Nat Genet. Author manuscript; available in PMC 2005 September 8. Published in final edited form as: Nat Genet. 2005 June; 37(6): 593-599. # Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection Marie-Pierre Desrosiers 1,2,8 , Agnieszka Kielczewska 1,2,8 , J-C Loredo-Osti 1 , Sonia Girard Adam 1,2 , Andrew P Makrigiannis 3 , Suzanne Lemieux 4 , Trung Pham 5 , Melissa B Lodoen 5 , Kenneth Morgan^{1,2,6}, Lewis L Lanier⁵, and Silvia M Vidal^{1,2,7} 1 Department of Human Genetics, McGill University, Montreal, Quebec, H3A 1B1, Canada. 2 McGill Centre for the Study of Host Resistance, McGill University, 1650 Cedar Avenue, Montreal, Quebec, H3G 1A4, Canada. 3 Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, H2W 1R7, Canada. 4 INRS-Université du Québec, Laval, Quebec, H7V 1B7, Canada. 5 Department of Microbiology and Immunology, the Biomedical Sciences Graduate Program and the Cancer Research Institute, University of California San Francisco, 513 Parnassus Avenue, Box 0414, San Francisco, California 94143-0414, USA. 6 Department of Medicine, McGill University, Montreal, Quebec, Canada. 7 Department of Microbiology and Immunology, McGill University, Montreal, Quebec, H3A 2B4, Canada. #### **Abstract** Experimental infection with mouse cytomegalovirus (MCMV) has been used to elucidate the intricate host-pathogen mechanisms that determine innate resistance to infection. Linkage analyses in F₂ progeny from MCMV-resistant MA/My $(H2^k)$ and MCMV-susceptible BALB/c $(H2^d)$ and BALB.K $(H2^{k})$ mouse strains indicated that only the combination of alleles encoded by a gene in the Klra (also called Ly49) cluster on chromosome 6, and one in the major histocompatibility complex (H2) on chromosome 17, is associated with virus resistance. We found that natural killer cell-activating receptor Ly49P specifically recognized MCMV-infected cells, dependent on the presence of the H2k haplotype. This binding was blocked using antibodies to H-2Dk but not antibodies to H-2Kk. These results are suggestive of a new natural killer cell mechanism implicated in MCMV resistance. which depends on the functional interaction of the Ly49P receptor and the major histocompatibility complex class I molecule H-2D^k on MCMV-infected cells. > Worldwide, seven of ten individuals are infected with human cyto-megalovirus¹, which causes severe and fatal disease in neonates and immunocompromised individuals^{2–4}. The crucial role of natural killer (NK) cells in the control of this infection has been extensively documented⁵, 6. NK cells are important in the innate response to a variety of viral infections through lysis of infected target cells and production of an array of cytokines⁶. MCMV infections share many Note: Supplementary information is available on the Nature Genetics website. Correspondence should be addressed to S.M.V. (silvia.vidal@mcgill.ca).. ⁸These authors contributed equally to this work. pathophysiological aspects with the human disease, providing an excellent model for elucidating the role of NK cells in the host response to viral infection. In addition, different inbred strains of mice vary markedly in susceptibility to MCMV, enabling a genetic approach to the mapping of susceptibility traits and to the identification of key genes governing NK cell function. H2 genes in the major histocompatibility complex (MHC) and non-MHC genes determine resistance or susceptibility to MCMV in inbred strains of mice 7,8 . The H2 complex influences susceptibility to the lethal effect of MCMV 7 . Strains such as C3H and CBA carry the protective $H2^{k}$ haplotype, whereas mice with the $H2^{b}$ (129) or $H2^{d}$ (BALB/c) haplotypes are more susceptible; susceptibility, in this case, is inherited as a dominant trait. At low-dose infection, in mouse strains of the C57BL/6 genetic background, H2-determined susceptibility is overridden by a dominant allele at the Cmv1 locus, which acts early after infection at the level of host NK cells 9,10 . The Cmv1 locus has two alleles in inbred mice: a dominant resistance allele, $Cmv1^r$, and a recessive susceptibility allele, $Cmv1^s$. Mouse strains possessing $Cmv1^r$ are five times more resistant to lethal MCMV infection and their viral titers in the spleen are 1,000–10,000 times lower than those of mouse strains possessing $Cmv1^s$ (ref. 9). Cmv1 maps to distal mouse chromosome 6, in a region known as the NK cell gene complex $(NKC)^{11,12}$ because it encompasses clusters of genes and gene families of C-lectin-like–type receptors related to NK cell functions 13,14 . Among these are Klrk1 (also called Nkg2d) and a group of more than 20 genes collectively known as Klra genes $^{13-15}$. Recognition of classical MHC class I molecules by inhibitory Ly49 receptors is thought to provide a dominant inhibitory signal to NK cells against self in normal conditions 16 . Cmv1^r encodes the activating receptor Ly49H^{17–20}, which recognizes MCMV-infected cells by a direct interaction with the m157 MCMV gene product^{17,18}. Haplotype studies using genetic markers in the vicinity of Cmv1 established that although the Cmv1^r haplotype is unique to C57BL/6 strains, there are two independent origins for MCMV susceptibility in mice. On the basis of haplotype relatedness, MCMV-susceptible strains of mice were clustered into two groups, with mice similar to strain 129P3 (hereafter called 129) forming one subset and mice similar to strain BALB/c forming a second, unrelated subset¹⁹. The MCMV-resistant strain MA/My¹² lacks *Klra8* (also called *Ly49h*) mRNA and protein (M.P. Desrosiers, S. Girard Adam, A. Kiel-czewska and S.M. Vidal, unpublished data). In addition, depletion of MA/My NK cells with monoclonal antibody to NK1.1 abolished this resistance ¹², suggesting the presence of another type of *Cmv1*^r allele in this mouse strain. Here we show by haplotype analysis that the resistant strain MA/My is genetically divergent from the resistant strain C57BL/6 in the region of *Cmv1* and highly related to the MCMV-susceptible strains FVB/N (hereafter called FVB) and 129. Linkage analysis of the resistance phenotype indicated that MA/My mice possess a key determinant of resistance to MCMV, which maps to the NKC. Genetic and molecular analysis of this phenotype uncovered a new mechanism of host resistance against MCMV infection that involves interaction between the MA/My-encoded activating receptor Ly49P on NK cells and the MHC class I molecule H-2D^k on virus-infected cells. # **RESULTS** #### The MA/My NKC haplotype To understand the molecular basis of resistance in the absence of Ly49H, we characterized the MA/My *Cmv1* region by haplotype analysis. We used 30 informative markers, either clustered in the *Klra* region or distributed in the NKC genomic domain and covering a physical distance of 5 Mb (Fig. 1). Haplotype analysis (Fig. 1b) showed that MA/My is genetically distinct from C57BL/6 in the *Cmv1* region (16 of 30 markers in common). In particular, markers in the *Klra* region were polymorphic between these two strains, indicating the presence of a different *Klra* gene repertoire (7 of 10 different markers). Conversely, the MA/My haplotype was more similar to that of the MCMV-susceptible strains 129 and FVB, particularly in the *Klra* region (8 of 10 identical markers), indicating that this allele sharing might be the result of a common origin. Although the resistant MA/My strain and the susceptible FVB and 129 strains have a similar *Cmv1* haplotype, the difference in resistance to MCMV infection between the three strains could be explained, at least in part, by their *H2* haplotype, also implicated in MCMV infection. In fact, MA/My carries the protective *H2*^k haplotype, whereas 129 and FVB have the susceptible *H2*^b and *H2*^q haplotypes, respectively. ## Genetic analysis of MCMV resistance in MA/My We investigated the mode of inheritance of the MA/My resistance trait in F_1 and F_2 progeny from crosses between MCMV-resistant MA/My and MCMV-susceptible BALB.K mice. Both strains share the same $H2^k$ haplotype. The read-out phenotype was spleen viral load 3 d after infection measured in \log_{10} plaque-forming units (PFUs) recovered. (MA/My × BALB.K) F_1 mice had a mean viral titer (× 1 s.d.) of $3.35 \pm 0.13 \log_{10}$ PFUs, intermediate between the viral titers of MA/My (2.24 \pm 0.62, P < 2.8 × 10⁻⁶) and BALB.K (4.43 \pm 0.17, P < 2.3 × 10⁻⁶) mice (Fig. 2a), suggesting that resistance might be controlled by codominant alleles. In addition, the phenotypic distribution of the F_2 progeny was discontinuous, with three means at 2.5, 3.3 and 4.0 \log_{10} PFUs (Fig. 2b), consistent with the presence of a major codominant gene effect. Although MA/My mice do not express Ly49H, we did not exclude the possibility that another member of the Klra gene family or another NK cell receptor gene could contribute to MCMV resistance in MA/My. Therefore, we genotyped Klra5 (also called Ly49e) and five additional markers spanning a total of 14 Mb in individual F₂ mice. All these markers were linked to the NKC and were common to both parental strains of mice (Fig. 1a and Table 1). On the basis of the empirical frequencies of the genotypic classes for Klra5, mice homozygous with respect to BALB.K alleles clustered toward the susceptible end of the distribution, and mice homozygous with respect to the MA/My alleles (Klra5^m) clustered toward the resistant end of the phenotypic spectrum (Fig. 2b). The logarithm of odds (lod) scores for the MCMVresistance trait showed the strongest association with marker genes Klrk1 and Klra5 (Table 1), with a lod score of 22.7 ($P < 1.0 \times 10^{-6}$) under an additive mode of inheritance. The lod scores at the flanking markers D6MIT135 (proximal) and D6MIT291 (distal) were 20.8 and 18.7, respectively (Table 1). This linkage
analysis located a new resistance locus that we named Cmv3. The one-lod support interval suggests that Cmv3 is located in a region of ~8 Mb, indicating that Klrk1 and Klra genes are good candidates for underlying the resistance trait. But analysis of MA/My and BALB/c Klrk1 cDNA sequences indicated that they were identical and equivalently expressed in these mouse strains, excluding Klrk1 as a potential resistance gene (A. Kielczewska and S.M. Vidal, unpublished observations). ## H2 and KIra5 interaction is associated with MCMV resistance To investigate a possible role of H2 in MA/My resistance, we studied the segregation of MCMV resistance in F_1 and F_2 crosses between MCMV-resistant MA/My ($H2^k$) and MCMV-susceptible BALB/c ($H2^d$) mice. Viral load in spleen 3 d after infection was used as the readout phenotype. The mean value for the \log_{10} of the PFUs recovered from the spleen of the (MA/My × BALB/c) F_1 population was 4.0 ± 0.5 (Fig. 2a). This value was closer to that of the susceptible parental strain BALB/c (4.67 ± 0.19) than to that of the resistant parental strain MA/My (2.24 ± 0.62 ; Fig. 2a), suggesting that MCMV resistance segregated as a recessive trait in this cross. Frequencies of viral titers in the spleen of 119 (MA/My × BALB/c) F_2 mice showed a distribution that was suggestive of a more complex genetic control than in the previous cross, as shown by the clustering of the modes of *Klra5* genotype distributions (Fig. 2b). To evaluate further the contribution of H2 and NKC genes to MCMV resistance, we used the markers IAA1 (located in H2) and Klra5 (located in the NKC) as candidate genes to carry out an analysis of variance on viral spleen loads of 119 (MA/My \times BALB/c) F_2 mice. The four additive-recessive combinations of H2-NKC models with and without an interaction term were fitted. All models that included H2, NKC and their interaction fitted consistently better. The most parsimonious model had a joint lod score of 9.3 and accounted for 30% of the phenotypic variation, consistent with the level of variation explained by Cmv3 (Table 2). The H2 recessive effect was almost twice as strong as the other two components combined. But less parsimonious models with other modes of inheritance were also highly significant. This might reflect a complex pattern of gene interactions with different effects on different H2-NKC haplotype combinations (Fig. 2c). The evidence for interaction was consistent across all the models (data not shown). The strength of the additive effect of Klra5 (or other genes closely linked to it) was strongest in the presence of the $H2^{kk}$ background (Fig. 2c). Only mice homozygous with respect to Klra5^m and H2^k alleles were fully resistant to MCMV. Mice showed average \log_{10} PFUs of 2.71 \pm 0.35, in the range of MA/My controls (Fig. 2a,c), indicating that homozygosity with respect to the two loci was required for MCMV resistance. ## Activating receptor Ly49P recognizes MCMV-infected cells In accordance with haplotype analysis, we found that Ly49 receptors cloned from the MA/My strain were highly homologous to those of MCMV-susceptible strain 129 (ref. 20), suggesting that the two strains share a *Klra* gene repertoire. The *Klra9* (also called *Ly49i*) cDNA sequence from MA/My was identical to that of the 129 strain. The inhibitory receptor Ly49I¹²⁹ binds to the m157 viral protein²¹, suggesting this as a possible susceptibility mechanism. Ten percent of MA/My NK cells stained with the m157-Ig fusion protein²¹ (Table 3), excluding a hypothetical lack of Ly49I-m157 interaction as a means of MCMV resistance. The activating receptors, including Ly49P, Ly49R and Ly49U, shared 98–100% identity at the nucleotide level with their 129 counterparts (data not shown). These receptors were expressed on MA/My NK cells (**Supplementary** Fig. 1 online) and are good candidates for MCMV resistance in this strain through direct recognition of infected cells. To test this hypothesis, we used a mouse T-cell hybridoma carrying the DAP12 adaptor signaling protein and a reporter gene *NFAT-GFP* and transfected it with cDNAs encoding Ly49P, Ly49R or Ly49U amplified from MA/My (Fig. 3). Growing the reporter cells on culture plates coated with monoclonal antibodies specific to the transfected receptors induced expression of green fluorescent protein (GFP), confirming that the reporters were functional (Fig. 3c). When Ly49 reporter cells were cultured with MCMV-infected mouse embryo fibroblasts (MEFs) from MA/My, only Ly49P reporters turned green, indicating the presence of a Ly49P ligand (Fig. 3a). This was not observed in the presence of uninfected MEF cells (Fig. 3a). Stimulation of *NFAT-GFP* was also absent when Ly49P reporter cells were cultured with Ba/F3 mouse pro-B cells expressing the MCMV-encoded ligand of Ly49H^{C57BL/6} receptor, m157 (Fig. 3b), indicating that Ly49P^{MA/My} recognized MCMV-infected cells by a mechanism that did not involve m157 detection. ## Ly49P-MCMV specific activation depends on H-2Dk To address the role of H2 in Ly49P recognition of infected cells, we monitored stimulation of reporter cells transfected with Ly49P or with Ly49H (as a positive control) after culture with MCMV-infected MEF cells originating from mouse strains with different H2 haplotypes (Fig. 4). Ly49P reporter cells did not respond when the infected target cells originated from BALB/ c $(H2^d)$, FVB $(H2^q)$ or C57BL/6 $(H2^b)$ mice. In contrast, Ly49P receptors were activated in the presence of infected cells from MA/My $(H2^k)$ or BALB.K $(H2^k)$ mice (Fig. 4), indicative of a functional interaction between the H2 molecule and Ly49P receptor in the presence of MCMV infection. Because H2 molecules are well-documented ligands of Ly49 receptors, we had to verify that Ly49P activation in reporter cells was MCMV-specific and not a result of an over-expression of MHC class I during infection. Whereas MEF cells that were cultured in the presence of recombinant interferon- β (IFN- β) had increased H2-D^k expression, as verified by surface staining (data not shown), they did not activate Ly49P reporters (Fig. 5a). Similarly, MEF cells infected with mouse herpesvirus 68 (MHV68) also did not activate Ly49P reporters, confirming the specificity of Ly49P for MCMV (Fig. 5a). The previous results suggested that there is an $H2^k$ product (or products) recognized by Ly49P receptors. We determined that a monoclonal antibody to H-2D^k (15-5-5S) efficiently blocked the activation of Ly49P reporter cells by BALB.K MCMV-infected cells ($H2^k$; Fig. 5b). In contrast, neither a monoclonal antibody recognizing H-2K^k (36-7-5) nor an isotype-matched control antibody prevented Ly49P reporter activation. Furthermore, the presence of antibody against Ly49P, YE1/48, resulted in blocking of GFP production, showing that the reporter cell activation was Ly49P-specific. These results, together with the observation that Ly49R or Ly49U reporters were not activated (Fig. 3), support the role of Ly49P in mediating recognition of H-2D^k on MCMV-infected cells. #### DISCUSSION In C57BL/6 mice, innate resistance to MCMV is mediated by the activating receptor Ly49H. We report here that MCMV resistance in MA/My is associated with *Cmv3*, a new NKC resistance locus linked to the *Klra* gene cluster. A fundamental difference between C57BL/6 and MA/My resistance alleles resides in their sensitivity to the *H2* background. Whereas the *Cmv1*^r-Ly49H phenotype is independent of *H2* environment, results from crosses between MA/My and BALB/c show that only a combination of homozygous *Cmv3*^m and *H2*^k alleles is associated with MCMV resistance, indicative of different mechanisms of action. BALB/c has the *H2*^d haplotype, and many of the inhibitory Ly49 receptors recognize *H2*^d gene products as ligands. Therefore, it is possible that *H2*^d contributes to MCMV susceptibility of BALB/c mice because many of their NK cells possess inhibitory Ly49 receptors, which bind to the products of these *H2* alleles. Heterozygous *H2*^{kd} mice are also susceptible, suggesting that the *H2*^d haplotype encodes additional ligands for inhibitory receptors in MA/My, resulting in increased NK cell inhibition²². These potential susceptibility mechanisms would, however, be overridden by the effect of *Cmv3*^m-*H2*^k epistatic interaction. In the investigation of the candidate genes for MCMV resistance, we provide evidence that $Klra16^{\text{MA/My}}$ (also called $Ly49p^{\text{MA/My}}$) is a resistance allele of Cmv3. Klra16 maps to the confidence interval of Cmv3 in the two crosses that we analyzed, totaling more than 690 meioses. Ly49P is associated with MCMV resistance in the $H2^k$ strain MA/My but not in the MCMV-susceptible FVB ($H2^q$) and 129 ($H2^b$) mice, even though the Klra16 cDNAs are identical in these mouse strains (A. Makrigiannis, A. Kielczewska, S. Girard Adam, M.-P. Desrosiers and S.M. Vidal, unpublished observations). Moreover, Ly49P seems to be expressed on MA/My NK cells as far as we could establish using the YE1/48 monoclonal antibodies, which were previously used in the characterization of this receptor in 129 and NOD strains 23,24 . The exact number of Ly49P-positive NK cells cannot be determined owing to cross-reactivity of these antibodies with other Ly49 molecules in these mouse strains. Finally, testing the candidate genes in a reporter cell assay provides evidence of Ly49P-specific recognition of MCMV-infected cells. From a panel of reporter cells expressing MA/My activating receptors, only the Ly49P reporters expressed GFP when cultured with MCMV-infected cells, indicating the presence of a ligand binding to Ly49P but not the other receptors. In addition, Ly49P recognition of the infected cells depended strictly on the *H2* background of the target cell because only *H2*^k haplotype targets stimulated Ly49P, in concordance with the observed genetic
interaction between the NKC and *H2* loci. Furthermore, we conclude from antibody blocking experiments that H-2D^k in the presence of MCMV infection is a potential ligand for the Ly49P receptor. Together, these results support the idea that Ly49P receptor has a role in MCMV resistance through the NK cell-specific destruction of MCMV-infected cells. Ly49P receptor activity was previously characterized in two other mouse strains. Using the rat NK cell line RNK-16 transfected with Ly49P from the NOD strain, it was shown that Ly49P induced lysis of susceptible targets²³, whereas immunoprecipitation assays showed that Ly49P from 129 precipitated with the adaptor protein DAP12 (ref. 24), confirming the role of Ly49P as an activating receptor. But the killing assay indicated that NOD Ly49P activity was dependent on H-2D^d—bearing targets²³, whereas the studies in the 129 strain showed that Ly49P interacted very weakly with H-2D^k and H-2D^d soluble tetramers. None of the previous studies tested the role of these MHC class I molecules in the context of MCMV infection. We present evidence that Ly49P target recognition is strictly dependent on the availability of H-2D^k molecules on MCMV-infected cells. Depletion of MA/My NK cells with the YE1/48 monoclonal antibody before MCMV injection rendered mice susceptible to infection, underscoring the biological relevance of Ly49P in this model. Activating and inhibitory isoforms of Ly49 MHC class I receptors are highly homologous in their extracellular domains. This probably results from the generation of the activating and inhibitory receptors by gene duplication and gene conversion. In cases where related activating and inhibitory receptors have been shown to bind to the same MHC class I ligand, the activating receptors generally seem to bind with much lower affinity to H2 than do the inhibitory receptors 25,26. Our results suggest that Ly49P recognition of H-2Dk in the infected cell is a new mechanism of activating NK cell receptor function, involving specific recognition of infected cells through classical MHC class I ligands. Although the exact nature of the interaction between Ly49P and H-2Dk in MCMV-infected cells remains to be defined, it is plausible that ligation of the H-2D^k molecule depends on the presence of a MCMV-specific peptide. Therefore, although the precise molecular machinery of target recognition is not yet known, our results indicate the possibility of peptide-specific recognition of MCMV by the Ly49P receptor. The requirement for peptide selectivity, previously well described for targetspecific recognition by inhibitory MHC class I receptors ^{27,28}, and H2 allelic specificity renders the Ly49P-MCMV-infected cell encounter a highly specific mechanism of innate immunity mediated by NK cells, previously thought to be confined to cytotoxic T cells. Peptide preference in MHC class I recognition by NK cell receptors is well documented for both Ly49 receptors and their functional homologs, human killer cell immunoglobulin receptors (KIR). In the case of the interaction between receptor KIR2DL2 and HLA-Cw3, direct contact between the KIR and the presented peptide occurs. There is less receptor contact to the side chain of the peptide than in T-cell receptor binding; therefore, the interaction is less sensitive to peptide content²⁹. On the other hand, in the case of the Ly49C peptide-selective receptor, crystallographic studies show no contact between the receptor and the peptide. In fact, Ly49C interacts with the MHC class I molecule over a broad region beneath the peptide-binding platform. Dam and colleagues³⁰ proposed that, with Ly49C, certain peptides might exert interactions through the floor of the H-2Kb binding grove, transmitted to the NK cell receptor by β_2 M. This is a plausible mechanism for the Ly49P recognition of infected cells, resulting in the protection of the host against pathogens. Analogous to the mechanism of ligand recognition by the promiscuous receptor Ly49C, Ly49P may also be able to recognize allosteric effects caused by a virus-encoded peptide. Alternatively, Ly49P may recognize an H2 molecule presenting a host-encoded peptide resulting from MCMV infection. Future studies will be necessary to determine whether recognition is specific for a single peptide or whether it results from a particular allosteric change in the H-2D k molecule. Furthermore, if the peptide is of viral origin, the MCMV gene product implicated also awaits identification. Although Ly49 and human KIR receptors are structurally unrelated, the two gene families share certain features, including polymorphism and variation in gene content and a similar pattern of clonal expression on different NK cells³¹, as recently confirmed by transgenic models of KIR in mice³². Most notably, members of both receptor families recognize MHC class I antigens and use similar mechanisms for signal transduction. In humans, genetic epidemiological studies have identified several combinations of KIR and MHC loci associated with disease outcome, including those reported for human *KIR2DL3* and *HLA-C* protection against hepatitis C³³, and human *KIR3DS1* and *HLA-Bw4* activity delaying the progression of AIDS³⁴. The evidence presented in this study emphasizes the importance of activating MHC class I NK cell receptors in recognition of infection, warranting further investigation of their role in host resistance to pathogens. #### **METHODS** Mice. We purchased inbred mouse strains C57BL/6, MA/My, 129P3, FVB/N, BALB/c and BALB.K from the Jackson Laboratory. We produced F_1 and F_2 progeny from MA/My \times BALB.K and MA/My \times BALB/c crosses. Mice were kept at the animal facility of the University of Ottawa, in agreement with guidelines and regulations of the Canadian Council of Animal Care. #### Virus stocks, mouse infections and virus titration. We obtained the Smith strain of MCMV from the American Type Culture Collection. We produced virus stocks by salivary gland propagation in 3-week-old BALB/c mice as previously described 35 . To study susceptibility of mice to MCMV, we infected 6- to 8-week-old mice intraperitoneally with 5×10^3 PFUs MCMV. We determined viral titers on MA/My (n = 16), BALB.K (n = 25), BALB/c (n = 15), C57BL/6 (n = 22), 129 (n = 18), FVB (n = 20), (MA/My × BALB.K) F₁ (n = 6), (MA/My × BALB.K) F₁ (n = 10), (MA/My × BALB.K) F₂ (n = 226) and (MA/My × BALB/c) F₂ (n = 119) mice by plaque assay as described 35 . We collected spleens of mice 3 d after infection, homogenized them and centrifuged them at 500g for 20 min in a refrigerated centrifuge. We plated the supernatants for 1 h on monolayers of BALB/c MEF cells. After 3 d of incubation, we washed, fixed and stained the infected cells and counted MCMV plaques. Viral titers in the spleen are expressed as MCMV log₁₀ PFUs. For antibody-depletion experiments, we injected mice intraperitoneally with 100–400 µg of antibody 2 d before infection. #### Cell cultures. We constructed 2B4 NFAT-GFP reporter cells and m157-transfected mouse Ba/F3 cells as described ¹⁷ and maintained them in complete RPMI-1640 medium (supplemented with 10% fetal bovine serum, penicillin, streptomycin and glutamine). We prepared MEF cells from strains MA/My, BALB/c, BALB.K, 129 and FVB as previously described ³⁵, with modifications. We obtained embryos at 14–16 d of pregnancy, dissected them out of the embryonic sacs and removed livers and heads. We then finely minced the embryonic tissue with two forceps, washed it with phosphate-buffered saline and incubated it at 4 °C with trypsin overnight. The next, we dissociated the cells into a single-cell suspension and plated them on T175 flasks in complete DMEM medium (10% fetal bovine serum, 25 mM HEPES, penicillin, streptomycin and glutamine). TpnT fibroblasts (an SV40-immortalized MEF cell line from C57BL/6 mice) were a gift from A. Hill (Oregon Health Sciences University, Portland, Oregon). #### Genotyping. We extracted genomic DNA from individual mouse tail tips using the alkaline method 36 . We carried out the haplotype analysis using 30 markers clustered in the Klra region or distributed in the NKC genomic domain. The DNA markers were microsatellites (D6Mit52, D6Mit257, D6Mit135, D6Mit289, D6Ott8, Ly49d, Klra8, Ly49g, Ly49a, D6Ott11, D6Ott32, 52A6L, D6Ott113, D6Ott117, D6Ott118, D6Ott115, 392D6L, 330B9L2, 242D11L, D6Mit13, D6Mit290, D6Mit196, D6Mit374 and D6Mit220) or restriction-fragment length polymorphisms (Klrk1, Klra5, 282h8Sp6 and 200H7L) or were detected by single-strand conformational polymorphism (Ly49b). The oligonucleotide primers and genotyping conditions were as described 11,19,37,38. We analyzed NK1.1 expression by staining the NK cells with the PK136 monoclonal antibody (BD Pharmingen) using previously described conditions ¹². Together, the markers span a physical distance of 5 Mb (*D6MIT52*– D6MIT220 interval). For the linkage analysis, we genotyped 226 (MA/My × BALB.K) F₂ mice and 119 (MA/My × BALB/c) F₂ using the Klra5 marker representing the NKC region and IAA1 markers representing the H2 region. To discriminate between the Klra5^c (BALB/c, BALB.K) and Klra5^m (MA/My) alleles, we carried out amplification with the Klra5 marker followed by digestion with *HincII* (New England Biolabs) as described ¹³. To distinguish the H2^d (BALB/c) and H2^k (MA/My, BALB,K) haplotypes, we carried out amplification with IAA1 primers followed by digestion with PstI (New England Biolabs). PCR and enzyme digestion conditions and oligonucleotide sequences for the IAA1 primers were previously reported 39 . For fine-mapping on chromosome 6, we genotyped (MA/My × BALB.K) F_2 mice using the *Klrk1* restriction-fragment length polymorphism marker and the microsatellite markers D6MIT300, D6MIT52, D6MIT135 and D6MIT291 (Mouse MapPairs; Research Genetics), spanning 14 Mb. Genotyping with Klrk1 and microsatellite markers was done as previously described 11,37. # MA/My KIra cDNA
repertoire. We isolated total RNA from MA/My mice with TRIzol reagent (Life Technologies) and enriched it for poly (A)⁺ using an Oligotex mRNA Midi kit (Qiagen). We used oligo(dT) primer and SuperScript II polymerase (Life Technologies) for reverse transcription. We amplified Klra transcripts with Advantage cDNA polymerase (Clonetech) by using Klra universal primers⁴⁰. We purified the PCR product with a QIAEX II Gel Extraction Kit (Qiagen) and directly ligated it into pGEM T-Easy Vector System, in accordance with the manufacturer's instructions (Promega). We transformed ligation products using competent DH5 α bacterial cells (InVitro-Gen) and grew them overnight at 37 °C on nylon membranes on Luria-Bertani broth agar plates. We duplicated the nylon membranes and treated them with 10% SDS buffer for 3 min to obtain optimal lysis, followed by a 5-min denaturing, neutralizing and washing step. We fixed DNA on membranes by ultraviolet cross-linking (70,000 µJ cm⁻²). The duplicated set of membranes was independently hybridized with ITIM (inhibitory)- and non-ITIM (activating)-labeled (γ32-P-dATP) degenerated primers to discriminate inhibitory and activating *Klra* transcripts 40. We exposed filters on Kodak X-ray films for 16 h and identified positive clones on the transformed plates. We dissolved single positive colonies in water and used them as DNA templates for PCR using M13 universal primers to amplify the cDNA inserts. We purified plasmids from 20 positive clones with a Qiagen mini-kit and sequenced them by using a Licor automated system with SequiTherm EXCEL Kits (LC technology, Epicentre). We carried out DNA analysis of these clones using standard parameters of nucleotide-nucleotide BLAST (blastn) and protein-protein BLAST (blastp) programs. We used the ClustalW program for multiple sequence alignments. #### Statistical analysis. For the 226 (MA/My × BALB.K) F₂ mice, the genotypic data of markers on chromosome 6 were associated with their respective MCMV log₁₀ PFU counts in the spleen using the MapManager QTb program41. This program, based on single-marker regression, allows identification of the loci that affect quantitative traits. For the 119 (MA/My × BALB/c) F₂ mice, the contribution of Klra5 and H2 alleles to the segregation of the phenotype was estimated under the linear model phenotype = m + NKC + H2 + NKC:H2 + e, where NKC and H2 represent factors that depend on the mode of inheritance proposed, m is the common mean value, NKC:H2 is an interaction term and e is the usual independent normally distributed random deviations. For the additive mode of inheritance, NKC and H2 represent the number of MA/My alleles at each locus. For the recessive mode of inheritance, NKC and H2 are the indicator variables of the homozygous BALB/c and MA/My background, respectively. The four possible additive-recessive combinations of H2-NKC models with and without an interaction term were fitted. We assessed the magnitude of the contribution for each term in the model by its P value, obtained by 1,000,000 bootstrapped samples, and partial η^2 . Partial η^2 is computed as $\eta^2 = SS_{factor}/(SS_{factor} + SS_{error})$, where SS_{factor} is the type 3 associated sum of squares with the factor in the analysis of variance table, and SS_{error} is the sum of squares corresponding to the residual variation⁴². We carried out statistical and graphical analyses using R software. #### Cell reporter assay. We transduced NFAT-GFP 2B4 T-cell hybridoma reporter cells with cDNAs encoding MA/My Ly49P, Ly49R or Ly49U cloned into *Bam*HI and *Eco*RI sites of the pMx-puro vector as previously described 17 . We prepared primary MEF cultures from MA/My, BALB/c, FVB or BALB.K mice, as described above, infected with MCMV (Smith strain) at a multiplicity of infection of 1.0 for 22 h and used these as stimulator cells for the reporter assay. We cultured reporter cells overnight with the stimulator cells in 48-well plates in a 1:1 ratio. Activation of the NFAT-GFP reporter gene was detected by flow cytometric analysis and analyzed on a FACSCalibur flow cytometer with Cell Quest software (Becton Dickinson) and WinMDI (J. Trotter, Scripps Research Institute). In antibody blocking assays, reporter or stimulator cells were preincubated with a saturating concentration (>50 μg ml $^{-1}$) of an isotype-matched control immunoglobulin, 15-5-5S (anti-H-2D k) or 16-3-22S (anti-H-2K k) antibodies. We detected surface expression of H-2K k and H-2D k by using fluorescein isothiocyanate—conjugated 16-3-22S and 15-5-5S (anti-H-2D k) antibodies (BD PharMingen) and measured fluorescence by flow cytometry. ## URLs. BLAST programs are available at http://www.ncbi.nlm.nih.gov/BLAST/. ClustalW is available at http://www.ebi.ac.uk/clustalw/. R software is available at http://www.R-project.org/. #### GenBank accession numbers. *Klra18*^{MA/My} mRNA, AY971805; *Klra21*^{MA/My} mRNA, AY971806; *Klra16*^{MA/My} mRNA, AY971807. #### Acknowledgements We thank S.-H. Lee for the initial characterization of the MA/My strain; F. Takei for providing the YE1/48 antibody for depletion experiments; D. Albert and M.-H. Lacombe for technical support; M. Reuben for editorial assistance; and P. Gros, E. Schurr and M. Fujiwara for critical reading of the manuscript. This work was supported by grants from the Canadian Institutes of Health Research and the Canadian Genetic Diseases Network (Network of Centres of Excellence program). A.K., S.G.A. and J.-C.L.-O. were Canadian Institutes of Health Research Training Fellows in Infectious Diseases and Autoimmunity. A.K. was also supported by a McGill Majors Fellowship. M.B.L., T.P. and L.L.L. are supported by a grant from the US National Institutes of Health. L.L.L. is an American Cancer Society Research Professor. S.M.V. is a Canada Research Chair. #### References - 1. Britt, W.J. & Alford, C.A. Cytomegalovirus. in *Fields Virology* (eds. Fields, B.N., Knipe, D.M. & Howley, P.M.) 2493–2524 (Lippincott-Raven, Philadelphia, 1996). - Reusser P. Management of viral infections in immunocompromised cancer patients. Swiss Med Wkly 2002;132:374–378. [PubMed: 12428191] - Soderberg-Naucler C, Emery VC. Viral infections and their impact on chronic renal allograft dysfunction. Transplantation 2001;71:SS24–SS30. [PubMed: 11583485] - 4. Trincado DE, Rawlinson WD. Congenital and perinatal infections with cytomega-lovirus. J Paediatr Child Health 2001;37:187–192. [PubMed: 11328477] - Biron CA, Byron KS, Sullivan JL. Severe herpesvirus infections in an adolescent without natural killer cells. N Engl J Med 1989;320:1731–1735. [PubMed: 2543925] - Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 1999;17:189–220. [PubMed: 10358757] - Chalmer JE, Mackenzie JS, Stanley NF. Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse. J Gen Virol 1977;37:107–114. [PubMed: 199700] - 8. Grundy JE, Mackenzie JS, Stanley NF. Influence of H-2 and non-H-2 genes on resistance to murine cytomegalovirus infection. Infect Immun 1981;32:277–286. [PubMed: 6260682] - Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR. Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med 1990;171:1469–1483. [PubMed: 2159050] - 10. Scalzo AA, et al. The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol 1992;149:581–589. [PubMed: 1378069] - 11. Depatie C, Muise E, Lepage P, Gros P, Vidal SM. High-resolution linkage map in the proximity of the host resistance locus Cmv1. Genomics 1997;39:154–163. [PubMed: 9027502] - 12. Scalzo AA, et al. Genetic mapping of Cmv1 in the region of mouse chromosome 6 encoding the NK gene complex-associated loci Ly49 and musNKR-P1. Genomics 1995;27:435–441. [PubMed: 7558024] - 13. Brown MG, et al. A 2-Mb YAC contig and physical map of the natural killer gene complex on mouse chromosome 6. Genomics 1997;42:16–25. [PubMed: 9177771] - Brown MG, Scalzo AA, Matsumoto K, Yokoyama WM. The natural killer gene complex: a genetic basis for understanding natural killer cell function and innate immunity. Immunol Rev 1997;155:53– 65. [PubMed: 9059882] - Yokoyama WM, Plougastel BF. Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 2003;3:304–316. [PubMed: 12669021] - 16. Long EO. Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 1999;17:875–904. [PubMed: 10358776] - 17. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002;296:1323–1326. [PubMed: 11950999] - 18. Smith HR, et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci USA 2002;99:8826–8831. [PubMed: 12060703] - 19. Lee SH, et al. Haplotype mapping indicates two independent origins for the Cmv1s susceptibility allele to cytomegalovirus infection and refines its localization within the Ly49 cluster. Immunogenetics 2001;53:501–505. [PubMed: 11685461] - Makrigiannis AP, et al. A BAC contig map of the Ly49 gene cluster in 129 mice reveals extensive differences in gene content relative to C57BL/6 mice. Genomics 2002;79:437–444. [PubMed: 11863373] - 21. Arase H, Lanier LL. Specific recognition of virus-infected cells by paired NK receptors. Rev Med Virol 2004;14:83–93. [PubMed: 15027001] 22. Makrigiannis AP, et al. Class I MHC-binding characteristics of the 129/J Ly49 repertoire. J Immunol 2001;166:5034–5043. [PubMed: 11290784] - 23. Silver ET, et al. Ly-49P activates NK-mediated lysis by recognizing H-2Dd. J Immunol 2000;165:1771–1781. [PubMed: 10925254] - 24. Makrigiannis AP, et al. Cloning and characterization of a novel activating Ly49 closely related to Ly49A. J Immunol 1999;163:4931–4938. [PubMed:
10528196] - Nakamura MC, Hayashi S, Niemi EC, Ryan JC, Seaman WE. Activating Ly-49D and inhibitory Ly-49A natural killer cell receptors demonstrate distinct requirements for interaction with H2-D(d). J Exp Med 2000;192:447–454. [PubMed: 10934233] - 26. Nakamura MC, Seaman WE. Ligand interactions by activating and inhibitory Ly-49 receptors. Immunol Rev 2001;181:138–148. [PubMed: 11513135] - 27. Peruzzi M, Wagtmann N, Long EO. A p70 killer cell inhibitory receptor specific for several HLA-B allotypes discriminates among peptides bound to HLA-B*2705. J. Exp. Med 1996;184:1585–1590. [PubMed: 8879234] - 28. Franksson L, et al. Peptide dependency and selectivity of the NK cell inhibitory receptor Ly-49C. Eur J Immunol 1999;29:2748–2758. [PubMed: 10508249] - 29. Radaev S, Sun PD. Structure and function of natural killer cell surface receptors. Annu. Rev. Biophys. Biomol. Struct 2003;32:93–114. [PubMed: 12471063] - 30. Dam J, et al. Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2K(b). Nat Immunol 2003;4:1213–1222. [PubMed: 14595439] - 31. Trowsdale J, et al. The genomic context of natural killer receptor extended gene families. Immunol Rev 2001;181:20–38. [PubMed: 11513141] - 32. Belkin D, et al. Killer cell Ig-like receptor and leukocyte Ig-like receptor transgenic mice exhibit tissue- and cell-specific transgene expression. J Immunol 2003;171:3056–3063. [PubMed: 12960331] - 33. Khakoo SI, et al. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 2004;305:872–874. [PubMed: 15297676] - 34. Martin MP, et al. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 2002;31:429–434. [PubMed: 12134147] - 35. Scalzo, A.A., Farrell, H. & Karupiah, G. Techniques for studying murine natural killer cells in defense against viral infection. in *Natural Killer Cell Protocols, Cellular and Molecular Methods* (eds. Campbell, K.S. & Colonna, M.) 163–177 (Humana, Totowa, New Jersey, 2000). - 36. Truett GE, et al. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29 2000;52:54. - 37. Depatie C, et al. Assessment of Cmv1 candidates by genetic mapping and in vivo antibody depletion of NK cell subsets. Int Immunol 1999;11:1541–1551. [PubMed: 10464175] - 38. Depatie C, et al. Sequence-ready BAC contig, physical, and transcriptional map of a 2-Mb region overlapping the mouse chromosome 6 host-resistance locus Cmv1. Genomics 2000;66:161–174. [PubMed: 10860661] - 39. Peng SL, Craft J. PCR-RFLP genotyping of murine MHC haplotypes. Biotechniques 1996;21:362–368. [PubMed: 8879564] - 40. Silver ET, Gong D, Hazes B, Kane KP. Ly-49W, an activating receptor of nonobese diabetic mice with close homology to the inhibitory receptor Ly-49G, recognizes H-2D(k) and H-2D(d). J Immunol 2001;166:2333–2341. [PubMed: 11160290] - 41. Manly KF, Olson JM. Overview of QTL mapping software and introduction to map manager QT. Mamm Genome 1999;10:327–334. [PubMed: 10087288] - 42. Pierce CA, Block RA, Aquinis H. Cautionary note on reporting eta-squared from multifactor ANOVA designs. Educ Psychol Meas 2004;64:916–924. | b | | | | | | | | — | | | K | lra r | egio | n | | | \rightarrow | | | | | | | | | | | | |---------|-----------------|----------|---------|-------|----------|----------|-------|----------|-------|-------|-------|-------|-------|---------|--------|-------|---------------|----------|--------|----------|---------|----------|----------|---------|---------|---------|----------|----------| | | MCMV titer | D 6M/r52 | D6M#257 | NK1.1 | D6Mit135 | D6Mit289 | KIrk1 | DEOtt8 | Kira5 | Kira4 | Kira8 | Klra7 | Kira1 | D6Ott11 | D6O#32 | 52A6L | Klra2 | 282h8Sp6 | 200H7L | D6Ott113 | D6O#117 | D6Ott118 | D6Ott115 | 392D 6L | 330B9L2 | 242D11L | D6Mit113 | D6Mit290 | | C57BL/6 | 2.06 ± 0.62 | 3 | 4 | 1 | 3 | 1 | Α | 1 | Α | 1 | 1 | 1 | 4 | 3 | 1 | 1 | 1 | Α | Α | 3 | 3 | 1 | 3 | 2 | 1 | 1 | 3 | 3 | | MA/My | 2.24 ± 0.15 | 3 | 3 | 1 | 1 | 1 | Α | 1 | Α | 1 | NΡ | 3 | 2 | 2 | NΡ | NΡ | NΡ | Α | Α | 2 | 3 | 1 | 4 | 2 | 1 | 1 | 4 | 2 | | 129/J | 4.80 ± 0.05 | 2 | 1 | NΡ | 4 | 2 | Α | 1 | Α | 1 | NΡ | 3 | 2 | 4 | NΡ | NΡ | 1 | Α | Α | 2 | 3 | 1 | 3 | 2 | 1 | 1 | 3 | 2 | | FVB/N | 5.02 ± 0.33 | 1 | 2 | 1 | 2 | 5 | Α | 1 | Α | 1 | NΡ | 3 | 2 | 2 | NΡ | NΡ | 3 | Α | Α | 2 | 3 | 1 | 2 | 2 | 1 | 1 | 5 | 3 | | BALB/c | 4.67 ± 0.18 | 2 | 1 | NΡ | 6 | 3 | В | 1 | В | NΡ | NΡ | 2 | 1 | 1 | NΡ | 2 | 2 | В | В | 1 | 1 | 2 | 1 | 1 | NΡ | NΡ | 1 | 1 | **Figure 1.** Haplotype mapping on chromosome 6 in the vicinity of *Cmv1*. (a) Physical distance of markers used for haplotype mapping and genetic analysis. Markers in bold were arbitrarily positioned between well-defined markers. (b) Haplotype map of 30 polymorphic markers. Numbers indicate the relative size of PCR products (1 being the shortest) for microsatellite markers; letters indicate PCR–restriction-fragment length polymorphism markers. NP, no product. Figure 2. Genetic analysis of MCMV resistance in MA/My mice. (a) MCMV viral titers in the spleen of MA/My (n=16), BALB.K (n=25), BALB/c (n=15), (MA/My × BALB.K) F_1 (n=6) and (MA/My × BALB/c) F_1 (n=10) mice. Bars show standard deviation. (b) Empirical density (black line) of phenotypes of 226 (MA/My × BALB.K) F_2 mice (left) and 119 (MA/My × BALB/c) F_2 mice (right). Colored lines indicate the empirical density by genotypes at Klra5. In blue, distribution of homozygous BALB.K (n=55) or BALB/c (n=30) genotypes; in pink, distribution of the heterozygous genotype (MA/My × BALB.K, n=118, or MA/My × BALB/c, n=58); in brown, distribution of the homozygous MA/My genotypes (left, n=53; right, n=31) (c) Box plots of log_{10} PFU counts of H2-Klra5 genotypes showing the combined effects of H2 (MA/My, $H2^k$; BALB/c, $H2^d$) and NKC) and NKC (MA/My, $H2^k$) and NKC (MA/My, $H2^$ **Figure 3.** Activation of Ly49P reporter cells by MCMV-infected cells. NFAT-GFP expression by reporter cells carrying individual Ly49 receptors was measured and GFP expression was analyzed by flow cytometry following culture of reporter cells: **(a)** with uninfected (filled histograms) or MCMV-infected (hollow histograms) MA/My MEF cells; **(b)** with Ba/F3 cells (filled histograms) or Ba/F3 cells expressing the MCMV protein, m157 (hollow histograms); **(c)** on plastic plates coated with monoclonal antibodies (mAb) to Ly49H-Ly49U, Ly49P and Ly49R. Figure 4. Ly49P recognition of MCMV-infected cells is target MHC-dependent. NFAT-GFP stimulation by Ly49P and Ly49H reporter cells was determined after culture with MEF cells from MA/My $(H2^k)$, BALB.K $(H2^k)$, BALB/c $(H2^d)$ and FVB $(H2^q)$ inbred mouse strains and TpnT fibroblasts $(H2^b)$ in the presence (hollow histograms) and absence (filled histograms) of MCMV infection. Ly49H reporter cells, which directly recognize the m157 MCMV protein even in the total absence of H2 molecules on the MCMV-infected cells 17 , were equally activated when cultured with infected target cells from all of the above strains. Figure 5. Characterization of Ly49P interaction with an infected cell. (a) Ly49P activation is MCMV-specific. Ly49P reporter cell activation after culture with target MEF cells from BALB.K mice. Target BALB.K MEFs were either treated with IFN β or infected with MCMV or mouse herpesvirus 68 (MHV68). (b) Ly49P recognition of MCMV-infected cells is blocked by antibodies to H-2D^k and Ly49P (YE1/48) but not by antibodies to H-2K^k. The antibody to Ly49P was used to block recognition of the infected cells by the Ly49P receptor to ensure its proper expression. NFAT-GFP stimulation of Ly49P reporter cells was measured after culture with MCMV-infected BALB.K MEF cells in the absence of blocking antibody or in the presence of isotype control antibody or antibodies to H-2D^k, H-2K^k or Ly49P. $\textbf{Table 1} \\ Linkage \ analysis \ in \ (MA/My \times BALB.K) \ F_2 \ progeny$ | | | QTL analysis | | | | |----------|-----------------|------------------|---------------------------|--|--| | Locus | Mb^a | lod^b | Variance (%) ^c | | | | D6MIT300 | 123.6 | 18.6 | 32 | | | | D6MIT52 | 128.4 | 20.9 | 35 | | | | D6MIT135 | 129.5 | 20.8 | 35 | | | | Klrk1 | 130.3 | 22.7 | 37 | | | | Klra5 | 130.6 | 22.7 | 37 | | | | D6MIT291 | 137.5 | 18.7 | 32 | | | The analysis was done on 226 (MA/My \times BALB.K) F2 mice. $^{^{}a}$ The position of each marker obtained from Ensembl. $^{^{\}it b}$ The lod ratio was used to measure the significance of each potential association of the trait with a locus. ^CThe amount of total trait variance explained by a quantitative trait locus (QTL) is expressed as a percentage. | | Sum of squares | F value | P value | Partial η ² | |--------------|----------------|---------|-------------------------|------------------------| | Model | 20.80 | 16.53 | <1.0 × 10 ⁻⁶ | 0.301 | | NKC additive | 1.66 | 3.95 | 4.9×10^{-2} | 0.033 | | H2 recessive | 12.11 | 28.87 | $<1.0 \times 10^{-6}$ | 0.201 | | Interaction | 4.60 | 10.97 | 1.2×10^{-3} | 0.087 | The analysis was done on 119 (MA/My \times BALB/c) F₂ mice. P values are from 1,000,000 bootstrapped samples. Table 3 Characteristics of mouse strains used in this study | Mouse strain | H2
haplotype | MCMV | Ly49H | Ly49I isoform | Ly49P | m157-Ig-
reactive NK cells [*] | |--------------|-----------------|-------------|-------|---------------|-------|--| | C57BL/6 | <i>H</i> 2b | Resistant | + | Ly49IC57BL/6 | _ | 60% | | BALB/c | <i>H</i> 2d | Susceptible | _ | Ly49IBALB/c | _ | 0% | | BALB.K | H2k | Susceptible | _ | Ly49IBALB.K | _ | 0% | | FVB/N | <i>H</i> 2q | Susceptible | _ | Ly49I129 | + | 10% | | 129P3 | H2b | Susceptible | _ | Lv49I129 | + | 10% | | MA/My | H2k | Resistant | - | Ly49I129 | + | 10% | ^{*}The Ly49I 129 isoform binds to the m157-Ig fusion
protein. Although the presence of Ly49H receptor is sufficient to provide MCMV resistance, Ly49P must be in combination with H^{2k} haplotype.