notation A,, = q,,s,, - p,, tJ,. 
in equations I )  we obtain the following set: 

2 )  f i n + q n + s n + t n = I ,  

Then if we replace I Z  by n-I 

Pn = fin-1 + A n - J  ( I+V) 

4 n  = 4n-1 - An-l/ ( 1 + V I ,  

sn = sn-1 -An-1/’(1+~)9 
3, i tn = tn-1 + An-I / ’ (  I+I). 

These equations can be solved with little difficulty. From the first of 
equations 3) we have 

An-1 An+ 4 3  

.Pn E - +- + . . . . . .  +---+PO. 
I + Y  IS-r  I+r 

4) 

If we can find A,, in terms of n we will have the desired solution for pn. 
Calculating An from equations 3), i.e., forming qn sn - p ,  t ,  and using 

for qn-l s,-~ - we have 
Y An- 1 Ax = A,-, - - 

I + Y -  1+r * A n - l  

Whence, 
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5 )  

Substituting from 5)  into 4) gives, 
Y n- 1 

The bracket is a geometric progression. 
closed form 

Summing it, p ,  takes the 

Similar calculation for qn, s,, i, gives us finally the set of solutions, 

in which A, = q, so - P o  to. 
To get the zygotic composition of the (n+r) th  generation it is only 

necessary to substitute these values for p ,  . . . . t, in JENNINGS’S (1917) 
table (6). 

The sum p ,  + q,  represents the gametes A B  and 
Ab in the nth generation; i.e., all the gametes having the factor A. Simi- 
larly s, + t, represents all the gametes with the factor a. It is well 
known that for a single factor the proportions of dominants, recessives 
and heterozygous individuals is fixed after the first random mating. 
This is due to the fact that the proportions of dominant and recessive 
gametes never changes in random mating. Then in our problem we 
should expect p, + q, to be constant, and our equations 6) and 7) 
show that p ,  + q, = p ,  + qo. Similarly we have three other check 
equations. 

2. From equations 6 )  to 9) i t  is evident that the value of A, is quite 
impor twt .  A n y  two sets of initkd conditions give results differing f r o m  
the initial conditions by the same amounts i f  and only if A, is the same 
f o r  both. 

3. I n  the case A. = 0, the proportions are fixed from the beginning. 
This is shown by equations 6) to 9). T h e  only other case in which the 
proportions are fixed is that of complete linkage, r = 00.. Then we have 

DISCUSSION. I. 
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r / (  I+Y) approaches unity as a limit, and equation 6) becomes, p n  = 
p,, and similarly, q, = q,, s, = s,, t, = to. I t  is also evident that the 
case of complete linkage is in  essence a one-factor problewa and that 
therefore the proportions should be f ixed. 

4. The resiilts f o r  independepit factors are obtained by setting r = I : 
P, = P o  + A, ( 1 - sn> , 
q n  E ( lo  - 4 3  ( 1  - 
s,, = s, - 4 ( I  - $/2”>, 

t,= t, + A o  ( I  - 6%). 
b. Linkage r iii one set of gummetes and J in the other 

We have a much more general problem than the one above if we as- 
sume that the degree of linkage is different in the different sexes. Con- 
sider the problem with linkages r and r’ any two positive integers. Let 
p,, qn, s,, t, be the gametic proportions in the set of gametes of link- 
age r and pk, qk,sd, t,’ the same for the set of linkage r’. Then a 
study of the crosses involved gives the following recurrences : 

dn- 1 f P W +  PJ-1 I Pn = 

&-1 q n - 1  + qd-1 

sn-1 + sl-1 4 - 1  

t,-1 + tn’-1 42-1 

+ 
2 2 (Y+ I ) ’ 

2 2 ( T + I ) ’  

2 2 ( r t - 1 )  ’ 

2 (rt-1)’ 

- qn 

10) 

- I s n  = 

It* = 2 + 
f P*-1 + Pi-1 &-I I p,’ = + 

2 2 ( 6 + I )  ’ 
qn-1 + qk-1 &-i _-  qk = 

2 2(r’+1) ’ 

tn-1 + t i -1  dn-1 

2 ( T ‘ + I ) ’  
tk = + 

2 

d* = q n  S k  - p ,  t,’ + qnl s, - p,’ t,. 

! 
in which 
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Substituting from equation I I )  into equation I O )  we have, 
(r'--r j &-l 

[ p n  = + 
I 2( .y+I j (" /+I )  ' 

(r'+) dn-1 

2 ( r + 1 )  ("/+I) 
I t ,  = t,' + 

Substituting these values of p ,  . . . . t, into the equations 1 1 )  gives us, 
P,' = #,'-I + Vn-1,  

s,' = sJ-1 - Vn-1, 

t,' = + Vn-l. 

where yt> I and 

It is evident that we can solve our problem if we can find v,-~, and this 
depends upon finding d,. If we let D, =q,' s,'-pL t,', detailed com- 
putation from equations 12) and 13) show that 

From these last equations we find that 

Whence 
d, = d,. Kn-' where 

K =  + r r' 

2(r+1) 2(r '+1)  

Having d,, we can calculate v , - ~ ,  then solve equations 13)  and finally 
equations 12).  

d ,  r'K"-* (r'+r+2) 
p,' - p,'-1= V,-I = 

2 (r'+ I ) (2'7r/+l+') 

The solution of this equation is 
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14a j  p /  = c, - d ,  r’ Kr1-2/2(r’+~), n > ~ .  
in which’ 

d, = q1 sl’ --pltl’ + q,’ sl-pl’ f, and c, = (pI + p,’ + d , ) / 2 .  
Similarly, 
14bj  (I; = ca + d ,  r’ Kn-’/2(r’+1 j ,  
14c )  sn’=c3 + d ,  r’Kn-’/2(1”+1), 
14 d )  t,l- c4 - d, r’ K”-’/~(Y‘+I), 
in which c2 = ( q 1  + (I*’ - d ,  ) /2 ; c3 = ( s1 + s,’ - d, j / 2  ; c4 = ( t ,  + 
t,’ + d,j/2. 
Substituting into equations 12 j we have, 

I S j  [ s,, = c3 + d ,  r Kn-’/2 ( r+  I j , 

I. I t  is evident that these results should reduce to those 
in the previous problem, linkage T in each sex, if we set r’=r. This can 
be easily verified and serves as a check on the calculations. Eqiiations 
IO) and 11) show that however diferefzt  the original proportioils iizay 
be iiz the two sexes, they are idemtical after the first cross, i.e., pl=pl’, 
etc., if tlae linkage is the same in, both sexes. 

2.  The results f o r  the case of conaplete linkage it1 one set of gametes 
tis ginen by making r’ infiizitc iiz the above fornzdae. This gives: 

p ,  = c1 - d ,  1’ K’l-2/2 (r+ I ) , 
qn = ~2 + d ,  Y K”-‘/z ( Y + I  j , 

t ,  C* - d1 T K“-’/z ( Y + I  j . 
DISCUSSION.. 

p,‘ = C, - d, Kn-’/2, 
qn’ = c2 + d ,  K”-’/2, 
s,: = c3 4- d ,  Kn-‘/2, 
til' = ~4 - d ,  K- ‘ /2 ,  

in which K = (2r+1)/2 ( r + ~  j and c, . . . . c4 arc wclzaiaged. 
form of tlze equatioiis f o r  pn . . . . t, does not change. 

T h e  equations become, 

The 

3. Setting r’ = I will gizje the case of 920 linkage iii oize set of ganzetes. 

p,‘ ~1 - d, K”-2/4,  
q/ = ~2 + d l  Kn-2/4,  
s; = c3 4- d, Kn-‘/4, 
t,’ ~4 - d1 Kn-’/4, 

where K = (3r + 1)/4(r $- I ) .  Here  again tlze f o r m  of tlze equa- 
tioizs f o r  f i n  . . . . . . t, remains uncha.lzged. 

expressed they are cumbersome. 
Of course we can express c, and d, in terms of the original data, 9 0 . .  . to ,  but so 

The simpler is c1 which is given by 
c1 = (2 P o  + 2 8,‘ + d, + qoso - P o  to + 4,’ s,’ - 8,‘ to ’ ) /4 .  

. 
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4. Equations 14) and 15) show that if d l  = 0, the proportions Will be 
fixed af tew one random mating. I n  this case the proportions Zen11 be in- 
dependent of the degree of linkage. This last statement can easily be 
verified by calculating c,.. .c4 in terms of p,.  . . . t(. The parts involv- 
ing r and r’ disappear-(see note I ) .  

5 .  T h e  limiting population: 
a. T h e  gametic proportions approach limiting values as n increases. 
b. T h e  limiting values are equal in the two sexes; i.e., the limits of 

p,, q,, s,, t ,  are respectively the limits of p J ,  q;, si ,  t i .  I n  case r 
and r’ are lzot both infinite the limits of p ,  q,,, s,, t, are respectively 
c1, c2, c,, 1 ~ 4 .  In  case of complete linkage the limits are respectively 

c. The  limiting values are independent of the linkage factors r, r‘ ex-  
cept in the sense that complete linkage in both sexes gives liw$ts di f ferent  
f r o m  those f o r  any other case. As was pointed out above, the case of 
complete linkage in both sexes is really a one-factor problem, and the 
proportions are fixed after one random mating. 

d. T h e  limiting proportiom must  be such that if used as initial pro- 
portions the population would remain fixed; this follows because if af- 
ter the limiting proportions had been reached one more random mating 
changed the proportions, our notion of limiting proportions would be 
violated. We can therefore check our limits by forming d ,  using p ,  = 
p,’ = c,, q, = 4,’ = c2, s, = s; = c,, t ,  = t; = c4. From point 4 in 
the discussion, dl should vanish, and detailed. calculation will show that 
it does. 

e. I n  the limiting population, the proportion of A B gametes is the 
t roduct  of the proportions of 4 gametes and B gametes. Symbolically 
this is expressed by the equation c, = ( c1 + cz) ( c1 + c 3 ) ,  which may 
be easily verified. 

~1 - d J 2 ,  cz + d J 2 ,  c3 + d1/2,  c4 - d J 2 .  

Two striking facts stand out as a result of this discussion: 
I. I n  random mating, the effect of incomplete linkage between two 

factors .is only temporary. 
2. Continu\ed random mating results in a population in which the 

distribution of B factors among the A and a factors is the same as thel 
distribution of the b factors among the A and a factors. 

11. SELECTION O F  DOMINANTS WITH RESPECT TO ONE O F  T H E  PAIRS O F  

CHARACTERS-LINKAGE f‘ I N  BOTH SETS O F  GAMETES 

In this problem we select for breeding purposes only the zygotes which 
have the factor A .  A study of the crosses involved gives the following 
recurrence relations : 
GENETICS 3: .TI 1918 
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P n  = [ (Y+I) Pn-1 + ' n - i I /Dn- i ,  

q n  [ (++I)  qn-1 - 4-11/Dn-l, 
%l-il/Dn-11 

1 tn = [ (r+1) tn-1 In-1 + 4 - , I  / Dn-3, 

r 
16) \ s,, = [ (T+I) sn-l L1 - 

In which 6, = q, s, - p ,  t l c ;  D ,  = l,, ( I  + L,J ( r  + I )  ; L,% = sI1 4- t ,  

The method of solving these equations is analogous to the methods 
used in the earlier problems, but there is more detail and the results are 
less satisfactory. I t  is convenient to solve first for L, and 1,. I t  is evi- 
dent that L, and l, give the gametic composition of the izth generation 
for the one factor problem and we could compute them from this stand- 
point, but it is easy to calculate them from the equations 16). We have 

Since s, + tlC = L,, 

Then 

and l?c = P ,  + q,. 

sn. + t, = (r+I)J,-l(s?i-l + t,-l)/q-l = + ~+z-l)/(I + L,-,). 

Ln = L,$-J ( 1 3- L,-J - 
I I + L n - 1  I I I 

Ln-1 Ln-1 L,-2 LO 
- - - 

17) L, - = I + - - 2 + - - . . . = 11 + -. 
Whence, 
IS) L,=Lo/(12 Lo + I ) .  

(n-I )Lo+ I L, 
19) I ,  = I - L, = _ -  

?t L0+I L n - 1  
- 

Combining equations 17) and 19) we get, 

Equation 20) enables us to write D, in the simpler form, 

I t  is at once apparent that Ln approaches zero as n increases and hence 
s,, and t, do likewise. 

Computing 6, from 
equations IS), i.e. calculating q, S, - p ,  t ,  we get at  once that 

Substituting from equations 20) and 21) for I / ( I + L ~ . . ~ )  and 
Dn-l, 8, takes the form 

~21) D a  = (r+I)ln/ln+1- 

Therefore 1, approaches unity as $1 increases. 
The nekt step in the solution is to solve for 6,. 

22) 6,  = ( y  - L,z-l 1 /q-l ( 1 + L,-l 1. 

6, = an-1  z,z(Y-L,~-~)/~,-l(r+I), 
= s  ,-2 ln2 ln-l(-Ln-l) (r-L,- ,>/(r+I>2 L - 2 ,  
- - 60.1n. ln.ZlL-1 . . . . . Z ~ ( Y - L ~ - ~ )  . . . . . (Y-L~)/(Y+I)~.Z~ 
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From equation 20) we have, 

Then we can write, 
in in-, . . . . I, = L,/L,. 

i=n-I 
23) 6, = So In Ln (Y -L i ) /  IO LO 

i= 0 

The first of equations 16) can be written 

P ,  - 1% Pn-l/ln-l = In/ (r+ 1 ) 
The solution of this equation satisfying the initial conditions is, 

Similarly the solutions of the other equations of set 16) are, 

This seems to be about the most compact form into which the solution 
can be put. It will probably be a matter of opinion whether these equa- 
tions are worth writing down. Certainly if one desires the composition 
of each generation, repeated use of the recurrence relation is easiest. 
But if one wishes the tenth generation and does not care about the pre- 
ceding ones, it seems that the solutions 24) to 27) may be more useful. 
It should be noted that L, and 1, are very simple functions of $2 and can 
be calculated rapidly, and that successive values of 8, come rather easily 
if we use equation 22). 

DISCUSSION. I .  As noted above, s, and t, approach zero as n in- 
creases. 

2. The proportions can be fixed only in the trivial case where so = to 
= 0. This is shown by equation IS). 

3. I f  pJqc = sJti for any value of i it is true for all values of i. This 
follows from equation 22), since if pi/qi= si/t4, then S, = 0. In this 
special case, the equations 24) to 27) reduce to 

p n  = P o L / l o  ; qn = q o  L / l o  ; 
S, = SO Lfi/Lo; tn to L n / L o .  

It is important to note that in this case, ai = 0, the resdts are independ- 
ent of the linkage factor. Furthermore we find that Pn + Sa = P o  + so. 
This is readily shown as follows. From equations 24) and 26) 

GENETICS 3: Jl 1918 
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p ,  + S, = p ,  l,/lo + so L,/Lo when 8, = 0 ;  

= P o i n / l o  + so ( 1-1,) /Lo 
1, [ p o / l o  - so/Lo] + so/Lo. 

Since po/qo  = so/to, then p o / ( p o  + qo)  = so/ (so -I- to )  ; i.e., po/l ,  - 
so/Lo = 0, and therefore 

Also since p o / ( p o  + so) = so/ (so + t o ) ,  each fraction is equal to 
pn + sn = so/Lo. 

P o  +so 
( P o  + so)/ ( P o  + q o  + so + t o )  = -___ . Therefore, 

I 

P n  + sn = P o  + so. 

This is a n  important fact .  T h e  sztm p ,  + s, represents the gametes with 
the factor B in the nth generatioiz. W e  therefore have t?ze concluiota, 
if 6, = 0, selection of dominants w i t h  respect to A does n o t  interfere 
with rartdom inatifzg with respect to  B, regardless of the degree of link- 
age between A and B. 

4. T h e  case of conzplete liizkaye, r = 0 0 ,  gives the same cqtmtions 
f o r  p,, . . . . . t, as does 6, = 0. However,  w e  d o  n o t  have the other 

5. T h e  case of $20 linkage, r = I ,  sinzplifies considerably because the 
results that fol low front  6, - - 0. 

coiztiizited prodzict for 8, (equation 23)  can be suntwed whnz r = I : 
6, = 6, L,, . . . lJ1, L,% 2,. 

6&, = 8, Ln2/Lo2 . 2" . I,. 

6J1,  = 6, L, L,-1/Lo2 . 2,. 

I/Ln - r/L,-l = I .  

L, . Ln-l = L,-l - L,. 

= 6, Ln2/Lo2 . 2", (using equation 1 9 )  ) . 

Using equation 19)  again, this becomes 

From equation 17)  me have 

Whence. 

Substituting this value of L, Ln-l above, we have, 

Using this value of 6,/1,,, equations 24) to 2 7 )  may be written, 
= So(  L,-l - Ln)/Lo2 . 2". 
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in which S, = L1/2 + L,/4 + . . . + Ln/2". 
The computation in this case is fairly simple and the formulae should 

be useful. 
JENNINGS (1917) discusses this problem in section (26) of his paper. 

In  the next to the last paragraph of this section he writes, "selection with 
reference to A and a is random mating with reference to B and b, if the 
two pairs are not linked." There is nothing in our equations 28) to 31) 
to suggest this, and as a matter of fact an example can easily be found 
for which this is not true. Suppose, for instance, that the breeding be- 
gins with a cross between A B A b  and abab and suppose there is no link- 
age, r = I .  Then p ,  = % ; qo = % ; s, = 0; to = s. From equations 
16) or equations 28) to 31), or from JENNINGS'S equations of table 16, 
we calculate, 

p ,  = %, q1 = 5/12, s1 = 1/12, tl = %, 
p z  = 17/64, q z  = 31/64, $2 = 5/64, tz = 11/64. 

In random mating with respect to B and b, the proportion of each type 
of gamete remains fixed. The proportion of B gametes is given by 
p,+s,. In the above example, 

Thus we see that we do not have random mating m-th respect to B and b. 
As has 

already been mentioned, s, and t, approach zero. That pn and q, ap- 
proach limiting values is apparent when we notice from equations 24) 
and 25) that each increases or decreases continuously and lies between 
zero and unity. The limits of p ,  and q, are 

Po + so = 5 ; p ,  + s, = ; p 2  + sz = I 1/32. 

6. The proport ions approach limiting values as n increases. 

We can say very little about these values because of their complicated 
form, However, we may note this one fact: the limits of p ,  and qn de- 
pend upon the value of Y and 6, = 0. This is worth noting since it was 
not the case in random mating. 

It may be worth while to state without proof that in case r = I, p ,  
lies between the values P o / &  4- 6,/210 and P o / &  4- 6,P210 + S0/2L,. 
Also, the difference between these two expressions, S0/2L,, lies between 
zero and 5. 
GENETICS 3: J1 1918 
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Similar investigations can be carried through for the corresponding 
problem in which the linkage constant is different in the two sexes, but 
the results become complicated so rapidly that it would seem wiser to 
fol1ow JENNINGS'S method of repeated use of the recurrence relations. 

111. SELF-FERTILIZATION 

a. Liiikage r i~z each set of ganzetes 
In  this problem we cannot deal with the types of gametes only. We 

must consider the different types of zygotes. We shall follow JEN- 

NINGS in letting c, represent the proportion of the zygotes of the nth gen- 
eration which have a composition indicated by A B A B ,  and use similar 
notation for other types as indicated in the following table: 

c, = A B A B  i, = A B A b  
d ,  = AbAb g, = ABab j n  = ABaB 
en = aBaB h, = AbaB k ,  = abAb 
f ,  = abab 

C ,  + d, + e, + fn + g ,  + h, + in + in + k n  + In 
c, = c,-~ + T'gn-JR + hn-JR + (G-1 + jn-1)/4j 

en = en-1 + i/,b-JR + r2hn-1/R + + & - I ) / ~ J  

1, = abaB 
If we assume that 

the recurrence relations for the problem are, 
32) 

34) 

1, 

33)  d, = dq-1 $. gn-i/R r2k-i/R (k-1 kn-1)/4, 

35)  
36)  
37 )  
38) 
39) 
40) 
41) 

fn = fn-1 + T2gn-l/R + Izn-i/R + (kn-1 + L-1)/4, 
9, = 2[r2gn-1 + h - i I / R ,  
h n  = 2EgS-1 + ~2hn- l l /R ,  
in = 2 ~ ( g , - ~  + h,-l)/R + in -1 /2 ,  

j ,  = 2r(gn-1 + hn-l)/R + in-1/2, 
k, = zr(gfi-1 + hn-l)/R + k n - J 2 ,  

= 2T(gn-1 + hn-i)/R + l n - i / 2 ,  
in which R = 4( I + r ' ) .  
Adding 36) and 37) and using the notation v = ( r2  + 1 ) / 2 ( r  + I)' ,  

Whence 

Substituting from 42) into 38) gives, 

The solution of this equation is 

A ? )  = - .?Y. 

gn + h n  v(gfi-1 + hn-1)- 

42) gn + hn = vn(90 ho). 

in - in-J2 = 21 (yo + ho) . vn-'/R. 

go + ho + 2 i o  g o  + ho 
2"+f 2 
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Similarly, 

.vu". 
go + ho + 2jo 

go + h, + 2ko 

go + h, + 210 

go + ho 

g o  + ho 
go + ho 

- 
2n+1 2 

2n+l 2 

2"+1 2 

44) in = 

. vn. - 45) k n  = 

. v n .  - 46) 4 = 

From equation 4 2 )  we get 

Substituting this value of hn into equation 3 6 )  and simplifying we have, 

If we let (r2-1)/2(r + I ) '  = w, this equation takes the simpler form, 

The solution is, 

Substituting for gn from equation 47) into equation 42) we have 

We can now evaluate everything in equation 3 2 )  excepting c, and Cn-1 

and have, 

hn = vn(go 4 ho)-gn. 

g, = [2(r'-1)gn-1 + 2 v y g 0  + h o ) l / R .  

gn - w gn-l == (go + h0)vn-l /2  ( r  + I ) ~ .  

g, = (go - ho)wn/2 + (go + ho)vn/2.  

hn= (ho-go)w*/2  + (go + ho)vn/2. 

47) 

4-81 

go + ho + io + j o  
I +  2n+l 

(.zp - vu"-1 
go + ho g o  - ho 

wn + 
3 4 

- c, - C,-l - 

The solution is 

2n-I 

4 49) c, = 4 I-w 
Similarly, 

2n- 

4 I-w 

DISCUSSION. I. It is easy to get the limiting population in this prob- 
lem. Since v and w are proper fractions, v" and w" approach zero as n 
increases. Because of this, the ldmits are zero f o r  all but the homozy- 
gous types, c, d, e, f .  For these four w e  have, 

limit C n = ( g o - - o ) ( r + 1 ) / 2 ( r + 3 )  +(ho+io+jo)/2 + CO. 
GENETICS 3: J1 1918 
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d,= ( I z o - g o ) ( r + I ) / 2 ( Y + 3 )  + ( g o + & +  k O ) / 3 + d 0 .  
limit 

f a  =CO 

I n  all the ow-factor  problems i ~ t  self-fertilization or aicy otlzcr forms  
of iiibrccdiitg that have been discussed by JENNINGS (1916) and by the 
present writer (ROBBINS 1917, 1918) the  heterozygous type  tends to 
disappear. Here iiz the two-factor problem iit self-fertilizatio?& w e  ?tote 
the same tendency. 

2. I n  general the proportiom in the limitilly population d e p e m !  upon 
the linkage factor r, but in case 11, = go, I.e., rsheit tltc two types A B a b  
aitd A baB appear in equal nwtbers ,  the linzitiizg population is iptdepen- 
dent of the linkage factor. 

b. Linkage r in one set of gaiiictcs and r' ita tlze other set 

The recurrence relations for this more general problem may be ob- 
tained by replacing r2 by rr' and 2r by r+r' in equations 32) to 41) 
above. The solutions have the same form as above, equations 43) to 
52) but v and ze, have the values 
'I=== (rr' + 1)/2(7 + I )  (# + I )  ; w = (rr' - 1)/2(r  + I )  (r' + I ) .  
The limiting population takes the form obtained by replacing ( r +  I )  
/2 ( r  + 3 )  in the previous limiting forms by (rr' - ~ ) / ( r #  + z r  + 
2r' + 3). 

DISCUSSION. I .  In  case of no linkage in either set of gametes, r = 
r' = I, the equations simplify considerably since zu = o and v = s. 

2.  In case of no linkage in one set of gametes and linkage r in the 
other set, r' = I ,  we have z, = %; w = ( r  - 1)/4(r  + I ) .  

3. In case of complete Iinkage in both sets of gametes, r = C O ,  we have 
w = z.' = s. The value of each class except those which are homozy- 
gous reduces to its original value divided by 2%. The homozygous classes 
have the values, 

2n-I  
fn= (go + K O  +lo)(=) +fo 
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4. In case of complete linkage in one set of gametes and r in the other 

5 .  In case of complete linkage in one set of gametes and no linkage in 

APPLICATIONS OF MATHEMATICS TO BREEDING 

w e h a v e v = w r = ~ / 2 ( r +  I ) .  

the other set, zp = w = g. 
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