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INTRODUCTION

Professor H. S. JENNINGS (1916, 1917) has published two papers
in GENETICS, giving numerical results for different systems of breeding
in which the inheritance of Mendelian factors is in question. The first
paper deals with one-factor problems, the second with two-factor prob-
lems. The present author has dealt with more general one-factor prob-
lems (RosBins 1917, 1918) suggested by JENNINGS's work. Similarly
the present paper follows JENNINGS’'s lead in two-factor problems.

Part I gives the results for random mating for the most general
problem of two linked factors. Part II is a less satisfactory solution
of the problem of selection with regard to one of two linked factors.
Part III gives the results for the general problem of self-fertilization.

The work of JENNINGs on random mating shows how useful it is to
deal with the four kinds of gametes involved instead of the ten kinds of
individuals. Of course, at any stage of the game we can.find the pro-
portions of the different types of individuals from our knowledge of the
gametes of the parents.

1. RANDOM MATING
a. Linkage r in each set of gametes
Let A, a represent respectively the dominant and recessive factors of
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376 RAINARD B. ROBBINS

a simple Mendelian pair; similarly let B, b represent respectively the
dominant and recessive factors of a second simple Mendelian pair. With
respect to these two sets of factors we will have four types of gametes.
Let p,, gu, S, t. be respectively proportional to the number of AB,
Ab, aB, ab gametes that will combine to produce the (#-+1)th generation.
A zygote will be represented by the juxtaposition of the letters repre-
senting the gametes which unite to produce the zygote. If a zygote
produces r gametes of each of the types which united to produce it, for
each gamete of the type obtained by interchanging a pair of the factors in
the original gametes, there is said to be a linkage » between the factors.
For instance, if a zygote ABab produces gametes in the proportion
rAB + Ab + aB -+ rab, the factors have a linkage . Using this nota-
tion, JENNINGS has expressed the proportions of gametes in the (n-+
1)th generation in terms of those in the nth generation in his table 9
(JENNINGS 1917, P. I144):

( Puer = (r1) o (P @ 80) T 7 P tu + G Sn,

Qrer = (r 1) qu (P + qu + 1) + 7 qQusu + pu
Spey — ('7+I) S (Pn O tn) +r qn Sn + Pn tu

{ by = ('r+1)vtn (qn + &+ tn) T+ 7 putn + qn Sn.
The form of these equations is decidedly simplified ii we choose p,
....t, such that

2) ot Gut s+t =1,
and use the notation A, = ¢, s, — p.t,. Then if we replace # by n—1I
in equations 1) we obtain the following set:

Pn = P + An—i/(l—}—r)’

gn = qn-1 — An-l/(1+r)’
3) Sp == Spog — At/ (1+7),

tn - tn—l + An—l/(I—l—r)'
These equations can be solved with little difficulty. From the first of
equations 3) we have

1)

A

n~1 An-z o

4) J’n = I+r + I+r + ...... + I+r

If we can find A, in terms of # we will have the desired solution for p,.
Calculating 4, from equations 3), i.e., forming q, s, — p, f, and using
A, ; for g,.q Suoy — Pu-1 tnoy, We have

+ Po

A 7
A, =4,  — 2=t = A .
i n-1 1+7 147 71

Whence,
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5) A,,:(I—_rp)" . B,

Substituting from §) into 4) gives,
A, r \*1 7 \*"* ' 4
r=nm) &) et e
The bracket is a geometric progression. Summing it, p, takes the
closed form

A,
b= T (147 —7»] + po .

Similar calculation for g, s, 1, gives us finally the set of solutions,

6 pu=po + A Fr—(i)"j :
7) In=¢o — Bo rl—(ﬁm ,

8)  sn= 50 — Ao 1——(4)"- :

o =t +a[i—(2)]

in which A, = g, s, — po to-

To get the zygotic composition of the (n-+1)th generation it is only
necessary to substitute these values for p, .... t, in JENNINGS’S (1917)
table (6).

Discussion. 1. The sum p, 4 ¢, represents the gametes 4B and
Ab in the nth generation; i.e., all the gametes having the factor 4. Simi-
larly s, - t, represents all the gametes with the factor a. It is well
known that for a single factor the proportions of dominants, recessives
and heterozygous individuals is fixed after the first random mating.
This is due to the fact that the proportions of dominant and recessive
gametes never changes in random mating. Then in our problem we
should expect p, + g, to be constant, and our equations 6) and %)
show that p, 4+ g. = p, + ¢.. Similarly we have three other check
equations.

2. From equations 6) to Q) it is evident that the value of A, is quite
important. Any two sets of initial conditions give results differing from
the initial conditions by the same amounts if and only if A, is the same
for both.

3. In the case A, = o, the proportions are fixed from the beginning.
This is shown by equations 6) to 9). The only other case in which the
proportions are fixed is that of complete linkage, r = . Then we have
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r/(14r) approaches unity as a limit, and equation 6) becomes, p, =
po, and similarly, g, = q., $, == S, t, = b. It is also evident that the
case of complete linkage is in essence a one-factor problem and that
therefore the proportions should be fixed.
4. The results for independent factors are obtained by setting r = 1:
Pn="Po + 4, (I - %”)’
qn = ¢o — A, (1 — J2"),
Sy =8, — A, (1 — I4"),
bh=1, + 4, (1 —J2").

b. Linkage r in one set of gametes and v’ in the other

We have a much more general problem than the one above if we as-
sume that the degree of linkage is different in the different sexes. Con-
sider the problem with linkages » and +* any two positive integers. Let
Dns Qs Sny t, be the gametic proportions in the set of gametes of link-
age v and p,/, ¢/, s, t,/ the same for the set of linkage . Then a
study of the crosses involved gives the following recurrences:

[ _ p’l-l —I— pn,-l dn-l
" 2 2(r4+1)
. Qn-l + Qn,—l dn-l
o 2 2(r+1)
10)
R dn-y
Sp = - >
2 2(r+1)
' tﬂ—l + tn,—l dn-l
" 2 2(r+1) ’
(Pt e
2 2(¢r'+1)
. Gn-1 + @i/ 1 dy-y
= 2 2(r+1) '
1
) , Sn-1 80y Ay
Sp — - 3
2 2(r'+1)
tn) — t"-l + tnl—l + dn—l )
L 2 . 2(r+1)
in which

d, = insn’ — Pn t + Qn, Sn —* Pn, ty.
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Substituting from equation 11) into equation 10) we have,
[ (r'—r) dpy
2(r+1) (P+1)

(r'—r) dn-q

Pa :Pn, +

Gn — Qn, - 3
J 2(r+1) (¥+1)
12) , (r'—r) dny
Sp == S$p — s
2(r+1) (1)
C g (r'—r) duy
" 204D ()
Substituting these values of p, .... f, into the equations 11) gives us,

P =P+ Var
13) 4 qﬂ/’ = qf/b’-1 — Va1,
S = S$n-1 — Va1,
\tn’ - tn,—1 + V-1

where #>1 and

I —
%or = 7[sG e ]
It is evident that we can solve our problem if we can find v,,, and this
depends upon finding d,. If we let D, =gq, s.’—p. t/, detailed com-
putation from equations 12) and 13) show that

(r'—7r)du-a
2(r+1)(¥ + 1)
From these last equations we find that
d,,:a’,,_l[ —+ ] for #>1.

Whence
d, = d;. K™ where

dn =2 Dn s and Dn = Dn-1 — Va3

7 v’
2(r+1)  2(r'+1)

¥ 'd

+ .
2(r+1) 2(r'+1)
Having d,, we can calculate v,_;, then solve equations 13) and finally
equations 12). '

d, VK2 (¥ +r+2)
T 2(r41) (e )

The solution of this equation is

Pn’ - Pn’-l =Vuq

GenEeTICS 3: J1 1918
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14a) P =c¢y — d, v K"*/2(r'+1), n>1.
in which?
di=q; s/ —pity/ + g/ ss—py trand ¢, = (py + p/ + dy) /2.
Similarly,
14b) q) =cy + dy ¥ K**/2(+1),
14¢) 8 =c3+dy v K3/2(r'+1),
14d) t/=cq—dy v K"*/2(r+1),
in which ¢, = (¢, + ¢" — dy)/2; c5= (s, + 5/ —dy)/2;¢,= (1, +
ty =+ dy) /2.
Substituting into equations 12) we have,
Po = ¢ — dv v K" /2(r-+1),
gn = C+ dy ¥ K% /2(r+1),
1)V 5=y + dy r K™ /2(r1),
th = cs — dy r K"2/2(r+1).

Discussion. 1. It is evident that these results should reduce to those
in the previous problem, linkage 7 in each sex, if we set #/=. This can
be easily verified and serves as a check on the calculations. Equations
10) and 11) show that however different the original proportions may
be in the two sexes, they are identical after the first cross, i.e., pr=p,,
etc., if the linkage is the same in both sexes.

2. The results for the case of complete linkage in one set of gametes
is given by making v infinite in the above formulae. This gives:

P =1 —dy K7/2,

g =2+ dy K77%/2,

s’ =c¢3 + dy K"?/2,

t =c¢, — dy K"?/2,
n which K = (2r+1)/2(r+1) and ¢; .... ¢, are unchanged. The
form of the equations for p, .... t, does not change.

3. Setting v’ = 1 will give the case of no linkage in one set of gametes.
The equations becowme,

pr’ = ¢y — dy K*/4,

g’ = ¢ + dy K"?/4,

i =c¢s + dy K™%/4,

bo=cy — dy K"?/4,
where K = (3vr + 1)/4(r + 1). Here again the form of the equa-
tions for pn ...... t, remains unchanged.

1 Of course we can express ¢, and d, in terms of the original data, pe...t, but so

expressed they are cumbersome. The simpler is ¢, which is given by
c,=(p, +2p’ +d +aqs,—pt,+aq’ s’ —b 1)/

Y
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4. Equations 14) and 15) show that if d. = o, the proportions will be
fixed after one random mating. In this case the proportions will be n-
dependent of the degree of linkage. This last statement can easily be
verified by calculating ¢,...c, in terms of py....t . The parts involv-
ing 7 and # disappear—(see note 1).

5. The imiting population:

a. The gametic proportions approach limiting values as n increases.

b. The limiting values are equal in the two sexes; i.e., the limits of
Pus Quny Sny tn Ove respectively the limits of p., g/, Sus t.'. In case r
and v’ are not both infinite the limits of pn, Qu, Su, tn are respectively
Cy, Cy €3, €4 1n case of complete linkage the limits are respectively
¢, — dy/2, ¢z + di/2, ¢c3 + di/2, ¢y — dy/2.

c. The limiting values are independent of the linkage factors r, v’ ex-
cept in the sense that complete linkage in both sexes gives limits different
from those for any other case. As was pointed out above, the case of
complete linkage in both sexes is really a one-factor problem, and the
proportions are fixed after one random mating.

d. The limiting proportions must be such that if used as imitial pro-
portions the population would remain fixed; this follows because if af-
ter the limiting proportions had been reached one more random mating
changed the proportions, our notion of limiting proportions would be
violated. We can therefore check our limits by forming d, using p;, =
P =cy,q1=q = Co, §y =8 =1¢3, t; =t/ = ¢, From point 4 in
‘the discussion, d; should vanish, and detailed_calculation will show that
it does. :

e. In the limiting population, the proportion of A B gametes is the
product of the proportions of A gametes and B gametes. Symbolically
this is expressed by the equation ¢; = (¢ 4 ¢.) (¢1 + ¢g), which may
be easily verified.

Two striking facts stand out as a result of this discussion:

1. In random mating, the effect of incomplete linkage between two
factors is only temporary.

2. Continued random mating results in a population in which the
distribution of B factors among the A and a factors is the same as the,
distribution of the b factors among the A and a factors.

II. SELECTION OF DOMINANTS WITH RESPECT TO ONE OF THE PAIRS OF
CHARACTERS—LINKAGE # IN BOTH SETS OF GAMETES
In this problem we select for breeding purposes only the zygotes which
have the factor 4. A study of the crosses involved gives the following
recurrence relations:

GenerIcs 3: JI 1918



382 RAINARD B. ROBBINS

Pn = [(r+1) puey + 80q]/Dicys
16) { qn — [(7’_,—1) qn-1 Sn—l]/Dn—ly
$o = [(r+1) $ocy by — 8,41/ Doy

L tn :[(7’+I) tn—l ln—l + sn—l]/Dn—];
In which 8 =gq s, —p, ¢t ;D =1 (1+L)(r+1); L, =s, 11,
and [ =p +gq,

The method of solving these equations is analogous to the methods
used in the earlier problems, but there is more detail and the results are
less satisfactory. It is convenient to solve first for L, and [,. It is evi-
dent that L, and I, give the gametic composition of the nth generation
for the one factor problem and we could compute them from this stand-
point, but it is easy to calculate them from the equations 16). We have

s, Tt = (1*—{—I)ln_1(;s‘”_1 - tn_l)/D"_1 = (s, t¢t )/ (1+ Ln_l).
Since s, + ¢t = Ln’
Ln = Ln—l/( I + Ln—l)'

Then
) I 1+L,, + I n 1 + I
17 = =1 =2 == ...="n .
Ln Ln—l Lﬂ—l Ln—2 L'J
Whence, )

18) L,=L,/(nL,+ 1).
_ (n—1)L,+1 L,

Il

19) lL,=1—1L,

nLy+1 Loy
Combining equations 17) and 19) we get,
I Ln+1
20) = = lny1-
1+ L, L,

Equation 20) enables us to write D, in the simpler form,

21) D, = (r+1)0/ls1;.

1t is at once apparent that L, approaches zero as n increases and hence

s, and ¢, do likewise. Therefore /, approaches unity as # increases.
The next step in the solution is to solve for 3,. Computing 3, from

equations 16), i.e. calculating g, s, — p, t, we get at once that

22) 8 =8 (r—L _))/D _,(1+L, ).
Substituting from equations 20) and 21) for 1/(1+L,,) and

D, 8, takes the form
8, = 8,4 lnz(r_Ln-‘l)/ln-l (r+I )’
= 8n—2 ln2 ln-l(/”_Ln—l) (T”an2)/(r+1)2 ln—Z,

=8 by dydyy e Li(r—Lys) -vn.- (r—Lo)/(r+1)".1,
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From equation 20) we have,

Iylpy .... L, =1L,/L,.
Then we can write,
23)  8,=38 L, Ln TIL (—L)/lo Lo (r+1)r.

=0

The first of equations 16) can be written

Pn - ln Pn—l/ln—l = 8n—l ln/ (T+I )l:L—l
The solution of this equation satisfying the initial conditions is,

_ pola In T3y | Sus 8 ]
24) pn——" lo +r+1_ln_1+z’:+'."+~lj_.

Similarly the solutions of the other equations of set 16) are,

go ln ln (8 - ) - 85 ]
2 — — b Tk +_i .
5) 7n Lo r+1L7,_, ln_2 e /|

o L Ly [8.. 8 3,
26 :!————n — n 7-1 r-2 0-1
) = 41 Lz,,_1+zn_z+""+7: '

b [8ay | 8, 5 ]
=l Vel e REE s

This seems to be about the most compact form into which the solution
can be put. It will probably be a matter of opinion whether these equa-
tions are worth writing down. Certainly if one desires the composition
of each generation, repeated use of the recurrence relation is easiest.
But if one wishes the tenth generation and does not care about the pre-
ceding ones, it seems that the solutions 24) to 27) may be more useful.
It should be noted that L, and [, are very simple functions of # and can
be calculated rapidly, and that successive values of 8, come rather easily
if we use equation 22).

DiscussioN. 1. As noted above, s, and t, approach zero as n in-
creases.

2. The proportions can be fixed only in the trivial case where so = 1o
= 0. This is shown by equation 18).

3. If pi/qi==s./ti for any value of i it is true for all values of i. This
follows from equation 22), since if p;/qi== s:/t;, then 8, =o0. In ths
special case, the equations 24) to 27) reduce to

pn = poln/lo; dn = Qo ln/lo;

Sp == S Ln/Lo; Ih=1, Ln/Lo-
It is important to note that in this case, 8; = 0, the results are ndepend-
ent of the linkage factor. Furthermore we find that p, + S = po + So.
This is readily shown as follows. From equations 24) and 26) |

to Ly
27) Ih=—"7—+

GeNETICS 3: J1 1918
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Pa = S0 = Po Lu/l, + 5o Lo/ L, When 8, == 0;
= poln/lo + So(l__ln)/Lo
- ln [po//lo i so/Lo] + SO/LO‘
Since Po/qo - So/fo, then 1)0/ (PO + qO> —_ So/ (So + to); i'e's Po/lo -
$o/ Lo == 0, and therefore
pn T+ Sp = So/L..
Also since p./(po + o) = $o/ (s, + t,), each fraction is equal to
po T So
(po+so)/(Po+QO+So+to)=_I .
P + Sn = Po -+ So-
This is an important fact. The sum p, + s, represents the gametes with
the factor B in the nth generation. We therefore have the conclusion,
if 8, = 0, selection of dominants with respect to A does not interfere
with random mating with respect to B, regardless of the degree of link-
age between A and B.

4. The case of complete linkage, r = o0, gives the same equations
for po ... t, as does 8, == 0. However, we do not have the other
results that follow from 8, = o.

5. The case of no linkage, r = 1, simplifies considerably because the
continued product for 8, (equation 23) can be summed when r = 1:

8, =281, L, 1, ,....1,/1, L,2"
=38, L,2/L,? . 2", (using equation 19)).
8,/ly, =28, L2 /L} . 2" . L,
Using equation 19) again, this becomes
8/l =38 L, L, ./L}? . 2"
From equation 17) we have
i/L,—1/L, = 1.
Whence,
Ln . Ln—l = Ln—l - Ln'
Substituting this value of L, L, , above, we have,
8'n/ln = 80(Ln—1 - Ln)/Loz . 2n
Using this value of 8,/1,, equations 24) to 27) may be written,

Therefore,

8o 8o lo ln Ln— Zn 8o
) pa=(r0 + 3+ )7 (S FE) T
8o 80 lo ln Ln—l ln 80
om0t e e )
3

8 3NLa (e _Lngy Lad
Eeo by s,k B
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9 3 \Ln Ln Ly 8,
31) In = ( to + ﬁ + —Z)fo + (Sn—l_ zn—i) LN

in which S, = L,/2 + Ly/4 + ... + L./2"

The computation in this case is fairly simple and the formulae should
be useful.

JENNINGS (1917) discusses this problem in section (20) of his paper.
In the next to the last paragraph of this section he writes, “selection with
reference to 4 and e is random mating with reference to B and b, if the
two pairs are not linked.” There is nothing in our equations 28) to 31)
to suggest this, and as a matter of fact an example can easily be found
for which this is not true. Suppose, for instance, that the breeding be-
gins with a cross between ABAb and abab and suppose there is no link-
age,r = 1. Then p, =% ; q,= % ; s,=—0; t,= %. From equations
16) or equations 28) to 31), or from JENNINGS’s equations of table 16,
we calculate, '

1:%’ ‘21:5/12, § = 1/12: tl:%’
p==17/64, q»=31/64, s, = 5/64, t, = 11/64.
In random mating with respect to B and b, the proportion of each type
of gamete remains fixed. The proportion of B gametes is given by
puts,.. In the above example, :
pot So=Yi5 p1+ 8= p2+ 5. = 11/32.
Thus we see that we do not have random mating with respect to B and b.

6. The proportions approach limiting values as n increases. As has
already been mentioned, s, and #, approach zero. That p, and g, ap-
proach limiting values is apparent when we notice from equations 24)
and 25) that each increases or decreases continuously and lies between
zero and unity. The limits of p, and g, are

limit Yo I
n_oopn—r+r+1[ +—L+—*+ ]

nhglioq”"%z‘“r-q-I[”'i"—L“"—LF ]

We can say very little about these values because of their complicated
form. However, we may note this one fact: the limits of p, and g, de-
tend upon the value of r and 8, = o. This is worth noting since it was
not the case in random mating.

It may be worth while to state without proof that in case » = 1, p,
lies between the values p./l, + 8./2l, and p./l, + 8,/2l, + &,/2L,.
Also, the difference between these two expressions, 8,/2L,, lies between
zero and %5,

GeNETICS 3: J1 1918



386 RAINARD B. ROBBINS

Similar investigations can be carried through for the corresponding
problem in which the linkage constant is different in the two sexes, but
the results become complicated so rapidly that it would seem wiser to
follow JENNINGS’'s method of repeated use of the recurrence relations.

III. SELF-FERTILIZATION

a. Linkage r in each set of gametes
In this problem we cannot deal with the types of gametes only. We
must consider the different types of zygotes. We shall follow JEN-
NINGS in letting ¢, represent the proportion of the zygotes of the nth gen-
eration which have a composition indicated by ABAB, and use similar
notation for other types as indicated in the following table:

¢, =— ABAB 1, = ABAD
d, = AbAb gn = ABab jn = ABaB
e, = aBaB h, = AbaB k, == abAb
f. = abab l, = abaB

If we assume that
atditetfatgthtitint kb+L=01

the recurrence relations for the problem are,

32) €= Cug T 1t/ R A hay/R 4 (tpg + Ju1) /4,

33)  du = dos F Gur/R A *has/R F (iny + Fasy) /4,

34) e = lng + Ui/ R+ Pl y/R A+ (fuy + la1)/4,

35)  fao = fur + 7’00t/ R+ hooy/R + (byoy + Liy) /4,

36)  gn = 2[7°¢n1 + husl/R,

37) 2[gus + rhusl/R,

38) = 2r(gaq T Muy)/R + iny/2,

39)  Jn = 2r(gua T A1) /R + Jan/2,

40)  ky = 2r(gug T Bt} /R + Ruy/2,

41) w = 27 (Gn-12 F Pn1) /R + liy/2,

in which R = 4(1 4 ).

Adding 36) and 37) and using the notation v = (#* + 1)/2(r + 1)
Gn + Tu = 0(gng + huy).

Whence

42) g F ha=v"(go + ho).

Substituting from 42) into 38) gives,
1'11 - in—l/z = 27’(90 + ho) .vn—l/R.

The solution of this equation is

C Gethotzi,  goth,

A2) It — LUn
2”-"1 2

=
B
I
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Similarly,

44)  ju =
45)  k, =
46) I, =

go+ho+21'o__go+ho ”
2n+1 2

gothot2ks  gothe
27”1 > U

go+ho+2l0 g0+h0 n
an R LU,

From equation 42) we get
hn = 'U"(go + ho)_ gn ) ]
Substituting this value of #, into equation 36) and simplifying we have,
= [2(r*—1)gn1 + 20" (go + ho) 1/R.
If we let (#*—1)/2(r 4+ 1)* = w, this equation takes the simpler form,
Gn — W Gny = (go + ho)v"/2(r 4 1)"

The solution is,

= (go—ho)w"/z'—}- (ga + hg)?Jn/Z.

47) G

Substituting for g, from equation 47) into equation 42) we have
48)  h= (ho—go)wW"/2 + (go T ho)s/2.
We can now evaluate everything in equation 32) excepting ¢, and ¢, 4

and have,
o—"ho o+ho go+ho+iu+jo
Cn— Cp1 = 7 w" + i____(-z}” — ") + n+l ’
4 4 2
The solution is
— X o /] . . 27 —I
49) Cn:___go p 0 (II—W)+go + bon—1) + (g, +, +2, +-70)(7n+—1)+£0 .
Similarly,
}l — .
s0) dy— o0 )y £0 8 ooy (g, g i ) (Do) + 4,

(1—wm)

SI) en:ho — & )

4

W12 +£’o 0(7)71 0+ (g +ho +7, +, )(znﬂ)-i-eo'.

_ 8o —
52) fo= 2

Discussion.

%, ' w(I-—ZU”) +g0 —f—}z
4

I—w

Yor—1) + (go +1o +E&, -+, )(2n+1)+f0,

1. It is easy to get the limiting population in this prob-

lem. Since v and w are proper fractions, v” and w" approach zero as n

increases.

Because of this, the limits are zero for all but the homozy-

gous types, ¢, d, e, f. For these four we have,

limit
N =00

GeneTIcs 3: J1 1918

Cp = (go_

ha) (r +1)/2(r 4+ 3) + (ho + 40 + jo) /2 + co.
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A2 = (he—g0) (r+ 1)/2(r F 3) + (g0 + iy + ko) /2 + d.
P e = (h—g0) (r 1) /200 + 3) + (9o + i+ 1)/2 + o

H =0
Bmit = (g,—ho) (r + 1) /2(r + 3) + (ho + ko + 1,)/2 + f..

In all the one-factor problems in self-fertilization or any other forms
of inbreeding that have been discussed by JENNINGS (1916) and by the
present writer (ROBBINS 1917, 1918) the heterozygous type tends to
disappear. Here in the two-factor problem in self-fertilization we note
the same tendency.

2. In general the proportions in the limiting population depend wpon
the linkage factor r, but in case h, = ¢, t.e., when the two types ABab
and AbaB appear in equal numbers, the limiting population is indepen-
dent of the linkage factor.

b. Linkage v in one set of gametes and v’ in the other set

The recurrence relations for this more general problem may be ob-
tained by replacing 7* by r#’ and 2r by »+7 in equations 32) to 4I)
above. The solutions have the same form as above, equations 43) to
52) but v and w have the values
ve=(r¥ +1)/2(r+ 1)V +1);w= (" —1)/2(r + 1)(v + 1).
The limiting population takes the form obtained by replacing (7 -+ 1)
/2(r + 3) in the previous limiting forms by (r¥’ — 1)/ (v + 2r +
2r -+ 3).

Discussion. 1. In case of no linkage in either set of gametes, r =
7’ == 1, the equations simplify considerably since w == 0 and v = 4.

2. In case of no linkage in one set of gametes and linkage » in the
other set, 7 =— 1, we have v =1 ; w= (r — 1)/4(v + 1).

3. In case of complete linkage in both sets of gametes, » =, we have
w = v = L4. The value of each class except those which are homozy-
gous reduces to its original value divided by 2". The homozygous classes
have the values,

en= (g +70+70) (Gorr) + 40 s

27—

dn= (%, +i0 +ko)(2n+1 ) +d,y,

en="(%y +7, +[0)(2_2",%)
2n—-1)

= (& 4, +10)(3n+_1‘
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4. In case of complete linkage in one set of gametes and # in the other
we have v = w=1r/2(r + 1).

5. In case of complete linkage in one set of gametes and no linkage in
the other set, v — w = 4.
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