## LINKAGE STUDIES IN RICE<sup>1</sup>\*

## LIEN FANG CHAO

### Genetics Department, University of Wisconsin, Madison, Wisconsin

Received August 10, 1927

### TABLE OF CONTENTS

DAGE

|                                                                                                 | FAGE |
|-------------------------------------------------------------------------------------------------|------|
| INTRODUCTION.                                                                                   | 133  |
| Experiments and results                                                                         | 135  |
| Relation between the awn and the glutinous character                                            | 135  |
| Linkage between the $T_y t_y$ pair and the $G_l g_l$ pair of factors                            | 137  |
| Relation between the pericarp color and the glutinous character                                 | 139  |
| Inheritance of glume length and its relation with the $g_l$ , $p_{r_1}$ , and $p_{r_2}$ factors | 140  |
| Inheritance of spikelet length and its relation with other characters                           | 141  |
| Inheritance of apiculus color and its relation to other characters                              | 146  |
| Relation between stigma color and other characters                                              | 149  |
| Relation between leaf-sheath color and other characters                                         | 151  |
| Linkage between stigma color and leaf-sheath color                                              | 153  |
| Relation between ligule color and other characters                                              | 156  |
| Relation of hull color to other characters                                                      | 157  |
| DISCUSSION OF RESULTS.                                                                          | 159  |
| SUMMARY                                                                                         | 163  |
| Acknowledgment.                                                                                 | 164  |
| LITERATURE CITED                                                                                | 164  |
| Appendix                                                                                        | 165  |

#### INTRODUCTION

According to the chromosome theory, all genes on the same chromosome are linked, unless crossing over takes place. If this postulate is true, we should expect to find no more linkage groups than there are haploid chromosomes in the variety or species in question. Thus far, *Drosophila melanogaster* is the only species in the animal kingdom in which all known genes have been found to fall into one or another of the four linkage groups, each probably corresponding to one of the four haploid chromosomes. In the plant kingdom, *Zea mays* is the only species in which the linkage relations of Mendelian characters have been studied extensively.

In rice, the common species, Oryza sativa L., has twenty-four chromosomes (KUWADA 1910, NAKATOMI 1923). We should expect, therefore, to find twelve linkage groups in the common races of rice. Investigations in this respect, however, have just begun. PARNELL (1917) observed the

<sup>&</sup>lt;sup>1</sup> Papers from the Department of Genetics, Agricultural Experiment Station, UNIVERSITY OF WISCONSIN, No. 80. Published with the approval of the Director of the Station.

<sup>\*</sup> The GALTON AND MENDEL MEMORIAL FUND pays part of the cost of the tables and illustrations for this article.

association between purple lining of the internode and purple glumes, and also between purple stigma and purple axil, whereas green internode and glumes are associated with purple stigma and axil. He further observed (1922) that purple pericarp color belongs to the same pattern. No satisfactory data, however, have been published regarding the chromosomal relations of the genes responsible for the characters just mentioned. NAGAI (1921) observed close association between the purple awn and the reddish-brown testa. HECTOR (1922) showed that the color of the pericarp is due either to the same factor which is responsible for ligule color or to a factor completely linked with it, and that the fact that a few plants were found with colored ligules and white grains is evidence in favor of the latter view. HECTOR (1922) further found that certain color characters on the vegetative parts of the plant are grouped in patterns or systems which are inherited together, segregating as if they were due to a single factor or due to the same interacting factors. In four cases, however, he observed that some patterns were altered. (1) In the cross Noachur $\times$ Pookhi, the pattern "colored internode and stigma" was altered three times out of 1,199 plants examined, giving three plants in  $F_2$  with "colored stigma and green internode." (2) In the same cross, the pattern "colored leaf-sheath and apiculus" changed twice out of 1,199 plants giving two plants in F<sub>2</sub> with "colored apiculus and green leaf-sheath." (3) In the cross Bailabkri × Pookhi the pattern "colored leaf-sheath, internode and stigma" was altered twenty-four times out of 4,687 plants examined, giving twenty-four plants with "colored leaf-sheath and stigma but green internode." (4) In the cross Agartollah $\times$ C<sub>25</sub>, the pattern "colored leaf-sheath, pulvinus, auricles, internode, glumes, apiculus" changed once out of 4,669 plants examined, namely, one plant was found with color in the glumes and apiculus, but with green leaf-sheath, internode, pulvinus and auricles. In all the cases thus far reviewed, while there is some indication of association between certain characters, no linkage group is definitely established.

In three instances, however, the linkage relation seems to be clear. The first of these is between the factor for awn color and the glutinous gene. In the cross, Tamanishiki  $\times$  Shinriki, TAKAHASHI (1923) found that the dominant factor for awn color (R) is coupled with the non-glutinous factor (U), giving about twenty-one percent crossing over. The exact percentage of crossing over, however, is not certain, for NAGAI (1926) found 21.7 percent crossing over in one cross and 14.3 percent crossing over in another cross. Of course, the latter case may be concerned with a different factor. The second instance of linkage is given by YAMAGUCHI

(1926) who found that the factor for apiculus color (S) is coupled with the non-glutinous gene giving about 20-22 percent crossing over. Just recently, YAMAGUCHI (1927) found that the factor (F) for flowering time is also linked with the glutinous gene. The exact locus, however, is not certain.

The present studies were started in the winter of 1924. Some twentyfive factors were studied and their chromosomal relations determined so far as practicable. Since it is not practical to make backcrosses with this plant, the linkage relations were analyzed exclusively from data obtained from the  $F_2$  generation. The varieties used have been briefly described in an earlier paper by the author (CHAO), but a few important characters are pointed out in the following list.

#### Variety

#### Characters

100 Glutinous endosperm; awnless; colorless apiculus and glumes.

- 200 Non-glutinous endosperm; long awn; tawny apiculus and glumes.
- 300 Glutinous; colorless apiculus, stigma and leaf-sheath.

400 Non-glutinous; colored apiculus, stigma and leaf-sheath.

- 600 Non-glutinous; colorless apiculus, stigma and leaf-sheath; red brown pericarp; colorless ligule, auricle, and internode; light hull with brown furrows.
- 800b Glutinous; colored apiculus, stigma and leaf-sheath; purple pericarp; purple ligule, auricle and internode; light hull without brown furrows.
- 4269 Glutinous; long spikelet and long glumes; colorless apiculus, stigma and leaf-sheath; colorless ligule, auricle and pulvinus; purple pericarp.
- 4957 Non-glutinous; short spikelet and short glumes; red apiculus; purple stigma; leafsheath purple lined; colorless ligule, auricle and pulvinus; white pericarp.

## EXPERIMENTS AND RESULTS

## Relation between the awn and the glutinous character

Concerning the inheritance of the awned and awnless character in rice, YAMAGUCHI (1926) reported a simple Mendelian 3:1 ratio. NAGAI (1926) reported three cases, one segregating in a ratio of three awned: one awnless; another segregating in a ratio of one awned: three awnless: and the third, a ratio of fifteen awned: one awnless.

The writer found a case similar to the one last mentioned. The  $F_1$  was fully awned like the awned parent. The  $F_2$  population consisted of four types. One type was fully awned and another fully awnless like the original parents. Of the two new types, one had awns on most of the spikelets, while the other had awns on a few spikelets only, as shown in figure 1. These four types were designated as *fully awned*, *mostly awned*, *rarely awned*, and *fully awnless*, respectively. They occurred in a ratio of GENETICS 13: Mr 1928

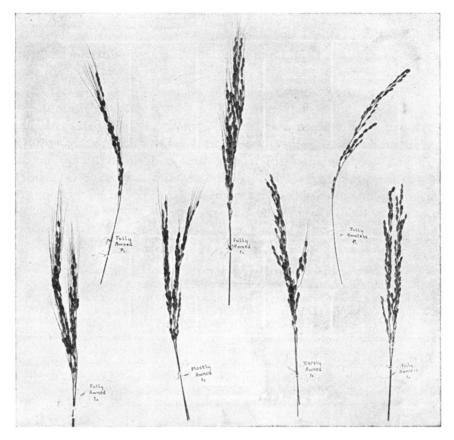



FIGURE 1.—Showing P<sub>1</sub>,  $F_1$ , and  $F_2$  generations of 101 $\times$ 205, with particular reference to the segregation of the awn character.

12:1:2:1. When all the awned types were classified together, however, the ratio of awned to awnless approaches very closely to 15:1, as shown in table 1.

| PHENOTYPE8    | OBSERVED | Calculated | OBSERVED | Calculated 15:1 | DEVIATION |
|---------------|----------|------------|----------|-----------------|-----------|
| Fully awned   | 319      | 326.16     |          |                 |           |
| Mostly awned  | 29       | 27.18      | 406      | 407.70          | -1.7      |
| Rarely awned  | 58       | 54.36      |          |                 |           |
| Fully awnless | 29       | 27.18      | 29       | 27.18           | 1.82      |

TABLE 1 Segregation of fifteen awned: one awnless in the  $F_2$  generation of (101×205) D.

 $\frac{\text{Dev.}}{\text{P.E.}} = \frac{1.82}{3.41} = 0.53$ 

These facts are explained on the basis of two pairs of factors  $A_{n_1}a_{n_1}$ and  $A_{n_2}a_{n_2}$ , both being concerned with the production of the awn character.  $A_{n_2}$  is considered to be weaker in its action than  $A_{n_1}$ . So,  $A_{n_1}$  can produce the fully awned type with or without  $A_{n_2}$ .  $A_{n_2}$  in double dose may produce the mostly awned class, but in single dose, it will only produce the rarely awned type. The fully awnless type is due to the double recessive constitution. The interpretation that one of these two factors is weaker in its action than the other is supported by the fact that among the mostly awned and rarely awned types of  $F_2$  plants the frequency of awned spikelets on the early or late panicles of the same plant may vary according to environmental conditions, while among the fully awned or fully awnless types the phenotypic expression is not so easily subject to environmental influence.

These two pairs of factors  $A_{n_1}a_{n_1}$  and  $A_{n_2}a_{n_2}$  are independent of the glutinous pair,  $G_{l}g_{l}$ , as shown in table 2. It is to be noted that among the  $F_2$  population of 434 plants, 349 were non-glutinous and 85 glutinous, showing a deficiency of glutinous grains that is about 3.86 times the probable error.

| Phenotypes            | OBSEBTED | Calculated<br>45:5:15:1 | (O-C) <sub>1</sub><br>C |
|-----------------------|----------|-------------------------|-------------------------|
| Non-glutinous awned   | 327      | 305.10                  | 1.57                    |
| Glutinous awned       | 78       | 101.70                  | 5.52                    |
| Non-glutinous awnless | 22       | 20.34                   | 0.13                    |
| Glutinous awnless     | 7        | 6.78                    | 0.01                    |
|                       | 434      | 434                     | $7.23 = X^2$            |

 TABLE 2

 Independent segregation between factors  $A_{n1}a_{n1}$ ,  $A_{n2}a_{n2}$  and  $G_{1g_1}$ .

### P = 0.0718

The deviation from expectation on the basis of independent segregation is not large, if we take into consideration the significant deficiency of the glutinous plants involved.

# Linkage between the $T_y t_y$ pair and the $G_1 g_1$ pair

In this particular material, when the panicle first emerges from the leaf-sheath, the apiculus, the glumes, and the awn, if present, are green like the other parts of the spikelet. As the spikelet is filled up by the developing grain, the three parts concerned gradually develop color through successive shades from Pale Orange Yellow, Light Orange Yellow up to GENETICS 13: Mr 1928

Tawny (Ridgway) or even brighter and more glassy than Tawny at maturity. This is designated as the "tawny character," and the absence of it is non-tawny or colorless.

In inheritance, the tawny character is completely dominant over nontawny in the  $F_1$  generation. In the  $F_2$ , the writer obtained a simple 3:1 ratio, as shown in table 3.

|                |       |           | ,     |
|----------------|-------|-----------|-------|
|                | TAWNY | NON-TAWNY | TOTAL |
| Observed       | 339   | 99        | 438   |
| Calculated 3:1 | 328.5 | 109.5     | 438   |
| Deviation      |       | - 10.5    |       |

| TABLE | 3 |
|-------|---|
|-------|---|

| $F_2$ | segregation | of | tawny | non-lawny | from | the | cross | (101 | $\times 205)D.$ |
|-------|-------------|----|-------|-----------|------|-----|-------|------|-----------------|
|-------|-------------|----|-------|-----------|------|-----|-------|------|-----------------|

 $\frac{\text{Dev.}}{\text{P.E.}} = \frac{10.5}{6.11} = 1.71$ 

Since the tawny color appeared on three parts of the spikelet and no crossing over was noticed in a population of 438  $F_2$  plants, it is very probable that the tawny character is due to one allelomorphic pair of factors rather than to several different genes completely linked. This allelomorphic pair is designated as  $T_y t_y$ .

Breeding data presented in table 4 show that the  $T_y$  factor is coupled with the  $G_i$  factor. On the basis of independent segregation, we should

| TABLE | 4 |
|-------|---|
|-------|---|

Coupling between  $G_1$  and  $T_y$ (Gametic ratio r:s:s:r=4.48:1:1:4.48)

|                         | NON-GLUTINOUS<br>TAWNY | NON-GLUTINOUS<br>COLORLESS | GLUTINOUS TAWNY | GLUTINOUS<br>COLORLESS | TOTAL |
|-------------------------|------------------------|----------------------------|-----------------|------------------------|-------|
| Observed                | 309                    | 43                         | 30              | 58                     | 440   |
| Calculated<br>Deviation | <i>293.11</i><br>15.89 | 36.39<br>6.61              | 36.39<br>-6.39  | 73.44<br>-15.44        | 440   |

$$X^2 = 5.05$$
  
P = 0.17

expect 247.5 non-glutinous tawny plants, 82.5 non-glutinous colorless plants, 82.5 glutinous tawny plants, and 27.5 glutinous colorless plants.

138

But the observed data deviated very widely from the expectation. By EMERSON'S (1916) method, the gametic ratio is found to be:

From this, the zygotic ratio is calculated. The percentage of crossing over is about 16.59 percent. Considering the significant deficiency of the glutinous plants involved, the calculated ratios are fairly close to the observed ones.

## Relation between the pericarp color and the glutinous character

The pericarp color of rice varies from pure white, grey-brown, red to purple. Several investigators notably THOMPSTONE (1915), PARNELL and AVYANGAR (1917), IKENO (1918), NAGAI (1921), and HECTOR (1922), have reported that red and white colors form a simple Mendelian pair segregating in a 3:1 ratio in  $F_2$ , red being dominant over white. PARNELL *et al* (1917), however, found a case where red and white segregated in a 9:7 ratio. PARNELL (1922) reported that purple and white also form a Mendelian pair segregating in a 3:1 ratio and that purple×red gave a ratio of 12 purple: 3 red: 1 white in  $F_2$ . KATO and ISHIKAWA (1921) found a case where red×white gave a ratio of 9 red:3 yellow:4 white. All these facts seem to indicate that there are two factors concerned with the production of pericarp color.

I found that the Chinese Imperial rice has a red pericarp color which also behaved as a simple Mendelian dominant when crossed with a white variety. This allelomorphic pair is designated as  $P_{r_1} p_{r_1}$ . Further data show that  $P_{r_1}$  is independent of the factor  $G_l$ , as shown in table 5.

|                        | NON-GLUTINOUS<br>RED PERICARP | NON-GLUTINOUS<br>WHITE PERICARP | GLUTINOUS RED<br>PERICARP | GLUTINOUS WEITE<br>PERICARP | TOTAL |
|------------------------|-------------------------------|---------------------------------|---------------------------|-----------------------------|-------|
| Observed<br>Calculated | 96                            | 31                              | 37                        | 15                          | 179   |
| 9:3:3:1                | 100.62                        | 33.54                           | 33.54                     | 11.18                       | 179   |
| Deviation              | -4.62                         | -2.54                           | 3.46                      | 3.82                        |       |

TABLE 5 Independent segregation between  $G_1$  and  $P_{r1}$  (600×100).

In another cross between 4269 and 4957, the former being purple and the latter white, a ratio of 15 colored:1 colorless was obtained, showing that there are two factors concerned. One of these two genes in this case

is presumably the same as  $P_{r_1}$  and the other is designated as  $P_{r_2}$ . Both of them are independent of the glutinous gene, as shown in table 6.

|                      | NON-GLUTINOUS<br>COLORED | NON-GLUTINOUS<br>COLORLESS | GLUTINOUS<br>COLORED | glutinous<br>Colorless | TOTAL |  |
|----------------------|--------------------------|----------------------------|----------------------|------------------------|-------|--|
| Observed             | 515                      | 36                         | 147                  | 11                     | 709   |  |
| Calculated 45:15:3:1 | 498.15                   | 33.21                      | 166.05               | 11.07                  | 709   |  |
| Deviation            | 16.85                    | 2.79                       | -9.05                | -0.07                  |       |  |

TABLE 6 Independent segregation between  $P_{r1}$  and  $P_{r2}$  and  $g_1$  from the cross  $4269 \times 4957$ .

Inheritance of glume length and its relation with the  $g_{11}$ ,  $p_{11}$ , and  $p_{12}$ , factors

At the base of the spikelet there are two small lance-shaped structures called glumes. In common varieties, the glumes are very short, about one-third as long as the lemma and palea. But there are some varieties in which the glumes are as long as the lemma and palea. In inheritance, PARNELL *et al* (1917) and NAGAI (1921) have reported that the short glume is dominant to the long glume giving a simple 3:1 ratio in  $F_2$ .

The writer found a case where the short glume  $\times$  long glume gave a 15:1 ratio, long glume being recessive, as shown in table 7.

|                                          | SHORT GLUME   | LONG GLUME           | TOTAL               |  |  |
|------------------------------------------|---------------|----------------------|---------------------|--|--|
| Observed<br>Calculated 15:1<br>Deviation | 674<br>672.15 | 43<br>44.81<br>-1.81 | 717<br>7 <i>1</i> 7 |  |  |

TABLE 7

Segregation for glume length in the cross 4269 (long)×4957 (short).

$$\frac{\text{Dev.}}{\text{P.E.}} = \frac{1.81}{4.37} = 0.41$$

Since the observed ratio is remarkably close to 15:1, undoubtedly there are two duplicate factors concerned with the production of the glume length. These two pairs of duplicate genes are designated as  $G_1g_1$  and  $G_2g_2$ .

Further data clearly indicate that  $g_1$  and  $g_2$  are independent of the glutinous gene  $g_1$ , as shown in table 29. The observed data approach the calculated ratios very closely, considering the deficiency of the glutinous plants involved. Furthermore, the duplicate genes  $G_1$  and  $G_2$  have no chromosomal relations with factors  $P_{r_1}$  and  $P_{r_2}$ , as shown in table 30.

Inheritance of spikelet length and its relation with other characters

The spikelet length varies with different varieties. The variety, 4957, has spikelets varying from 3.5-4.9 mm in length with an average of 4.13 mm. The variety 4269 has spikelets varying from 7.3-10.3 mm in

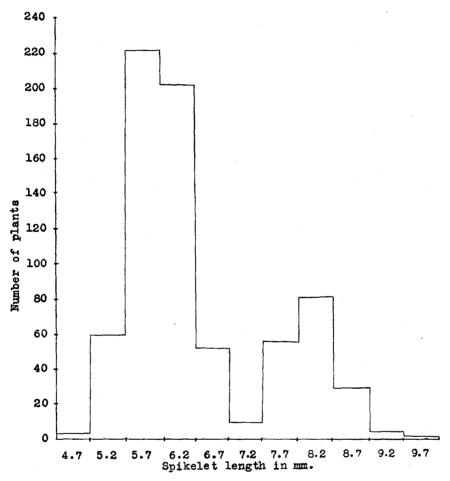



FIGURE 2.—Showing segregation for spikelet length in  $F_2$  of cross 4269×4957.

length with an average of 8.81 mm. The variation within each of these varieties follows a normal frequency curve.

In the cross,  $4269 \times 4957$ , made by the writer at the CROWLEY RICE EXPERIMENT STATION, 1925, ten F<sub>1</sub> plants were obtained, each showing a similar intermediate type of spikelet ranging from 3.9–6.4 mm long with an average of 5.33 mm in length. In the F<sub>2</sub> generation, segregation for the GENERICS 13: Mr 1928 spikelet length took place, but the spikelets on the same plant were uniform, as expected. Six spikelets taken from the different parts of a panicle in a random fashion were measured and their average length was taken to represent the spikelet length of the plant in question. That this method of sampling actually gives a representative value is proved by the fact that when all the 95 spikelets of a panicle from the plant  $(Hg_{l_1})$  were measured, their average was 5.66 mm approaching very closely to the respective average lengths of several samples of six spikelets each taken at random from that same panicle, namely 5.86, 5.3, 5.75, 5.64, and 5.66. In a population of 718 F<sub>2</sub> plants, the spikelet length ranged from 4.7 to 9.7 mm, as shown in table 8. When the different class values were plotted against the frequency of each class, we obtained a distinctly bimodal curve (figure 2). Since the dividing point of the two groups on the curve

| GENERATION   |     | CLASS CENTERS (IN MM) AND PREQUENCIES |     |     |     |     |     |     |     |     |     |     | NUMBER | NUMBER OF |                     |
|--------------|-----|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--------|-----------|---------------------|
|              | 3.7 | 4.2                                   | 4.7 | 5.2 | 5.7 | 6.2 | 6.7 | 7.2 | 7.7 | 8.2 | 8.7 | 9.2 | 9.7    | PLANTS    | SPIKELETS           |
| $P_1(4957)$  | 1   | 3                                     |     |     |     |     |     |     |     |     |     |     |        | 4         | 282                 |
| $P_1$ (4269) |     |                                       |     |     |     |     |     |     |     |     | 4   |     |        | 4         | 362                 |
| $F_1$        |     |                                       |     | 10  |     |     |     |     | (   |     | 1   | ļ   |        | 10        | 851                 |
| $F_2$        |     | 1                                     | 2   | 60  | 222 | 202 | 52  | 9   | 56  | 81  | 29  | 4   | 1      | 718       | 6 for each<br>plant |

|                     | TABLE 8                                     |            |
|---------------------|---------------------------------------------|------------|
| Showing segregation | for spikelet length in $F_2$ from the cross | 4269×4957. |

is clearly at the class center, 7.2, which is exactly the length of the shortest spikelet of the long parent, and since the longest spikelet of either the short parent or of the  $F_1$  is never over 6.5 mm in length, it appears legitimate to place the nine plants of the class (7.2) in the long group. In so doing, the  $F_2$  population is divided into two phenotypes, one with short spikelets and the other with long spikelets in almost exactly a 3:1 ratio, as shown in table 9.

TABLE 9 Segregation for short and long spikelet in  $F_2$  from  $4269 \times 4957$ .

|                                         | SHORT SPIKELET | LONG SPIKELET              | TOTAL              |
|-----------------------------------------|----------------|----------------------------|--------------------|
| Observed<br>Calculated 3:1<br>Deviation | 538<br>538.5   | 180<br><i>179.5</i><br>0.5 | 718<br>7 <i>18</i> |

The data clearly indicates that the spikelet length, in this material at least, is due to one allelomorphic pair of factors which may be designated as  $S_p s_p$ .

The  $S_p s_p$  pair of genes are not linked with the  $G_l g_l$  pair as shown in table 31, nor with  $P_{r_1} p_{r_1}$  and  $P_{r_2} p_{r_2}$  as shown in table 32.

We have seen, in the preceding pages, that glume length depends upon two independent duplicate factors  $G_1g_1$  and  $G_2g_2$ , the short glume being dominant and that the spikelet length depends on one allelomorphic pair of genes,  $S_p s_p$ . When the variety, 4957, having short spikelet and short glumes, was crossed with the variety 4269, having long spikelet and long glumes, all  $F_1$  plants had short glumes and intermediate spikelets. In the  $F_2$  generation, two new types occurred in addition to the two grandparental types, as illustrated in figure 3.

The  $F_2$  population consists of 538 plants having short spikelet and short glumes, one plant having short spikelet and long glumes, 134 plants having long spikelet and short glumes, and 45 plants having long spikelet and long glumes, as shown in table 10. On the basis of three independent factors, we should expect the corresponding classes of  $F_2$  plants to be 504.45, 33.63, 168.15, and 11.21, respectively. But this is not the case; the observed data show a great excess of the two parental types. If we assume that one of the glume factors is the same as the spikelet factor, the calculated ratios would be 12:0:3:1, giving the class frequencies 538.50, having short glumes and short spikelet, none having short spikelet with long glumes, 134.625, having long spikelet with short glumes, and 44.875 having long spikelet and long glumes. The expectation on this assumption fits the observed data very well, except that the single plant with short spikelet and long glumes is not accounted for, as shown in table 10.

| PROGENIES            | SHORT SPIKELET<br>SHORT GLUME | SHORT SPIKELET<br>LONG GLUME | LONG SPIKELET<br>SHORT GLUME | LONG<br>SPIKELET<br>LONG GLUME | TOTAL  |  |
|----------------------|-------------------------------|------------------------------|------------------------------|--------------------------------|--------|--|
| 4269×4957A           | 37                            | 0                            | 3                            | 6                              |        |  |
| "В                   | 48                            | 0                            | 11                           | 4                              |        |  |
| " C                  | 52                            | 1 (CSTG)                     | 13                           | 3                              |        |  |
| " D                  | 58                            | 0                            | 14                           | 5                              |        |  |
| " Е                  | 45                            | 0                            | 6                            | 5                              |        |  |
| " F                  | 76                            | 0                            | 22                           | 8                              |        |  |
| " G                  | 68                            | 0                            | 16                           | 5                              |        |  |
| " Н                  | 4                             | 0                            | 4                            | 0                              |        |  |
| " I                  | 73                            | 0                            | 18                           | 6                              |        |  |
| "J                   | 77                            | 0                            | 27                           | 3                              |        |  |
| Observed             | 538                           | 1                            | 134                          | 45                             | 718    |  |
| ndependent 45:3:15:1 | 504.45                        | 33.63                        | 168.15                       | 11.21                          | 717.44 |  |
| ndependent 12:0:3:1  | 538.50                        | 0                            | 134.625                      | 44.875                         | 718    |  |

 TABLE 10

 Relation between the glume length (15:1) and the spikelet length (3:1).

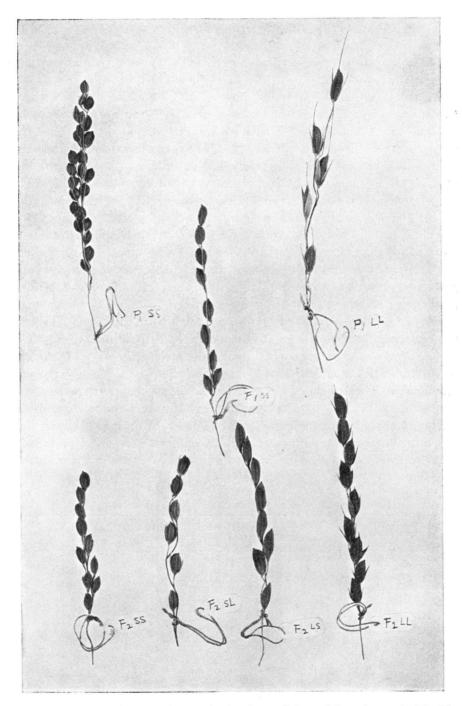



FIGURE 3.—P<sub>1</sub> ss = The paternal parent having short spikelet and short glumes. P<sub>1</sub> LL = The maternal parent, having long spikelet and long glumes. F<sub>1</sub> ss = Hybrid, having short or intermediate spikelet and short glumes. F<sub>2</sub> ss = One of 538 F<sub>2</sub> plants, having short spikelet and short glumes. F<sub>2</sub> sL = The only F<sub>2</sub> plant which had short spikelets and long glumes. This combination is a result of crossing over. F<sub>2</sub> Ls = One of the 134 F<sub>2</sub> plants having long spikelets and short glumes. F<sub>2</sub> LL = One of the 45 plants having long spikelets and long glumes.

The same difficulty occurs if we assume complete linkage between one of the glume factors and the spikelet factor.

So far as the evidence goes, the best explanation, in the writer's opinion, may be obtained on the basis of close linkage between one of the duplicate factors for glume length and the factor for spikelet length. Here, it may be arbitrarily assumed that  $g_2$  is closely linked with  $s_p$ . On this assumption, we can calculate the gametic ratio.

If only the factors  $G_1g_1$  and  $S_p s_p$  had been concerned in this cross, the  $F_2$  distribution would be represented by the general formula,

$$\frac{a}{3r^2 + 2(s^2 + 2rs)} : \frac{b}{s^2 : 2rs} : \frac{c}{s^2 + 2rs} : \frac{d}{r^2}$$
(1)

Where r:s:s:r is any gametic series and a, b, c, and d are the phenotypes,  $G_1S_p$ ,  $G_1S_p$ ,  $g_1S_p$ , and  $g_1s_p$ , respectively.

But when the  $G_2g_2$  pair of genes is also involved, as is the case in this cross, r = the non-crossover gametes  $G_1G_2S_p$ ,  $g_1G_2S_p$ ,  $G_1g_2s_p$ , and  $g_1g_2s_p$ ; and s = crossover gametes  $G_1G_2s_p$ ,  $g_1G_2s_p$ ,  $G_1g_2S_p$ , and  $g_1g_2S_p$ . Combinations of these gametes in all possible ways grouped according to phenotypes may be represented by the general formula,

$$\frac{a}{12r^2+11(s^2+2rs)}:\frac{b}{3r^2+4(s^2+2rs)}:\frac{c}{s^2+2rs}:\frac{d}{r^2}$$
(2)

From formula (2), we get the following four equations:

 $a = 12r^2 + 11(s^2 + 2rs) =$  Short spikelet and short glumes  $b = 3r^2 + 4(s^2 + 2rs) =$  Long spikelet and short glumes  $c = 2rs + s^2 =$  Short spikelet and long glumes  $d = r^2 =$  Long spikelet and long glumes

From these four equations, we can determine the gametic ratio directly from the observed zygotic series. Thus, we get  $a+b+c+d=16r^2+16c$ 

$$16r^{2} = a + b + d - 15c$$

$$r^{2} = \frac{a + b + d - 15c}{16}$$

$$r = 0.25\sqrt{a + b + d - 15c}$$

$$16(s^{2} + 2rs) = a + b + c - 15r^{2}$$

$$s^{2} + 2rs = \frac{a + b + c - 15r^{2}}{16}$$
(3)

Also,

Adding  $r^2$  (or d) to both sides, we get,

$$r^{2}+2rs+s^{2} = \frac{a+b+c+d}{16}$$

$$r+s = 0.25\sqrt{a+b+c+d}$$

$$s = 0.25\sqrt{a+b+c+d-r}$$
(4)

By substituting the observed data of the four phenotypes for a, b, c, and d. in the formulae (3) and (4), we get,

$$r = 6.6225$$
  
 $s = 0.0750$   
If we take  $s = 1$ , the ratio of  $\frac{r}{s} = \frac{88.3}{1}$ 

By substituting the values of r and s in the four equations, we obtain the expected frequencies of the four phenotypes, which fit the observed data unusually closely, as shown in table 11.

| Showing coup | ling between | g <sub>2</sub> and | Sp | (crossover = 1.11) | percent). |
|--------------|--------------|--------------------|----|--------------------|-----------|
|--------------|--------------|--------------------|----|--------------------|-----------|

|                      | SHORT SPIKELET<br>SHORT GLUMES | LONG SPIKELET<br>SHORT GLUMES | SHORT SPIKELET<br>LONG GLUMES | LONG SPIKELET<br>LONG GLUMES | TOTAL |
|----------------------|--------------------------------|-------------------------------|-------------------------------|------------------------------|-------|
| Observed             | 538                            | 134                           | 1                             | 45                           | 718   |
| Calculated (linkage) | 537.5                          | 135.63                        | 0.99                          | <i>43.8</i> 7                |       |
| Deviation            | 0.5                            | -1.63                         | 0.01                          | 1.13                         |       |

 $X^2 = 0.0533$ . When  $X^2 = 1$ , P = .801253

Since this is a coupling phase, the crossover between  $g_2$  and  $s_p$  will be,

$$\frac{s}{r-s} \times 100 = 1.11$$
 percent.

# Inheritance of the apiculus color and its relation with other characters

The apex of the lemma and palea is colored in many varieties. This localized color spot at the upper tip of the spikelet is here spoken of as the apiculus color. The inheritance of this character has been studied by several investigators. HECTOR obtained a ratio of three colored apiculus to one colorless in 1913 and another ratio of 27:37 in 1916. Besides, HECTOR (1922) reported two new conditions, one of which segregated in a 9:7 ratio and the other in a 15:1 ratio.

146

### LINKAGE STUDIES IN RICE

In crosses between different varieties, the writer obtained various ratios in the  $F_2$  generations, namely, 3:1, 9:7, 15:1, 27:37, and 162:94, indicating that there are at least four genetic factors responsible for the production of the apiculus color. The data are presented in table 12.

| TABLE 12                                                                                    |
|---------------------------------------------------------------------------------------------|
| Showing segregation of colored and colorless apiculus in different ratios in F <sub>2</sub> |
| populations of different crosses.                                                           |

|   |                                   | F:SEGREGATION |                        |     | EXPECTED F:      |          |                |                |                                                      |
|---|-----------------------------------|---------------|------------------------|-----|------------------|----------|----------------|----------------|------------------------------------------------------|
|   | CROSSES AND THE PARENTAL<br>TYPES | F,            | Colored Color-<br>less |     | CLOSEST<br>BATIO | Colored  | Color-<br>less | DEVIA-<br>TION | SYMBOLS                                              |
| 1 | Colorless×colored<br>300×400      | Colored       | 77                     | 65  | 9:7              | 79.83    | 62.09          | 2.91           | $\begin{array}{c} CC\\ A_{p_1}, A_{p_2} \end{array}$ |
| 2 | Colorless×colorless<br>300×600    | Colored       | 356                    | 499 | 27:37            | . 360.45 | 493.95         | 5.05           | Cc<br>A <sub>p1</sub> , A <sub>p3</sub>              |
| 3 | Colorless×colored<br>600×400      | Colored       | 330                    | 190 | 162:94           | 328.86   | 190.82         | -0.82          | $A_{p_1}, Cc A_{p_2}, A_{p_3}$                       |
| 4 | Colored×colorless<br>800×600      | Colored       | 255                    | 22  | 15:1             | 259.65   | 17.31          | 4.69           | $A_{p_5}, A_{p_6}$                                   |
| 5 | Colorless×colored<br>4269×4957    | Colored       | 567                    | 176 | 3:1              | 557.25   | 183.75         | 7.75           | $A_{p_4}$                                            |

That variety 300, though colorless, actually carries some factor is shown by the fact that when it was crossed with another colorless variety 600 (see cross No. 2), the  $F_1$  had colored apiculus. In the  $F_2$ , a ratio of 27:37 was observed, showing at least three factors were involved. This situation may be explained, if the two parental types have the following genetic constitutions:

 $300 = g_1 g_1 CC a_{p_1} a_{p_1} a_{p_2} a_{p_2} a_{p_3} a_{p_3}$  (glutinous colorless)

 $600 = G_1 G_1 cc A_{p_1} A_{p_2} A_{p_2} A_{p_3} A_{p_5}$  (non-glutinous colorless Where  $A_{p_1}$ ,  $A_{p_8}$  and C are complimentary factors for apiculus color.

In cross No. 1 (300×400) the 9:7 ratio clearly indicates that two factors are concerned in the production of the apiculus color, these being designated as  $A_{p_1}$  and  $A_{p_2}$ . The situation can be explained by assuming the genetic constitutions of the parents as follows:

Parent  $300 = g_1 g_1 CC a_{p_1} a_{p_1} a_{p_2} a_{p_2}$ 

Parent  $400 = G_1 G_1 CC A_{p_1} A_{p_1} A_{p_2} A_{p_2}$ 

Where C = chromogen, and  $A_{p_1}$  and  $A_{p_2}$  are complementary for the apiculus color.

That the variety 600 actually carries at least one apiculus factor differing from those in the variety 400 is proved by cross No. 3, which gave a ratio of 162:94, showing that four factors are involved. The situation may be explained on the bases of the foregoing genetic constitutions assumed for varieties 400 and 600, respectively.

Cross No. 4 gave a ratio of 15:1, showing that there are two factors involved, each of them alone producing apiculus color. These factors may be designated as  $A_{p_{\delta}}$  and  $A_{p_{\delta}}$ . As no further crosses were made, the assumption must be considered as a tentative one.

Cross No. 5 gave a simple 3:1 ratio, showing that only one factor pair was involved. This factor pair is different from  $A_{p_1}$ ,  $A_{p_2}$ , and  $A_{p_3}$ , in that none of the latter alone can produce the apiculus color. Furthermore, this new factor is linked with the glutinous gene as will be shown later. This gene is designated as  $A_{p_4}$ . It may be that one of the two duplicate factors involved in cross No. 4 is the same as  $A_{p_4}$ .

Factors  $A_{p_1}$  and  $A_{p_2}$  are independent of the glutinous gene as shown in table 13.

|                                   | COLORED APEX<br>NON-GLUTINOUS | COLORLESS APEX<br>NON-GLUTINOUS | COLORED APEX<br>GLUTINOUS | COLORLESS APEX<br>GLUTINOUS | TOTAL |
|-----------------------------------|-------------------------------|---------------------------------|---------------------------|-----------------------------|-------|
| Observed                          | 65                            | 51                              | 12                        | 14                          | 142   |
| Calculated 27:21:9:7<br>Deviation | 59.67<br>5.33                 | 46.41<br>4.59                   | 19.89<br>-7.89            | 15.47<br>-1.47              | 142   |

TABLE 13 Showing independent segregation between factors  $A_{p_1}$ ,  $A_{p_2}$  and  $g_1$  (307×410).

As mentioned above,  $A_{p_4}$  is linked with the glutinous gene as shown in table 14. On the independent Mendelian basis, the expected frequencies should be 417.87 colored non-glutinous, 139.29 colored glutinous, and 46.43 colorless glutinous. But this is far from the observed data which clearly indicate coupling between  $a_{p_4}$  and  $g_i$ . On the latter basis, the

TABLE 14 Showing coupling between  $a_{p_A}$  and  $g_1$  from  $F_2$  of  $4269 \times 4957$ .

|            | COLORED APEX<br>NON-GLUTINOUS | COLORLESS APEX<br>NON-GLUTINOUS | COLORED APEX<br>GLUTINOUS | COLORLESS APEX<br>GLUTINOUS | TOTAL |
|------------|-------------------------------|---------------------------------|---------------------------|-----------------------------|-------|
| Observed   | 491                           | 90                              | 76                        | 86                          | 743   |
| Calculated | 474.17                        | 83.16                           | 83.16                     | 102.62                      | 743   |
| Deviation  | 16.83                         | 6.84                            | -7.16                     | -16.62                      |       |

 $X^2 = 4.46. P = 0.22.$ 

gametic ratio is found from EMERSON'S (1916) formula, r = 10.13, and s = 3.5. The crossover is, therefore, about 22.34 percent.

The large deviation is clearly due to the deficiency of the glutinous plants, the latter being 2.98 times the probable error.

Further data show that  $A_{p4}$  is independent of the factors  $P_{r_1}$  and  $P_{r_2}$ ,  $G_1$ and  $G_2$ , and  $S_n$ , as is seen in tables 33, 34, and 35 respectively.

# Relation between stigma color and other characters

In some varieties, the stigma is colorless, and in others it is colored with an intensity varying from pale red to dark purple. In inheritance, colored and colorless stigma segregate in different ratios according to the material used. HECTOR (1916, 1922) reported cases of 3:1, 9:7, 27:37, and 81:175 ratios, showing that there are at least five factors responsible for the production of stigma color.

The writer obtained two cases, one segregating in a 3:1 ratio, and the other, 9:7, as shown in table 15.

| CASE | CROSSES<br>COLORLESS X<br>PURPLE | Fı      |     | Colorless | EST |        | Colorless | DEVIA-<br>TION | DEV.<br><br>P. E. | SYMBOLS |
|------|----------------------------------|---------|-----|-----------|-----|--------|-----------|----------------|-------------------|---------|
| 1    | 307×410                          | Colored | 101 | 41        | 3:1 | 106.5  | 35.5      | 5.5            | 1.58              |         |
| 2    | 4269×4957<br>(ABFGI)             | Colored | 242 | 179       | 9:7 | 236.79 | 184.17    | 5.17           | 0.75              | Sa1 Sa2 |

TABLE 15 Showing segregation of stigma color.

| CASE | PURPLE               | F1            | Colored | Colorless | RATIO | Colored | Coloriess | TION | P. E. | STRIDULS |
|------|----------------------|---------------|---------|-----------|-------|---------|-----------|------|-------|----------|
| 1    | 307×410              | Colored       | 101     | 41        | 3:1   | 106.5   | 35.5      | 5.5  | 1.58  |          |
| 2    | 4269×4957<br>(ABFGI) | Colored       | 242     | 179       | 9:7   | 236.79  | 184.17    | 5.17 | 0.75  | Sa1 Sa2  |
|      |                      | case, the fac |         | -         | •     |         |           |      |       |          |

in the same F, population arising from the same cross, the apiculus color alone segregated in a 9:7 ratio (see table 12) whereas a 9:3:4 ratio was observed when both apiculus and stigma were considered at the same time, as shown in table 16.

| TABLE | 16 | ) |
|-------|----|---|
|-------|----|---|

Showing  $F_2$  segregation for apex and stigma color (307×410).

|                  | COLORED STIGMA<br>COLORED APEX | COLORED STIGMA<br>COLORLESS APEX |   | COLORLESS STIGMA<br>COLORLESS APEX | TOTAL |
|------------------|--------------------------------|----------------------------------|---|------------------------------------|-------|
| Observed         | 77                             | 24                               | 0 | 32                                 | 142   |
| Calculated 9:3:4 | 79.83                          | 26.61                            | 0 | 35.48                              | 142   |
| Deviation        | -2.83                          | -2.61                            | 0 | 3.48                               |       |

In the second case, there are clearly two separate factors for the production of the stigma color. These are designated as  $S_{a_1}$  and  $S_{a_2}$ . They are complementary to each other. One of them is linked with the glutinous gene,  $g_i$ . For the sake of convenience, the linkage may be arbitrarily assumed to be between  $s_{a_1}$  and  $g_i$ . The data are presented in table 17.

|                       | NON-GLUTINOUS<br>PURPLE STIGMA | NON-GLUTINOUS<br>COLORLESS STIGMA | GLUTINOUS<br>PURPLE STIGMA | GLUTINOUS<br>COLORLESS STIGMA | TOTAL |
|-----------------------|--------------------------------|-----------------------------------|----------------------------|-------------------------------|-------|
| Observed              | 210                            | 100                               | 32                         | 79                            | 421   |
| Independent 27:21:9:7 | 177.39                         | 137.97                            | 59.13                      | 45.99                         | 421   |
| Linkage               | 210.23                         | 105.45                            | 26.53                      | 78.69                         | 421   |
| Deviation             | -0.23                          | -5.45                             | 5.47                       | 0.31                          |       |

| TABLE 17                                                                                            |
|-----------------------------------------------------------------------------------------------------|
| Showing linkage between $s_{a_1}$ and $g_l$ in $F_2$ generation from the cross $4269 \times 4957$ . |

 $X^2 = 1.4094$ , P = 0.707564.

BRUNSON'S (1924) modified formulae

$$r = \sqrt{\frac{(AB+3ab) - (Ab+aB)}{18}}$$
$$s = \frac{1}{4}\sqrt{AB+Ab+aB+ab} - r$$

were used in calculating the intensity of the linkage between  $s_{a_1}$  and  $g_i$ . The gametic ratio is r = 4.18 and s = 0.95. Since this is a coupling phase, the percentage of crossing over is obtained from the formula  $\frac{s}{r+s}$ , namely 18.51 percent.

Data from the same cross show factors  $s_{a_1}$  and  $s_{a_2}$  are independent of  $p_{r_1}$ ,  $p_{r_2}$ ,  $g_1$ ,  $g_2$  and sp as shown in tables 36, 37, and 38.

The exact relation between the stigma color and the apiculus color in this particular cross is not determined. As described above,  $a_{p_4}$  is coupled with  $g_{i}$ , giving about 22.34 percent crossing over; and  $s_{a_1}$  is also linked with  $g_{i}$ , giving 18.51 percent crossing over. When the apiculus color and the stigma color were involved at the same time, a new situation arose, as shown in table 18.

The zygotic ratios calculated on the basis of three independent factors do not fit the observed ratio at all. There are, then, only two alternative explanations for the situation, namely, complete linkage between  $a_{p_4}$  and  $s_{a_1}$ , or  $a_{p_4}$  being the same factor as  $s_{a_1}$ . Since both alternatives give identical zygotic ratio (9:3:0:4), it is impossible to decide which alternative is correct. It may be mentioned, however, that one plant (FSt 68) which is not counted in table 18 had purple stigma with a doubtful apiculus color, because the latter was under a question mark (?) in the original notebook.

|                          | COLORED APEX<br>PURPLE STIGMA | COLORED APEX<br>COLOFLESS STIGMA | COLORLESS APEX<br>PURPLE STIGMA | COLOBLESS APEX<br>COLOBLESS STIGMA | TOTAL |
|--------------------------|-------------------------------|----------------------------------|---------------------------------|------------------------------------|-------|
| Observed                 | 243                           | 64                               | 1 (FSt 68?)                     | 117                                | 424   |
| Calculated 27:21:9:7     | 178.74                        | 139.02                           | 59.58                           | 46.34                              | 424   |
| Complete linkage 9:3:0:4 | 238.5                         | 79.5                             | 0                               | 106.0                              | 424   |
| Deviation                | 4.5                           | -15.5                            | 0                               | 11.0                               |       |

TABLE 18 Relation between  $a_{p_4}$  and  $s_{a_1}$ .

Although  $a_{p_4}$  and  $s_{a_1}$  have different crossover values with the glutinous gene, the difference is only 3.83 percent. Since both alternatives are possible, the question must be left open for the present.

## Relation between the leaf-sheath color and other characters

The leaf-sheath color when present may be either self red or purple, or merely consisting of colored stripes varying in intensity. There are several genetic factors responsible for its production. PARNELL (1917) found a case where colored and colorless leaf-sheath segregated in a simple 3:1 ratio. HECTOR (1916, 1922) reported four cases segregating in 3:1, 9:7 27:37, and 15:1, respectively.

The writer has obtained two kinds of ratios, namely, 9:7 and 15:1, as shown in table 19.

| CASE | CROSSES                          | F1      |     | EGATION<br>Colorless | CLOSEST<br>RATIO |        | ected<br>Colorless | DEVIA-<br>TION | SYMBOLS                         |
|------|----------------------------------|---------|-----|----------------------|------------------|--------|--------------------|----------------|---------------------------------|
| 1    | 4269×4957<br>(colorless×colored) | Colored | 204 | 139                  | 9:7              | 192.87 | 147.01             | -8.01          | Ls <sub>1</sub> Ls <sub>2</sub> |
| 2    | 800b₅×625<br>(colored×colorless) | Colored | 266 | 14                   | 15:1             | 262.5  | 17.5               | -2.05          | Ls <sub>3</sub> Ls <sub>4</sub> |

TABLE 19 Showing  $F_2$  segregation for leaf-sheath color.

These data indicate that there are at least four factors which are concerned with the production of leaf-sheath color. In the first case, there must be two complementary factors, whose presence is necessary for the expression of color. These factors are designated as  $L_{s_1}$  and  $L_{s_2}$ . In the GENERICS 13: Mr 1928 second case, there must be two duplicate factors each of which alone can produce color. These are designated as  $L_{s_4}$  and  $L_{s_4}$ .

In the first cross, one of the complementary factors is linked with the glutinous gene. The linkage may be arbitrarily assumed to be between  $l_{s_1}$  and  $g_1$ . The gametic ratio is calculated by BRUNSON's formulae,

$$r = \sqrt{\frac{AB + 3ab - (Ab + aB)}{18}} = 3.73$$
$$s = \frac{1}{4}\sqrt{AB + Ab + aB + ab} - r = 0.90$$

The crossing over  $=\frac{s}{r+s} \times 100 = 19.43$  percent. By substituting the values of r and s in the following equations, we get the zygotic ratios,  $AB = 9r^2 + 12rs + 6s^2 =$ colored sheath non-glutinous

 $Ab = 6rs + 3s^2 = colored sheath non-glutinous$   $ab = 3r^2 + 12rs + 6s^2 = colorless sheath non-glutinous$  $ab = 4r^2 + 2rs + s^2 = colorless sheath glutinous$ 

The calculated zygotic ratios fit the observed ratios very well considering the deficiency of glutinous plants, as shown in table 20.

|                                                  | COLORED SHEATH<br>NON-GLUTINOUS | COLORED SHEATH<br>GLUTINOUS | COLORLESS SHEATH<br>NON-GLUTINOUS | COLOBLESS<br>SHEATH<br>GLUTINOUS | TOTAL |
|--------------------------------------------------|---------------------------------|-----------------------------|-----------------------------------|----------------------------------|-------|
| Observed                                         | 179                             | 25                          | 80                                | 59                               | 343   |
| Calculated 27:9:21:7<br>Linkage (19.43% crossing | 144.72                          | 48.24                       | 112.56                            | 37.52                            | 343   |
| over)<br>Deviation                               | 170.36<br>8.64                  | 22.57<br>2.43               | 88.88<br>-8.88                    | 63.18 - 4.18                     | 343   |

TABLE 20 Showing coupling between ls<sub>1</sub> and g<sub>1</sub>.

Data obtained from the same cross indicate that  $l_{s_1}$ ,  $l_{s_2}$  are independent of the factors  $p_{r_1}$ ,  $p_{r_2}$ ,  $g_1$ ,  $g_2$ , and  $s_p$ , as shown in tables 39, 40 and 41.

 $l_{s_1}$  is closely linked with  $a_{p_4}$  as shown in table 21. Since  $a_{p_4}$  is coupled with  $g_i$ , giving 22.34 percent crossing over, and since  $l_{s_1}$  is also linked with  $g_1$ , giving 19.43 percent crossing over, the order of the three genes on the glutinous chromosome would appear to be,

$$\frac{22.34 \text{ percent}}{a_{p_4} l_{e_1}} \qquad 19.43 \text{ percent} \qquad g_1$$

## LINKAGE STUDIES IN RICE

## Linkage between stigma color and leaf-sheath color

As described above, in the  $F_2$  generation of the cross,  $4269 \times 4957$ , the stigma color alone segregated in a ratio of 9 colored:7 colorless, and the leaf-sheath color also segregated in a 9:7 ratio. One of the two complemen-

TABLE 21

| Showing linkage between $a_{p_4}$ and $l_{s_1}$ in $F_2$ (4269×4957). |                                   |                                         |                                 |                                       |        |  |
|-----------------------------------------------------------------------|-----------------------------------|-----------------------------------------|---------------------------------|---------------------------------------|--------|--|
|                                                                       | COLORED APICULUS<br>PURPLE SHEATH | COLORED<br>APICULUS<br>COLORLESS SHEATH | COLORLESS APEX<br>PURPLE SHEATH | COLORLESS APEX<br>COLORLESS<br>SHEATH | TOTAL  |  |
| Observed                                                              | 205                               | 43                                      | (BSt <sub>2</sub> ) 1           | 98                                    | 347    |  |
| Expected 27:21:9:7                                                    | 146.34                            | 113.82                                  | 48.78                           | 37.94                                 | 346.88 |  |
| Deviation                                                             | 58.66                             | -50.82                                  | -47.78                          | 60.06                                 |        |  |

tary factors for stigma color is linked with the glutinous gene, giving 18.71 percent crossing over. One of the two complementary genes for the production of the leaf-sheath color is also linked with  $g_i$ , giving 19:43 percent crossing over. When the stigma color and the leaf-sheath color are considered at the same time, a very close linkage between the two characters is revealed, as shown in table 22a, where the calculated zygotic ratios on the basis of four independent factors are shown to be very far from the observed frequencies.

| PROGENIES                   | PURPLE STIGMA<br>PURPLE SHEATH | PURPLE STIGMA<br>COLORLESS SHEATH |       | COLORLESS STIGMA<br>COLORLESS SHEATH | TOTAL |
|-----------------------------|--------------------------------|-----------------------------------|-------|--------------------------------------|-------|
| 4269×4957B                  | 34                             | 2                                 | 4     | 23                                   |       |
| 4269×4957D                  | 46                             | 3                                 | 2     | 29                                   |       |
| 4269×4957F                  | 52                             | 4                                 | 3     | 44                                   | 1.151 |
| 4269×4957I                  | 57                             | 0                                 | 6     | 37                                   |       |
| Observed                    | 189                            | . 9                               | 15    | 133                                  | 346   |
| Calculated on 4 independent |                                |                                   |       |                                      |       |
| factors                     | 109.35                         | 85.05                             | 85.05 | 66.15                                |       |
| 3 independent factors       | 145.97                         | 48.66                             | 48.66 | 102.72                               |       |

 TABLE 22a
 Showing close linkage between the stigma color and the leaf-sheath color.

Since the stigma and the leaf-sheath give about the same percentage of crossing over with the glutinous gene, the difference being 0.72 percent, it is possible that the two characters have one factor in common. Most probably  $s_{a_1}$  is the same factor as  $l_{s_1}$ . For the sake of simplicity, this common factor is designated as A. Until further data demonstrate that the  $s_{a_1}$  and  $l_{s_1}$  are actually two separate entities, factor A will be considered GENERICS 13: Mr 1928

as a common gene which has a manifold effect conditioning stigma color as well as leaf-sheath color. On this hypothesis, then, A is complementary with  $S_{a_2}$  for stigma color and A is also complementary with  $L_{a_2}$  for leafsheath color.

Since the calculated ratios on the basis that A,  $S_{a_1}$  and  $L_{s_2}$  are independent factors do not fit the observed frequencies,  $S_{a_1}$  and  $L_{s_2}$  must be coupled. The situation may be represented by the following diagram:

$$\begin{array}{c|cccc} A & a & & \\ A & & s_{a_2} & \\ Gl & g_1 & & \\ \end{array} \quad \begin{array}{c} S_{a_2} & \\ L_{a_3} & \\ L_{a_3} \end{array}$$

If r:s:s:r represents any gametic series between the two linked factors,  $s_{a_1}$  and  $l_{s_2}$ , the non-crossover classes may be represented by the following equations:

$$A S_{a_2} L_{s_2} = 3 [3r^2 + 2(s^2 + 2rs)] = 9r^2 + 12rs + 6s^2$$
  

$$a S_{a_2} L_{s_2} = 3r^2 + 2(s^2 + 2rs) = 3r3^2 + 4rs + 2s^2$$
  

$$A s_{a_2} l_{s_2} = (3r^2) = 3r^2$$
  

$$a s_{a_2} l_{s_2} = (r^2) = r^2$$

On the other hand, the cross over classes may be represented as follows

$$A \quad s_{a_2} \ L_{s_2} = 3(s^2 + 2rs) = 6rs + 3s^2$$
  

$$A \quad S_{a_2} \ l_{s_2} = 3(s^2 + 2rs) = 6rs + 3s^2$$
  

$$a \quad S_{a_2} \ l_{s_2} = (s^2 + 2rs) = 2rs + s^2$$
  

$$a \quad s_{a_2} \ L_{s_2} = (s^2 + 2rs) = 2rs + s^2$$

Since either stigma color or leaf-sheath color needs two complementary factors  $(A S_{a_2} \text{ or } A L_{s_2})$  for its expression, the five classes  $(a S_{a_2} L_{s_2}, A s_{a_2} l_{s_2}, a s_{a_2} l_{s_2}, a s_{a_2} l_{s_2}, a s_{a_2} l_{s_2})$  are thrown into the same phenotypic group By this regrouping, the four phenotypic classes are represented by the four equations:

$$XY = 9r^2 + 12rs + 6s^2$$
 Purple stigma and purple sheath  
 $Xy = 6rs + 3s^2$  Purple stigma and colorless sheath  
 $xY = 6rs + 3s^2$  Colorless stigma and purple sheath  
 $xy = 7r^2 + 8rs + rs^2$  Colorless stigma and colorless sheath

Where X = purple stigma, x = colorless stigma, Y = purple sheath and y = colorless sheath. From these equations, we get:

$$XY + xy = 16r^2 + 20rs + 10s^2 \tag{A}$$

$$Xy + xY = 12rs + 6s^2 \tag{B}$$

Dividing both (A) and (B) by 2, we get

$$\frac{XY + xy}{2} = 8r^2 - 10rs + 5s^2 \tag{C}$$

$$\frac{Xy + xY}{2} = 6rs + 3s^2 \tag{D}$$

Multiplying (C) by 3, and (D) by 5, we get

$$24r^{2} = \frac{3}{2}(XY + xy) - \frac{5}{2}(Xy + xY)$$

$$r = \sqrt{\frac{\frac{3}{2}(XY + xy) - \frac{5}{2}(Xy + xY)}{24}}$$
(1)

Also,

$$XY + Xy + xY + xy = 16(r^2 + 2rs + s^2)$$

Taking the square roots, we get

$$4(r+s) = \sqrt{XY + Xy + xY + xy}$$

$$s = \frac{1}{4}\sqrt{XY + Xy + xY + xy} - r$$
(2)

From (1) and (2), we can calculate the gametic ratio, this being:

$$r = 4.19$$
  
 $s = 0.46$ 

Since this is a coupling case, the percentage of crossing over =

~ • •

$$\frac{0.46}{4.19+0.46}$$
 × 100 = 9.8 percent

Substituting the calculated values of r and s in the four original equations representing the four  $F_2$  phenotypic classes, we get the frequencies quite similar to the observed ones, as shown in table 22b:

TABLE 22b Showing close linkage between sa<sub>2</sub> and ls<sub>2</sub>.

| PURPLE STIGMA<br>PURPLE LEAF-SHEATH | PURPLE STIGMA<br>COLORLESS SHEATH           | COLORLESS STIGMA<br>PURPLE SHEATH                                                                  | COLORLESS STIGMA<br>COLORLESS SHEATH                                                                                                                                                        |
|-------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 189                                 | 9                                           | 15                                                                                                 | 133                                                                                                                                                                                         |
|                                     |                                             |                                                                                                    | 138.88                                                                                                                                                                                      |
| 6.32                                | -3.19                                       | 2.81                                                                                               | -5.88                                                                                                                                                                                       |
| $X^2 =$                             | 1.947                                       |                                                                                                    |                                                                                                                                                                                             |
|                                     | PURPLE LEAF-SHEATH<br>189<br>182.68<br>6.32 | PURPLE LEAF-SHEATH         COLOBLESS SHEATH           189         9           182.68         12.19 | PURPLE LEAF-SHEATH         COLOBLESS SHEATH         PURPLE SHEATH           189         9         15           182.68         12.19         12.19           6.32         -3.19         2.81 |

$$P = .584536$$

## Relation between ligule color and other characters

The ligule is a structure that projects out at the juncture of the leafblade and the leaf-sheath. In some varieties, this structure has a deep purple color. In inheritance, the ligule color depends on several factors for its expression. HECTOR (1922) reported two cases, one segregating in 9:7 ratio and the other segregating in 27:37 ratio.

The writer has obtained a ratio of 27 purple: 37 green in the cross,  $4269 \times 4957$ , as shown in table 23.

TABLE 23

| Showing segregation for ligule color. |                       |                 |       |  |
|---------------------------------------|-----------------------|-----------------|-------|--|
|                                       | LIGULE PURPLE         | LIGULE GREEN    | TOTAL |  |
| Observed                              | 109                   | 148             | 257   |  |
| <i>Calculated 27:37</i><br>Deviation  | <i>108.41</i><br>0.59 | 148.55<br>-0.55 | 257   |  |

The data clearly show that three factors are concerned in the production of ligule color in this case. These factors are designated as  $l_{g_1}$ ,  $l_{g_2}$ , and  $l_{g_3}$ . These three genes are probably independent of the factors  $g_1$ ,  $g_1$ ,  $g_2$ , and  $s_p$ , as shown in tables 24, 42, and 43.

| IABLE 24 | TABLE 2 | 4 |
|----------|---------|---|
|----------|---------|---|

| PROGENIES               | NON-GLUTINOUS<br>PURPLE LIGULE | NON-GLUTINOUS<br>GREEN LIGULE | GLUTINOUS<br>FURPLE LIGULE | GLUTINOUS<br>GREEN LIGULE | TOTAL |
|-------------------------|--------------------------------|-------------------------------|----------------------------|---------------------------|-------|
| 4269×4957A              | 21                             | 15                            | 2                          | 9                         |       |
| 4269×4957B              | 18                             | 26                            | 4                          | 15                        |       |
| 4269×4957C              | 33                             | 27                            | 4                          | 5                         |       |
| 4269×4957D              | 23                             | 42                            | 4                          | 9                         |       |
| Observed                | 95                             | 110                           | 14                         | 38                        | 257   |
| Calculated 81:111:27:37 | 81.32                          | 111.44                        | 27.11                      | 37.15                     |       |
| Deviation               | 13.68                          | -1.44                         | -13.11                     | 0.85                      |       |

Showing independent segregation of  $g_1, l_{g_1}, l_{g_2}$ , and  $l_{g_3}$ .

## Relation between ligule color and pericarp color

As mentioned above, the pericarp color in this cross is due to two duplicate factors which have been designated as  $P_{r_1}$  and  $P_{r_2}$ . When the ligule color and the pericarp color are considered at the same time, a new situation appears, as shown in table 25.

As shown in table 25, there is only one individual in the class "purple ligule and colorless pericarp" from four progenies. It is possible that some of the ligule factors are closely linked with the pericarp genes, and the rare occurrence of this class is due to linkage and the small population.

| PROGENIES               | PURPLE LIGULE<br>COLORED<br>PERICARP | PURPLE LIGULE<br>COLORLESS<br>PERICARP | GREEN LIGULE<br>Colored<br>Pericarp | GREEN LIGULE<br>COLORLESS<br>PERICARP | TOTAL |
|-------------------------|--------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|-------|
| 4269×4957A              | 21                                   | (Agl <sub>5</sub> ) 1                  | 20                                  | 4                                     |       |
| 4269×4957B              | 22                                   | 0                                      | 36                                  | 5                                     |       |
| 4269×4957C              | 38                                   | 0                                      | 27                                  | 3                                     |       |
| 4269×4957D              | 26                                   | 0                                      | 48                                  | 4                                     |       |
| Observed                | 107                                  | 1                                      | 131                                 | 16                                    | 255   |
| Calculated 108:0:132:16 | 108                                  | 0                                      | 132                                 | 16 .                                  |       |
| Deviation               | -1                                   | 1                                      | -1                                  | 0                                     |       |

|         | TABLE 25 |         |   |      |     |      |     |    |  |
|---------|----------|---------|---|------|-----|------|-----|----|--|
| Showing | relation | between | Ø | Dro. | La. | las. | and | l. |  |

- -

On the other hand, it is equaly possible that one of the ligule genes is the same as one of the pericarp factors, and the single individual may be due to contamination. Indeed, the calculated ratios (108:0:132:16) on the latter basis fit the observed ratios remarkably well. However, the question must be left open for the present. Earlier investigations (HECTOR 1922) have shown a similar situation.

# Relation of hull color to other characters

The term "hull" here used includes the lemma and palea which enclose the grain within. There are different colors either extended entirely over the hull such as "dark gold, ripening gold, and ripening straw," or restricted to certain portions of the hull, such as "dark furrows, piebald gold, tipped gold, patchy gold, mottled gold, and granular furrows" (PARNELL 1922). The character with which we are immediately concerned here is the ripening black color. The hull is first green as usual, but when the grains reach maturity, the hull turns black. PARNELL (1917) reported two cases of a similar condition, one segregating in a 3:1 ratio and the other 9:7.

The writer crossed two non-black varieties  $(800b_5 \times 625)$ , the F<sub>1</sub> spikelets at first had green hull which later changed black or sooty black (Ridgway). The F<sub>2</sub> plants segregated in a ratio of approximately 9 black :7 non-black, as shown in table 26, where the data for this and other characters involved in the same cross ( $800b_5 \times 625$ ) are presented together.

## TABLE 26

Showing segregation for colors of hull, internode, leaf-sheath, a piculus, and pericarp.

|             | DESCRIPTION    | F, SEGREGATION |     | CLOSEST F. EXPEC |        | TATION | DEV.  | SYMBOLS                         |  |
|-------------|----------------|----------------|-----|------------------|--------|--------|-------|---------------------------------|--|
|             |                |                |     | RATIO            |        |        | Р. Е. |                                 |  |
|             | Black versus   |                |     |                  |        |        |       |                                 |  |
| Hull        | non-black      | 115            | 103 | 9:7              | 122.76 | 95.48  | 1.52  | $h_1 h_2$                       |  |
|             | Colored versus |                |     |                  |        |        |       |                                 |  |
| Internode   | colorless      | 142            | 117 | 9:7              | 145.13 | 112.88 | 0.76  | In <sub>1</sub> In <sub>2</sub> |  |
|             | Purple versus  |                |     |                  |        |        |       |                                 |  |
| Leaf-sheath | colorless      | 266            | 14  | 15:1             | 262.5  | 17.5   | 0.91  | ls3 ls4                         |  |
|             | Colored versus |                |     |                  |        |        |       |                                 |  |
| Apiculus    | colorless      | 255            | 22  | 15:1             | 259.65 | 17.31  | 1.72  | aps aps                         |  |
|             | Colored versus |                | (   | [ [              |        |        |       |                                 |  |
| Pericarp    | colorless      | 199            | 19  | 15:1             | 203.42 | 13.56  | 2.25  | $pr_1 pr_2$                     |  |

The data clearly show that there are two complementary factors for the production of the black hull. These are designated as  $H_1$  and  $H_2$ . Both these genes are independent of the factors  $I_{n_1}$ ,  $I_{n_2}$ ,  $L_{s_3}$ ,  $L_{s_4}$ ,  $A_{p5}$ ,  $A_{p6}$ ,  $P_{r_1}$ , and  $P_{r^2}$ , as shown in tables 27, 28, 44, and 45.

## TABLE 27

|                                                 | BLACK HULL<br>COLORED INTER-<br>NODE | BLACK HULL<br>COLORLESS<br>INTERNODE | NON-BLACK<br>COLORED<br>INTERNODE | NON-BLACK<br>COLORLESS<br>INTERNODE | TOTAL         |
|-------------------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|---------------|
| Observed<br>Calculated 81:63:63:49<br>Deviation | 63<br>66.74<br>-3.74                 | 47<br>51.91<br>4.91                  | 44<br>51.91<br>-7.91              | 57<br>40.38<br>16.62                | 211<br>210.94 |

### Showing independent segregation between $h_1$ , $h_2$ , $i_{n_1}$ , and $i_{n_2}$ .

The large deviation of the observed frequencies may be due to the small population, because at least 256 individuals are necessary to make the ratios barely even.

| TABLE | 28 |
|-------|----|
|-------|----|

|                                                 | BLACK HULL<br>PURPLE SHEATH | NON-BLACK HULL<br>PURPLE SHEATH | BLACK HULL<br>COLORLESS SHEATH | COLORLESS HULL<br>COLORLESS SHEATH | TOTAL      |
|-------------------------------------------------|-----------------------------|---------------------------------|--------------------------------|------------------------------------|------------|
| Observed<br>Calculated 135:105:9:7<br>Deviation | 111<br>114.75<br>-3.75      | 97<br><i>89.25</i><br>7.75      | 3<br>7.65<br>-4.65             | 6<br>5.95<br>0.05                  | 217<br>217 |

Showing independent segregation between  $h_1$ ,  $h_2$ ,  $l_{s_3}$ , and  $l_{s_4}$ .

## LINKAGE STUDIES IN RICE

# DISCUSSION OF RESULTS

In the foregoing pages, data have been presented to show the behavior and chromosomal relations of twenty-five or more genetic factors affecting one or another part of the plant. To facilitate further discussion, we may outline the established genes and their behavior as follows:

| FACTORS                                                                   | CHARACTERS FOR WHICH THE FACTORS ARE RESPONSIBLE                                                                                                                                                                                                            | RATIOS  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Gigi                                                                      | The non-glutinous and glutinous pair                                                                                                                                                                                                                        | 3:1     |
| $\begin{array}{c} A_{n_1} a_{n_1} \\ A_{n_2} a_{n_2} \end{array}$         | Duplicate factors for the production of awns<br>Independent of $G_{1 \ g_{1}}$ pair                                                                                                                                                                         | 15:1    |
| $T_y t_y$                                                                 | For the tawny color on the awn, apex and glumes<br>Linked with $G_{1 g_1}$ —crossover = 16.59 percent                                                                                                                                                       | 3:1     |
| $\begin{array}{c} P_{r_{1}} p_{r_{1}} \\ P_{r_{2}} p_{r_{2}} \end{array}$ | Duplicate factors for pericarp color<br>Independent of $g_1$                                                                                                                                                                                                | 15:1    |
| $\begin{array}{c} G_1 \ g_1 \\ G_2 \ g_2 \end{array}$                     | Duplicate factors for the glume length<br>Independent of $g_{l1}$ , $p_{r1}$ and $p_{r2}$                                                                                                                                                                   | 15:1    |
| $S_p s_p$                                                                 | Factor pair for spikelet length<br>Independent of $g_{l1}$ , $p_{r1}$ , $p_{r2}$ and $g_1$<br>Closely linked with $g_2$ —crossing over 1.11 percent                                                                                                         | 3:1     |
| $A_{p_1} a_{p_1} A_{p_2} a_{p_2}$                                         | Complementary factors for apiculus color<br>Independent of $g_1$                                                                                                                                                                                            | 9:7     |
| A p3 a p3                                                                 | A third factor for apiculus color                                                                                                                                                                                                                           | (27:37) |
| $A_{p_4} a_{p_4}$                                                         | Factor for apiculus color<br>Linked with $g_1$ —crossing over=22.34 percent<br>Independent of $p_{r1}$ , $p_{r2}$ , $g_1$ , and $s_p$                                                                                                                       | 3:1     |
| $A_{p_5} a_{p_5} A_{p_6} a_{p_6}$                                         | Duplicate factors for the apiculus color                                                                                                                                                                                                                    | 15:1    |
| S <sub>a1</sub> S <sub>a1</sub><br>S <sub>a2</sub> S <sub>a2</sub>        | Complementary factors for the stigma color<br>$S_{a1}$ is linked with $g_1$ —crossover = 18.51 percent<br>Independent of $p_{r1}$ , $p_{r2}$ , $g_1$ , $g_2$ and $s_p$ $s_{a1}$ may be the same factor<br>as $a_{p4}$ or closely linked with $a_{p4}$       | 9:7     |
| $L_{s_1} l_{s_1} \\ L_{s_2} l_{s_2}$                                      | Complementary factors for the leaf-sheath color<br>$l_{s1}$ is linked with $g_1$ —crossover = 19.43 percent<br>They are independent of $p_{r1}$ , $p_{r2}$ , $g_1$ , $g_2$ and $s_p$<br>$l_{s2}$ is closely linked with $s_{a2}$ —crossing over 9.8 percent | 9:7     |

| FACTORS                                                                                                | CHARACTERS FOR WHICH THE FACTORS ARE RESPONSIBLE                                                                                                                                  | RATIOS |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| L <sub>s3</sub> l <sub>s3</sub><br>L <sub>s4</sub> l <sub>s4</sub>                                     | Duplicate factors for the leaf-sheath color                                                                                                                                       | 15:1   |
| $\begin{array}{c} L_{g_{1}} \ l_{g_{1}} \\ L_{g_{2}} \ l_{g_{2}} \\ L_{g_{3}} \ l_{g_{3}} \end{array}$ | Complementary factors for the ligule color<br>They are independent of $g_1$ , $g_1$ , $g_2$ and $s_p$<br>$l_{g3}$ may be the same factor as $p_{r2}$ or completely linked with it | 27:37  |
| $\begin{array}{c} H_1 \ h_1 \\ H_2 \ h_2 \end{array}$                                                  | Complementary factors for the black hull<br>Independent of $l_{r4}$ , $l_{s4}$ , $a_{p6}$ , $p_{r1}$ and $p_{r2}$                                                                 | 9:7    |
| $I_{n_1} i_{n_1} I_{n_2} i_{n_2}$                                                                      | Complementary factors for the internode color<br>They are independent of $h_1$ and $h_2$                                                                                          | 9:7    |

While the results outlined above are self-explanatory, a few of them may be briefly discussed with advantage. First of all, it is interesting to note that the awn, being a sporophytic character, should be either present or absent on all the spikelets of the same plant in the  $F_2$  generation. Contrary to this expectation, two new types have appeared. One type has most of the spikelets awned, and the other has only a few spikelets awned, the remaining spikelets of the same panicle being awnless, as shown in figure 1. These new types and the original grand-parental types occur in about a 12:1:2:1 ratio. The observed frequencies have been explained on the basis of two duplicate factors. The awn may be conceived of as an extension of the central nerve of the lemma. The gene,  $A_{n_1}$ , extends the central nerve either in single or double dose with or without  $A_{n_*}$ . The gene  $A_{n_*}$  is of similar nature, but it is weaker in activity; so, the double doses may extend most of the central nerves, while the single dose may extend just a few of them. Environmental conditions may also enter in, thus influencing the action of  $A_{n_2}$  during the morphogenesis of the spikelets and particularly of the awn. As the spikelets on the top of the panicle and those on the lower part do not develop at the same time, we can easily see the differential action of the gene under different conditions in the extension of the awn. It is interesting to note that in the "mostly awned" and "rarely awned" classes, usually it is the spikelets at the lower part of the panicle whose awns are not extended.

Factorially, the case may be represented as follows:

Several factors have been shown to lie on the glutinous chromosome.  $T_{v}$  is coupled with  $G_{i}$ , giving 16.59 percent crossing over.  $a_{p_{4}}$  is linked with  $g_{i}$ , giving 22.34 percent crossing over.  $l_{s_{1}}$  is also coupled with  $g_{i}$ , giving 19.43 percent crossing over. These constitute the first linkage group which may be expressed in the following diagram:

$$a_{p_4} \quad l_{s_1} \quad t_y(?) \quad g_l \quad t_y(?)$$

Whether  $t_y$  is on the left or right hand side of  $g_i$  is not known at present. It may be noted that  $s_{a_1}$  is also linked with  $g_1$ , giving about 18.51 percent crossing over. However, whether  $s_{a_1}$  is the same factor as  $l_{s_1}$ , or a separate gene closely linked with  $l_{s_1}$  remains to be determined. It may be further noted that TAKAHASHI'S factor (R) for awn color and YAMAGUCHI'S factor (S) for apiculus color are also in the same linkage group, though their exact loci cannot be stated. It is possible that (S) is the same factor as  $s_{p_4}$ .

The second linkage group constitutes two factors, namely,  $s_p$  and  $g_2$ . The glume length depends on two duplicate factors,  $g_1$  and  $g_2$ , segregating in a 15:1 ratio long glume being recessive. The spikelet length depends on a simple factor pair,  $S_p s_p$ , long spikelet being recessive. The factors  $g_2$  and  $s_p$  are coupled, giving 1.11 percent crossing over. That the short spikelet factor,  $S_p$ , is coupled with one of the duplicate glume genes ( $G_2$ ) is beyond doubt. It is of interest to note, however, that on the basis of 1.11 percent crossing over, only 0.99 or one plant in a population of 718 individuals is expected to have short spikelets and long glumes, and one such individual has been obtained as shown in figure 3 ( $F_2$  SL). That this individual is a crossover is proved by the fact that there is no such variety in my stock that has short spikelets and long glumes, thus eliminating any error through contamination. It may further be pointed out that if the observed crossover plant had not appeared, the data (see table 10) could be explained equally well on the basis of 12:0:3:1 ratio by assuming that one of the duplicate glume factors is the same as the  $S_p$  factor for the spikelet length. The difficulty, however, is that on this assumption, it must follow that the long spikelet plant must necessarily have long glumes also. But this is not the case.

The third linkage group consists of  $s_{a_2}$  and  $l_{a_2}$ . The purple stigma in this case depends upon the presence of two dominant complementary factors, namely,  $S_{a_1}$  and  $S_{a_2}$ . The purple leaf-sheath also depends on two comple-GENERICS 13: Mr 1928

mentary factors,  $L_{s_1}$  and  $L_{s_2}$ . Since both  $L_{s_1}$  and  $S_{a_1}$  are linked with  $G_i$ , giving about the same percentage of crossing over,  $L_{s_1}$  and  $S_{a_1}$  may be the same factor. For the sake of convenience, a common factor (A) is assumed to represent both  $L_{s_1}$  and  $S_{a_1}$ , though the assumption must await further verification. It is certain, however, that linkage does exist between the characters, no matter what assumption we may make. The observed frequencies cannot be explained on the independent segregation of either four or three factors, as shown in table 22a. It appears that only on the assumption of a close linkage between  $S_{a_2}$  and  $L_{s_2}$  can we explain the observed frequencies. In so doing, the crossing over value is found to be 9.8 percent between  $s_{a_2}$  and  $l_{s_2}$ . The calculated zygotic ratios on this basis fit the observed frequencies closely.

Thus far, three linkage groups have been established beyond doubt. A fourth group is indicated by the data presented in table 25. The observed frequencies can be explained by two alternatives. One is that one of the pericarp factors is the same as one of the three ligule factors, thus giving a ratio of 108:0:132:16 on the basis of four factors, that is the two characters have one factor in common. The other alternative is that one of the pericarp factors. The occurrence of one individual having "purple ligule and colorless pericarp," which cannot be accounted for by the first alternative, favors the second view. In this connection, the writer takes the liberty to rearrange HECTOR'S (1922) data in the following table for comparison with his own results:

|                   | PURPLE LIGULE<br>COLORED<br>PERICARP | PURPLE LIGULE<br>COLORLESS<br>PERICARP | COLORLESS LIGULE<br>COLORED<br>PERICARP | COLORLESS LIGULE<br>COLORLESS<br>PERICARP | TOTAL |
|-------------------|--------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------------------|-------|
| Observed (Hector) | 1220                                 | 6                                      | 951                                     | 730                                       | 2907  |
| Observed (Chao)   | 107                                  | 1                                      | 131                                     | 16                                        | 255   |

It must be noted, however, that though the two sets of observed frequencies are similar in nature, they are not exactly comparable. For in HECTOR'S case, the color of the pericarp depends on one factor pair segregating in a 3:1 ratio, while in the present case, the pericarp color is due to duplicate factors segregating in a 15:1 ratio. The common feature in both cases is that on the assumption of a common factor for both pericarp and ligule color, these few exceptions having "purple ligule and colorless pericarp" can not be accounted for. On the other hand, these exceptional individuals tend to support the view that one of the ligule factors is closely linked with one of the factors responsible for the pericarp color.

Finally, it is interesting to note that so many of the characters studied are due to duplicate genes. This is of particular interest in view of the fact that all the varieties used have twenty-four chromosomes.

### SUMMARY

1. Data have been presented to show the Mendelian behavior and chromosomal relations of twenty-five or more genetic factors which affect one or another part of rice plants.

2. Of the twelve characters studied, five are due to duplicate genes, each segregating in a ratio of 15:1.

3. Through the study of the interrelations between these twenty-five genes, three linkage groups have been established beyond doubt and possibly a fourth group is also indicated.

4. The first linkage group consists of four or five factors, namely,  $g_{1,}a_{p_{4}}$ ,  $l_{s_{1}}$ ,  $t_{y}$ , and possibly  $s_{a_{1}}$ .

5. There is 16.59 percent crossing over between  $g_i$  and  $t_y$ ; 18.51 percent between  $g_i$  and  $s_{a_1}$ , 19.43 percent between  $g_i$  and  $l_{s_1}$ , and 22.34 percent between  $g_i$  and  $a_{p_4}$ . In addition  $a_{p_4}$  is very closely linked with  $l_{s_1}$ .

6. The second linkage group consists of two genes, namely,  $s_p$  and  $g_2$ . The glume length depends on duplicate factors,  $g_1$  and  $g_2$ , segregating in a 15:1 ratio, long glume being recessive. The spikelet length depends on a simple factor pair,  $S_p s_p$ , long spikelet being recessive. One of the duplicate genes, presumably  $g_2$ , is coupled with sp, giving 1.11 percent crossing over.

7. The third linkage group consists of  $s_{a_1}$  and  $l_{s_2}$ . Purple stigma in this case depends upon the presence of two dominant complementary factors, namely,  $S_{a_1}$  and  $S_{a_2}$ . Purple leaf-sheath also depends on two complementary factors,  $L_{s_1}$  and  $L_{s_2}$ . Between these two characters, there is close linkage. Only on the assumption of coupling between  $S_{a_2}$  and  $L_{s_2}$  can the observed frequencies be explained. BRUNSON'S method for calculating linkage intensities involving complementary factors is further modified for the present case. The crossing over value is found to be 9.8 percent between  $s_{a_2}$  and  $l_{s_2}$ .

8. A fourth linkage group is indicated between  $p_{r1}$  or  $p_{r2}$  and one of the three complementary factors for purple ligule color.

9. Factors  $g_1$  and  $g_2$  are independent of  $g_1$ ,  $p_{r_1}$ , and  $p_{r_2}$ .

10. The factor  $s_p$  is independent of  $g_l$ ,  $p_{r_1}$ ,  $p_{r_2}$ .

11. Factors  $a_{p_1}$  and  $a_{p_2}$  are independent of  $g_l$ .

12. Gene  $a_{p_4}$  is independent of  $p_{r_1}$ ,  $p_{r_2}$ ,  $g_1$ ,  $g_2$ , and  $s_p$ .

13. Factors  $s_{a_1}$  and  $s_{a_2}$  are independent of  $p_{r_1}$ ,  $p_{r_2}$ ,  $g_1$ ,  $g_2$ , and  $s_p$ .

14. Factors  $l_{s_1}$  and  $l_{s_2}$  are independent of  $p_{r_1}$ ,  $p_{r_2}$ ,  $g_1$ ,  $g_2$ , and  $s_p$ .

15. Factors  $l_{q_1}$ ,  $l_{q_2}$ , and  $l_{q_3}$  are independent of  $g_l$ ,  $g_1$ ,  $g_2$ , and  $s_p$ .

16. Factors  $h_1$  and  $h_2$  are independent of  $i_{n_1}$ ,  $i_{n_2}$ ,  $l_{s_4}$ ,  $l_{s_4}$ ,  $a_{p_5}$ ,  $a_{p_6}$ ,  $p_{r_1}$ , and  $p_{r_2}$ .

### ACKNOWLEDGMENT

The writer desires to express his sincere gratitude to Doctor R. A. BRINK, under whose supervision the work was done. I am also indebted to Doctor L. J. COLE for his interest in the work and to Mr. J. M. JEN-KINS of the CROWLEY RICE EXPERIMENT STATION for the supply of certain materials.

### LITERATURE CITED

ALBERTS, H. W., 1926 A method for calculating linkage values. Genetics 11: 235-248.

BRUNSON, A. M., 1924 The inheritance of a lethal pale green seedling character in maize. Cornell Agric. Exp. Sta. Memoir 72: 5-22.

CHAO, L. F., Disturbing effect of the glutinous gene in rice on a Mendelian ratio. (In press.)

COLLINS, G. N., 1924 Measurements of linkage values. Jour. Agric. Res. 27: 881-891.

EMERSON, R. A., 1916 The calculation of linkage intensities. Amer. Nat. 50: 411-420.

HALDANE, J. B. S., 1919 The probable errors of calculated linkage values and the most accurate method of determining gametic from certain zygotic series. Jour. Genetics 8: 291-297.

HARRIS, J. A., 1912 A simple test of the goodness of fit of Mendelian ratios. Amer. Nat. 46: 741-745.

HECTOR, G. P., 1913 Notes on pollination and cross-fertilization in the common rice plant, Oryza sativa Linn. Memoirs, Dept. of Agric., India, Bot. Series 6 (1): 1-10.

1916 Observations on the inheritance of anthocyan pigment in paddy varieties. Ibid. 8 (2): 89-101.

1922 Correlation of color characters in rice. Ibid. 11 (7): 153-183.

HOSHINO, Y., 1915 On the inheritance of flowering time in peas and rice. Jour. Coll. Agric. Tohoku Imp. Univ. Sapporo 6: 229-288.

IKENO, S., 1914 Ueber die Bestäubung und die Bastardierung von Reis. Zeitschr. Pflanzenzüchtung 2: 495-503.

1916 On the inheritance of the flowering time in rice. Proc. Jap. Breed. Soc. 1: 11-12.

- 1927 Eine Monographie ueber der Erblichkeitsforschungen bei der Reispflanze. Bibl. Genetica 3: 245-312.
- KATO, M., and ISHIKAWA, M., 1921 On pericarp color. Jap. Jour. Genetics 1:1 (Nagai 1926, p. 267.)
- KUWADA, Y., 1910 A cytological study of Oryza sativa L. Bot. Mag. Tokyo 24: 267-281.
- MIYAZAWA, B., 1916 Genetic studies on wheat and rice. Proc. Jap. Breed. Soc. 1: 10-11.
- NAGAI, I., 1921 A genetico-physiological study on the formation of anthocyanin and brown pigments in plants. Jour. Coll. Imp. Univ. Tokyo 8: 1-92.
  - 1926 Textbook of rice culture (in Japanese). pp. 262-330, Tokyo, Japan.
- NAKATOMI, S., 1923 Preliminary report on the chromosome numbers in normal and mutant races of rice. Jap. Jour. Hered. 2 (3): 107-115.

- NOMURA, M., and YAMAZAKI, R., 1925 A study of the inheritance of the shooting time in the rice plant. Jap. Jour. Genetics 3: 114-130.
- PARNELL, F. R., 1922 The inheritance of characters in rice II. Memoirs Dept. of Agric., India 11 (8): 185-208.
- PARNELL, F. R., and AYYANGAR, G. N. R., 1917 The inheritance of characters in rice I. Ibid 9 (2): 75-105.
- PEARSON, KARL, 1914 Tables for statisticians and biometricians. Cambridge: Cambridge Univ. Press.
- SASAKI, R., 1922 Inheritance of resistance to Piricularia oryzae. Jap. Jour. Genetics 1: 81-85.
- SHIBATA, K., SHIBATA, Y., and KASHIWAGI, 1919 Studies on anthocyans. Color variation in anthocyanins. Jour. Amer. Chem. Soc. 41: 208-220.
- TAKAHASHI, N., 1923 Linkage in rice. Jap. Jour. Genetics 2: 23-30.
- WOODWORTH, C. M., 1923 Calculation of linkage intensities where duplicate factors are concerned. Genetics 8: 106-115.
- YAMAGUCHI, Y., 1926 Genetische Analyse der Granne, der Spelzenfarbe und der Endospermbeschaffenheit bei einigen Sorten des Reises. Berichte des Ohara Instituts für Landwirtschaftliche Forschungen 3: 1-126.
  - 1927 Ueber die zweite (S- M-) Koppelungsgruppe mit besonderer Berücksichtigung ihrer Korrelativen Beziehung zur Blütezeit. Ibid. 3: 319-330.

## APPENDIX—TABLES 29-45

### TABLE 29

| PHENOTYPES                | OBSERVED | Calculated<br>45 :3 :15 :1 | DEVIATION | (O-C) <sup>2</sup><br><u>C</u> |
|---------------------------|----------|----------------------------|-----------|--------------------------------|
| Non-glutinous short glume | 525      | 504                        | 21        | 0.87                           |
| Non-glutinous long glume  | 34       | 33.6                       | 0.4       | 0.05                           |
| Glutinous short glume     | 146      | 168                        | -26       | 2.88                           |
| Glutinous long glume      | 12       | 11.2                       | 0.8       | 0.05                           |
| Total                     | 717      | 717                        |           | $3.85 = X^2$                   |

## Independent segregation between $G_1$ , $G_2$ and $G_1$ from the cross (4269×4957).

P = 0.2810

TABLE 30

Independent segregation between  $G_1$ ,  $G_2$  and  $P_{\tau_1}$ ,  $P_{\tau_2}$  from the cross (4269×4957).

|                        | SHORT GLUME<br>COLORED<br>PERICARP | SHORT GLUME<br>COLORLESS<br>PERICARP | LONG GLUME<br>COLORED<br>PERICARP | LONG GLUME<br>COLORLESS<br>PERICARP | TOTAL |
|------------------------|------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|-------|
| Observed               | 590                                | 46                                   | 42                                | 1                                   | 679   |
| Calculated 225:15:15:1 | 596.25                             | 39.75                                | 39.75                             | 2.85                                | 679   |
|                        | -6.25                              | 6.25                                 | 2.25                              | -1.65                               |       |

P = 0.495

## TABLE 31

|                                             | SHORT SPIKELET<br>NON-GLUTINOUS | SHORT SPIKELET<br>GLUTINOUS  | LONG SPIKELET<br>NON-GLUTINOUS | LONG SPIKELET<br>GLUTINOUS | TOTAL              |
|---------------------------------------------|---------------------------------|------------------------------|--------------------------------|----------------------------|--------------------|
| Observed<br>Calculated 9:3:3:1<br>Deviation | 417<br>-400.5<br>15.5           | 118<br><i>133.5</i><br>-15.5 | 138<br><i>133.5</i><br>4.5     | $40 \\ 44.5 \\ -4.5$       | 713<br>7 <i>13</i> |

Independent segregation between  $S_p s_p$  and  $G_{lg_l}$  in  $F_z$ .

 $X^2 = 4.34.$  P = 0.2309.

The deviation is apparently due to the large deficiency of glutinous grains.

| Т | ABLE | 32 |
|---|------|----|
|   |      |    |

# Independent segregation between factors $s_p$ , $p_{r_1}$ , and $p_{r_2}$ (Ratio 45:4:15:1).

| Phenotypes                       | OBSERVED | Calculated | $\frac{(O-C)^2}{C}$ |
|----------------------------------|----------|------------|---------------------|
| Short spikelet, colored pericarp | 505      | 501.75     | 0.02                |
| Short, colorless                 | 32       | 33.45      | 0.06                |
| Long, colored                    | 169      | 167.25     | 0.01                |
| Long, colorless                  | 8        | 11.15      | 0.89                |
|                                  | 714      | 714.0      | $0.98 = X^2$        |

When  $X^2 = 1$ , P = 0.8013.

TABLE 33

| Showing | independent | segregation | between | An. | and | Þr. | and | pro. |
|---------|-------------|-------------|---------|-----|-----|-----|-----|------|
|         |             |             |         |     |     |     |     |      |

|                      | COLORED APEX<br>COLORED<br>PERICARP | COLORLESS APEX<br>COLORED<br>PERICARP | COLORED APEX<br>COLORLESS<br>PERICARP | COLORLESS APEX<br>COLORLESS<br>PERICARP | TOTAL |
|----------------------|-------------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------|-------|
| Observed             | 500                                 | 162                                   | 38                                    | 9                                       | 709   |
| Calculated 45:15:3:1 | 498.15                              | 166.05                                | 33.21                                 | 11.07                                   | 709   |
| Deviation            | 1.85                                | -4.05                                 | 5.21                                  | -2.07                                   |       |

 $X^2 = 0.982$ . P = 0.801253 when  $X^2 = 1$ .

TABLE 34

|                                               | COLORED APEX<br>SHORT GLUMES | COLORLESS APEX<br>SHORT GLUMES | COLORED APEX<br>LONG GLUMES | COLORLESS APEX<br>LONG GLUMES | TOTAL              |
|-----------------------------------------------|------------------------------|--------------------------------|-----------------------------|-------------------------------|--------------------|
| Observed<br>Calculated 45:15:3:1<br>Deviation | 525<br>500.40<br>24.55       | 146<br><i>166.80</i><br>20.80  | 25<br><i>33.36</i><br>-8.36 | 16<br><i>11.12</i><br>4.88    | 712<br>7 <i>12</i> |

Showing independent segregation between  $a_{p_4}$  and  $g_1$  and  $g_2$ .

 $X^2 = 7.839.$  P = 0.0418.

The cause of the deviation is unknown.

### TABLE 35

|                    | COLORED APEX<br>SHORT SPIKELET | COLORLESS APEX<br>SHORT SPIKELET | COLORED APEX<br>LONG SPIKELET | COLORLESS APEX<br>LONG SPIKELET | TOTAL |
|--------------------|--------------------------------|----------------------------------|-------------------------------|---------------------------------|-------|
| Observed           | 428                            | 133                              | 139                           | 43                              | 743   |
| Calculated 9:3:3:1 | 417.87                         | -139.29                          | 139.29                        | 46.43                           |       |
| Deviation          | 10.13                          | -6.29                            | -0.29                         | -3.43                           |       |

### Showing independent segregation between $A_{p_4}$ and $s_p$ .

 $X^2 = 0.788$  P = 0.801253 when  $X^2 = 1$ .

#### TABLE 36

Showing independent segregation between  $s_{a_1}$ ,  $s_{a_2}$  and  $p_{r_1}$ ,  $p_{r_2}$ .

|                                                 | PURPLE STIGMA<br>COLORED<br>PERICARP | COLORLESS<br>STIGMA, COLORED<br>PERICARP | PURPLE STIGMA<br>COLORLESS<br>PERICARP | COLORLESS<br>STIGMA, COLOR-<br>LESS PERICARP | TOTAL              |
|-------------------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------|--------------------|
| Observed<br>Calculated 135:105:9:7<br>Deviation | 204<br><i>209.25</i><br>5.25         | 158<br>162.75<br>-4.75                   | 27<br><i>13.95</i><br>13.05            | 8<br>10.85<br>-2.85                          | 397<br><i>39</i> 7 |

The deviation is probably due to the small number of plants.

### TABLE 37

|                                    | PURPLE STIGMA<br>COLORED<br>PERICARP | COLORLESS<br>STIGMA, COLORED<br>PERICARP | PURPLE STIGMA<br>COLORLESS<br>PERICARP | COLORLESS<br>STIGMA, COLOR-<br>LESS PERICARP | TOTAL             |
|------------------------------------|--------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------|-------------------|
| Observed<br>Calculated 135:105:9:7 | 227<br>220.32                        | 163<br>171.36                            | 12<br>14.68                            | 16<br>11.42                                  | 418<br><i>418</i> |
| Deviation                          | 6.68                                 | -8.36                                    | -2.68                                  | 4.58                                         |                   |

Showing independent segregation between  $s_{a_1}$ ,  $s_{a_2}$  and  $g_1$ ,  $g_2$ .

 $X^2 = 2.92$ . P = 0.405996.

### TABLE 38

Showing independent segregation between  $s_{a_1}$ ,  $s_{a_2}$  and  $s_p$ .

|                      | PURPLE STIGMA<br>SHORT SPIKELET | COLORLESS<br>STIGMA, SHORT<br>SPIKELET | PURPLE STIGMA<br>LONG SPIKELET | COLORLESS<br>STIGMA, LONG<br>SPIKELET | TOTAL |
|----------------------|---------------------------------|----------------------------------------|--------------------------------|---------------------------------------|-------|
| Observed             | 189                             | 130                                    | 53                             | 49                                    | 421   |
| Calculated 27:21:9:7 | 177.39                          | 137.97                                 | 59.13                          | 45.99                                 | 421   |
| Deviation            | 11.61                           | -7.97                                  | -5.13                          | 3.01                                  |       |

X = 1.85. P = 0.6067.

## TABLE 39

|                                                 | COLORED<br>PERICARP<br>COLORED<br>SHEATH | COLORED<br>PERICABP<br>COLORLESS<br>SHEATH | COLORLESS<br>PERICARP<br>COLORED<br>SHEATH | COLORLESS<br>PERICARP<br>COLORLESS<br>SHEATH | TOTAL              |
|-------------------------------------------------|------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------|
| Observed<br>Calculated 135:105:9:7<br>Deviation | 179<br><i>177 . 12</i><br>1.88           | 134<br>137.76<br>-3.76                     | 19<br>11.80<br>7.20                        | 4<br>9.18<br>-5.18                           | 336<br><i>33</i> 6 |

Showing independent segregation between  $L_{s_1}$ ,  $l_{s_2}$  and  $p_{r_1}$ ,  $p_{r_2}$  (4269×4957).

The deviation is probably due to the small number of plants.

TABLE 40

Showing independent segregation for  $l_{s_1}$ ,  $l_{s_2}$ ,  $g_1$  and  $g_2$ .

|                                                 | COLORED<br>LEAF SHEATH<br>SHORT<br>GLUMES | COLORLESS<br>SHEATH<br>SHORT<br>GLUMES | COLORED<br>SHEATH<br>LONG<br>GLUMES | COLORLESS<br>SHEATH<br>LONG<br>GLUMES | TOTAL             |
|-------------------------------------------------|-------------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|-------------------|
| Observed<br>Calculated 135:105:9:7<br>Deviation | 192<br><i>180.22</i><br>11.78             | 128<br><i>140.17</i><br>-12.17         | 11<br>12.01<br>-1.01                | 11<br>9.35<br>1.65                    | 342<br><i>342</i> |

 $X^2 = 2.7.$  P = 0.4458.

TABLE 41

|                      | COLORED<br>LEAF SHEATH<br>SHORT SPIKELET | COLORLESS<br>SHEATH, SHORT<br>SPIKELET | COLORED<br>SHEATH LONG<br>SPIKELET | COLORLESS<br>SHEATH, LONG<br>SPIKELET | TOTAL |
|----------------------|------------------------------------------|----------------------------------------|------------------------------------|---------------------------------------|-------|
| Observed             | 154                                      | 100                                    | 50                                 | 39                                    | 343   |
| Calculated 27:21:9:7 | 144.72                                   | 112.56                                 | 48.24                              | 37.52                                 | 343   |
| Deviation            | 9.28                                     | -12.56                                 | 1.76                               | 1.48                                  |       |

Showing independent segregation for  $l_{s_1}$ ,  $l_{s_2}$  and  $s_p$ .

 $X^2 = 2.1$ . P = 0.5543.

TABLE 42

|                        | PURPLE LIGULE<br>SHORT GLUMES | PURPLE LIGULE<br>LONG GLUMES | GREEN LIGULE<br>SHORT GLUMES | GREEN LIGULE<br>Long glumes | TOTAL |
|------------------------|-------------------------------|------------------------------|------------------------------|-----------------------------|-------|
| Observed               | 104                           | 5                            | 134                          | 13                          | 256   |
| Calculated (5 factors) | 101.25                        | 6.75                         | 138.75                       | 9.25                        | 256   |
| Deviation              | .2.75                         | -1.75                        | -4.75                        | 3.75                        |       |

Showing independent segregation of  $g_1$ ,  $g_2$ ,  $l_{g_1}$ ,  $l_{g_2}$  and  $l_{g_3}$ .

Ratio = 405:27:555:37

## LINKAGE STUDIES IN RICE

## TABLE 43

|                         | PURPLE LIGULE<br>SHORT SPIKELET | PURPLE LIGULE<br>LONG SPIKELET | GREEN LIGULE<br>SHORT SPIKELET | GREEN LIGULE<br>Long Spikelet | TOTAL |
|-------------------------|---------------------------------|--------------------------------|--------------------------------|-------------------------------|-------|
| Observed                | 87                              | 21                             | 108                            | 40                            | 256   |
| Calculated 81:27:111:37 | 81                              | 27                             | 111                            | 37                            | 256   |
| Deviation               | 6                               | -6                             | 3                              | 3                             |       |

Showing independent segregation between  $l_{g_1}, l_{g_2}, l_{g_3}$  and  $s_p$ .

 $X^2 = 2.09, P = 0.5561.$ 

### TABLE 44

## Showing independent segregation between $h_1$ , $h_2$ , $a_{p_5}$ and $a_{p_6}$ .

|                                                 | BLACK HULL<br>COLORED APICULUS | NON-BLACK<br>COLORED APEX  | BLACK HULL<br>COLORLESS APEX | NON-BLACK<br>COLORLESS APEX | TOTAL             |
|-------------------------------------------------|--------------------------------|----------------------------|------------------------------|-----------------------------|-------------------|
| Observed<br>Calculated 135:105:9:7<br>Deviation | 109<br>114.75<br>-5.75         | 92<br><i>89.25</i><br>2.75 | 5<br>7.65<br>2.65            | 12<br>5.95<br>6.05          | 218<br><i>218</i> |

The deviation is probably due to the small number of plants.

| TABLE | 45 |
|-------|----|
|-------|----|

| Showing | indepen | dent segreg | ation hetw | een h         | h. b.    | and b.   |
|---------|---------|-------------|------------|---------------|----------|----------|
| Showing | inacpun | DONN SUGIUS |            | <i>w</i> ,,,, | 1099 Pri | una pro. |

|                                                 | BLACK HULL<br>COLORED<br>PERICARP | NON~BLACK<br>COLORED<br>PERICARP | BLACK HULL<br>COLORLESS<br>PERICARP | NON-BLACK<br>COLORLESS<br>PERICARP | TOTAL             |
|-------------------------------------------------|-----------------------------------|----------------------------------|-------------------------------------|------------------------------------|-------------------|
| Observed<br>Calculated 135:105:9:7<br>Deviation | 106<br>113.4<br>-7.4              | 89<br><i>88.2</i><br>0.8         | 7<br>7.56<br>-0.56                  | 13<br>5.88<br>7.12                 | 215<br><i>215</i> |

The deviation is probably due to the small number of plants.