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When a heterozygous population is self-fertilized or inbred the ultimate 
result (apart from effects of mutation) is complete homozygosis. The final 
proportions of the various genotypes are usually independent o f  the system 
of inbreeding adopted, although, as JENNINGS (1916) and others have 
shown, the speed at  which equilibrium is approached is greater in the case 
o f  self-fertilization than of brother-sister mating, and so on. 

I f  however the population be heterozygous for linked genes, the final 
proportions depend on the system of mating, for crossing over can only oc- 
cur in double heterozygotes, and the proportion of double heterozygotes 
falls off a t  a different rate in different mating systems. JENNINGS (1917) 
stated that he “would find it a relief if someone else would deal thoroughly 
with the laborious problem of the effects of inbreeding on two pairs of 
linked factors.” This is the object of the present paper. ROBBINS (1918) 
solved the problem in the case o f  self-fertilization. 

In what follows we employ a direct method to obtain the final propor- 
tions of the population. The rate of approach can be calculated, but this 
is a very laborious process, and always involves the irrational roots of 
quadratic, sometimes those of quartic or higher equations. In  each case we 
shall suppose that the number of dominant and recessive genes of each 
type in the population is equal throughout the progress of the inbreeding. 
This enormously simplifies the mathematics. Thus a system of 55 equa- 
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* Part of the cost of the mathematical composition in this article is paid by the GALTON AND 
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C n + l  = C n  + $En + $(l - @ - 6 + @6)Fn + qP6Gn 
Dn+l = Dn + +En + i@GFn 4- $(l - @ - 6 + P6)Gn 

En+1 = +En + t(P + 6 - 2P6)(Fn + Gn) 

Fn+l = $(1 - @ - 6 + @6)Fn + $P6Gn 

Gn+1 = $@6Fn + i(1 - P - 6 + p6)Gn I 

tions described by JENNINGS (1917) is a t  once reduced to 22. This restric- 
tion is later removed. 

SELF-FERTILIZATION 

This problem has been solved by ROBBINS, but the shorter solution here 
given serves to illustrate our method. Consider the results of crossing 
AABB and aabb, where A and B are linked. The crossover values on the 
two sides of a hermaphrodite are taken as 10Op percent and 1006 percent, 
so that the two gametic series given by AB.ab are: 

(1 - @)AB:@Ab:f luB: (1 - @)ab.  

(1 - 6)AB:6Ab:6uB:(l - 8)ab. 

(1.1) 

For the sake of symmetry we suppose the original population to be en- 
tirely AB.ab. Then in the nth generation which is self-fertilized, let the 10 
zygotic types occur in the proportions: 

C, AABB and aabb. 
D, AAbb and aaBB. 
E, AABb, AaBB, Aabb, and aaBb. 
F, AB.ab. 
G, Ab&. 

We assume 2Cn+2D,+4E,+Fn+G,=2, so that C1=D1= El=Gl=O, 
and F1 = 2. Clearly E, = F, = G, = 0, and D, is the final proportion of 
crossover zygotes. Then considering the results of selfing each generation, 
we have : 
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a(@+ 6) =x. Then subtracting the equations for Cn+l ,  Dn+l, and Fn+1? Gn+1, 

we have : 

1 - 2x 

2 + 4x 
:. x = ___ . 

Then since d, = 0, and c1 = 0, dl = 2, 

1 - 2x 

1 + 2x 
C, = C, + Ad, = CI + Ad1 = -- . 

Put  y = D, (the final proportion of crossover zygotes) 

.*. C ,  + D, = 1, C ,  - D, = C, .*. y 

.a. y = ___ I 

*(1 - c,). ' 

2x 

1 + 2x 
(1.3) 

Hence the proportion of crossover zygotes is approximately equal to 
twice the mean gametic crossover value when the latter is small, rising to 
50 percent with 50 percent crossing over (see figure 1). The actual propor- 
tions of the different zygotic types in each generation can be calculated 
from equations (1.1). Equations (1.2) are not sufficient. The method of 
solution is given by ROBBINS, and the principal result in our terminology, 
putting p = PS, the product of the crossover values, is: 

Thus the final proportion of crossover zygotes, D,, depends on x only; 
the rate of approach to this value depends on p. Indeed if crossing over 
were restricted to one side of a hermaphrodite, as it is to one sex in the 
higher insects, we should have p = 0, and no crossover zygotes would ap- 
pear before FB. D, is 0 in F1, $p in Fz, rising sharply to $(x+p-2px+pz) 
in F3, and over half way to its final value in F4. Except in Fz the figures 
GENETICS 16: J1 1931 
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CROSSOVER VALUES PERCENT 

10, 10 
20, 0 

depend almost entirely on the mean crossover value. Thus with a mean 
value of 10 percent we have in successive generations the percentages of 
crossover homozygotes given in table 1. 

F, FI F' FS FI F.00 

0.50 5.405 9.746 12.683 14.462 16.6 
0 5.0 9.5 12.55 14.395 16.6 

~~~ 

Hence in a plant propagated by self-fertilization, where new combina- 
tions are required after a cross, there is a very great advantage in growing 
on a large progeny as far as Fa, and rather little advantage in growing it  
beyond F4. As will appear later, this is also true when double crossing over 
is taken into account. 

BROTHER-SISTER MATING. SEX-LINKED GENES 

Two sex-linked genes provide four types of zygotes in the heterogametic 
sex, and ten in the homogametic. There are thus forty different types of 
mating. If we consider the results of an original mating AABBXab, or 
aabb xAB,  the numbers of A and a genes are unequal, and there is a lack 
of symmetry in the equations, just as there would be in the case last con- 
sidered if we did not begin with equal numbers of the allelomorphs. We 
therefore suppose that a t  the beginning both reciprocal crosses were made 
in equal numbers. The crossover percentage is taken as loop, and a! = 1 -/3. 
The fourteen variables of equations (2.1) refer to the proportions of mat- 
ings of each type. Under the circumstances considered all matings fall into 
one of fourteen classes having the same frequency in each generation, 
which is calculable when we know the frequencies in the preceding genera- 
tion. 

AlATINQS PROPORTION 

f fa  B2 
4 Cn+1 s Cn + $In + -Mn + 7 Qn A A B B X A B  aabb X ab 1 

AAbb X Ab 1 ffz o2 
4 4 aaBB aB ) D,,, = Dn + J~ + - P, + - R. 

A A B B X A b  1 

a a b b X  Ab I 
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AAbb X A B  1 

361 

aaBB X ab 1 
012 P2 

f f 2  pz 

Gn+1 = - M n + q Q n  4 
aabb X A B  

A A b b X a B  aaBB X Ab I 
A A B B X a b  1 

H n + l = p P n + - R n  4 

A a B B X A B  

aaBbX ab 1 
A a B B X a B  1 

aaBbXaB 1 
A a B B X A b  

ffP 8 2  012 

Kn+1 = fKn + q ( P n  + Rn) f -Mn 4 + TQn 
AABb X aB 
Aabb X aB 
aaBbX Ab 1 

A a B B X a b  1 
ffP 62 012 

4 4 4 L+I = $L,, + -(Mn + Qn) + - P, + - R. I AABb X ab 
Aabh X A B  
aaBbX A B  1 

A B ' a b  Ab 1 Rn+l = Ln + ffP -(Mn Qn). 

AB.ab X aB 2 

(These equations are referred to as 2.1.) 

As an illustration of how these equations are derived we may take the 
distribution of K, in the following generation. The mating AaBBXAb 
gives AABb, Ab.aB, A B ,  and aB offspring in equal numbers. Hence in the 
next generation the matings A A B b x A B ,  A A B b x a B ,  Ab.aB x A B ,  and 
Ab.aBXaB occur in equal numbers among its progeny. Hence K, con- 
tributes to I n + l ,  Kn+l, Qn+l, Pn+l as shown. To reduce the equations (2.1) 
we put : 
GENETICS 16: J1 1931 
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Cn = Cn - Dn, dn = En - Fn,  en = Gn - H n ,  f n  = I n  - Jn, gn = Kn - Ln, 
h, = M, - P,, in = Q, - Rn. 

ffP 
4 

dn+l = $fn + -(hn + in) 

CL2 p2 

4 4 
en+l = -h, + -in 

in+l = pgn 1 - -(hn + in) 
2 

When n = 0, G, and therefore e ,  = 1, the other variables are zero. When 
n = 00 , all but Cn, D,, and consequently cn vanish. It is required to find the 
value of cm. To do so we have to find values of E, {, p ,  8, Q,, #, such that 

Cn+1 + Edn+l + {en+i + q f n + l  + 0gn+l + 4hn+l + + L + i  
- = C ,  + Edn + [e, + q f n  + 0gn + 4hn + +in. 

Substituting in the above identity the values of cnfl, etc. and equating 
coefficients of d,, etc. we have: 

€ = v  
i - = 4  
q = 4 + $ €  

Eliminating E = p = 9 ,  and Q, = {, we have 
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Hence, putting P = x, 

Hence, for all values of n, 

and since Cn+Dn=l, Cn-Dn=C 

.’. y = Dn = i ( 1  - c,). 

In  the case here considered eo = 1 

This is plotted in figure 1. It will be seen that if two sex-linked genes give 
50 percent crossing over in the homogametic sex, the final proportion of 
crossover zygotes will be 4/9. In order to study the rate a t  which the final 
values are approached it is necessary to solve the equations (2.2), and also 
a corresponding set of seven equations for Cn+Dn, etc. This is quite pos- 
sible. Thus it can easily be shown that 

(hn+z - in+z) - a(hn+l - in+i) - (a - P)(hn - in) = 0 

1 

As, however, any variable, such as Cn, may be the sum of a large number 
of terms from geometrical series, numerical calculation is easier than al- 
gebraic. The expressions given by JENNINGS and ROBBINS for the propor- 
tion of heterozygotes in the nth generation are wholly independent of link- 
age. Hence it is clear that by about Flo the population contains only 10 
percent of A a  and as many Bb in the homogametic sex, so that equilibrium 
is nearly reached. 
GENETICS 16: 31 1931 
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BROTHER-SISTER MATING. AUTOSOMAL GENES 

We consider the results of an initial mating AABBXaabb or recipro- 
cally. The gametic series from an AB.ab 0 is assumed to be CYAB: PAb: 
paB:crab, fromAB.ab 3 , y A B :  6Ab: 6aB:yab, so that 1OOp and 1006 are the 
crossover values. In  general these are different, but in mammals p and 6 are 
nearly equal; in the higher insects one of them is zero. There are 100 dif- 
ferent types of mating, and owing to the different crossover values in the 
two sexes, reciprocal crosses do not always yield the same progeny, and 
therefore the same numbers of matings in the next generation. However, 
reciprocal crosses occur in the same numbers, and can be grouped together. 
In  the following scheme only one example is given of each type of mating. 
The total number of types is given in column 2. Thus the following 7 types 
of mating occur in equal numbers with A A B B X A A b b :  

AAbb X AABB, aaBB X AABB, AABB X aaBB, aabb X aaBB, 
aaBB X aabb, aabb X AAbb, AAbb X aabb. 

In the third column the numbers of each kind of mating in the (n+l)th 
generation are given in terms of similar numbers in the nth. To save space 
the suffixes of the latter are omitted, for example, H is written for H,. The 
method of calculation is similar to that in the sex-linked case. We thus 
have equations (3.1) : 

Typical 
mating 

AABBXAABB 

AAbbXAAbb 

AABBXaabb 
AAbbXaaBB 

AABBXAAbb 
AABBXAABb 

AAbbXAABb 

AABBXAabb 

AAbbXAaBB 

AABBXAB.ab 

AA  bbX Ab.aB 

Number 
of tup-  

2 

2 

2 
2 
8 
8 

8 

8 

8 

4 

4 
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Typical Number 
mating of types  

AABBXAb.aB 4 N,,, = + ~ + i ( a p + r a ) ( u + v )  +ta~rs(W+2X+Y). 
AAbbXAB.ab 4 P,+,=+s+~(a@+rs)(u+v)+8olsrs(w+2x+~). 
AABbXAABb 4 Qn+l = 2 G + )(H+I +J+K) 4-2 (d+r2) (L+M) +t(P2+ 6') 

(N+P) +$Q+ +(R+ S+T) + +(d+a~+~*+r~+ra+ b2)  
(U+V) +& (aS+Pr)2(W +U) +t (ar+BVX. 

R,+, = a (p+ P ) L + ~  (oca+r2)~+ B R+ t Co+ 6) U+ t (a+r)V+ 
&(a 6 +Pr)YW + Y) + B (w + P WX. 

(as+Pr)"W+Y) +i(ar+PVX. 

AABbXAB.ab 8 u , , = ~ J + ~ ( ~ P + ~ ~ ) ~ + N ) + % ( S + T ) + ~ ( ~ + ~ ) U + Q C ~ + ~ )  
V + Qar(Pr+a6) w +B (ar+Ps) (a6 +Pr)X+iP6 @ r + 4 Y .  

AA BbX A b.aB 8 vn+, = + K + $ ( ~ P + ~ ~ ) ( M + P )  +b(R+T) + H ~ + s ) U + t ( ~ i - r )  
V+i!3ga(Pr+a6) w +Q(ar+P6) (as +@r)X+iar(Pr + 4 y .  

u+t(p+ sz)V+aa2r2W +~(a2sa+@2v2)x+aS2azy. 

s ~ ) U + ~ ( a 2 + r 2 ) v + ~ p s ~ w  +a(a262+p2y2)X+ta2r2Y. 

AABbXAaBB 4 

AABbXAabb 4 S,,=~(~~++~~)M+~(CY~+~~)P+QS+~(~+~)~+~(~+~)~+& 

A A BbX aaBb 4 Tn+l = ~(~@+Y~)(U+V)+&(~~+B~)~(W+Y)+~(~~+~~)~X. 

AB.abXAB.ab 1 W,+l=2(E+J)+~(or2+r2)L+)~2+62)N+~(S+T)+t(a2+~2) 

AB.abXAb.aB 
Ab.aBXAb.aB 1 Y,+ ,=2(F+K)+t (a2++r2)M+t~+~2)Pf~(RfT)+fC02~  

2 X,+1 = +T + ) (ab + r 6) (U +V) +&Pr 6 ( w  + 2X4-y). 

Now let cn = Cn- Dn, dn = En-Fn, e, = H n - I n ,  f n  = Jn - Kn, gn =Ln-Mn, 
hn =Nn-Pn, in = Rn - Sn, jn =Un-Vn, kn = Wn - Yn. 

Hence we have the equations (3.2) : 

cn+1 = Cn + en + +(az + Y2)gn + a(Pz + S2)hn + *in + $(a - P + Y - S)jn 
+ &(a2y2 - fl2Sz)kn. 

dn+l = &(a2y2 - P2S2)kn. 

enfl = +en + $(a@ + rS)(gn + hn) + +in + &(a - P + Y - S>jn 

+ &(W - PS)(aS + PY)kn. 

fn+l = &(a - P + Y - S)jn + &(ay - PS)(aS + Py)kn. 

gn+l = +(az + Y2)gn + t ( p z  + S2)hn + +(a - P + Y - S)j, + +(a2y2 - P2S2)kn. 

hn+l = 81,. 1' 

in+l = 4(Pz + S2)gn + +(a2 + 7')hn + +in - +(a - P + Y - S>jn. 

jn+i = 3 f n  + +(ab + ra)(gn + hn) - $in + $(a - P + Y - S)jn 
+ +(ay - PS)(aS + Py)kn. 

kn+l = 2(dn +fn> ++(a2 + Yz)gn + $ ( P z  + S2)gn - ain + 4(a - P + Y - S>jn  

+ $ ( a 2 y 2  - p2S2)kn. 

When n = 0, Eo = 1 :. do = 1, the other terms being zero. 
When n = 0 0 ,  C,+D, = 1, and c, is finite, the other terms being zero. 

GENETICS 16: ]I 1931 
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p = 3(1 + 9 + + p - v - 29). 
v = 

4 = Ma2y2  - p2s2W + { + 2~ + 49) + &(ay - PUCY~ + PY)(~ + e + 2 4 .  

- B + Y - 6 x 2  + 9 + e + 2x - 2 p  + 2v + 4+). 

We eliminate q =2 ,  and I$ =3{. We also subtract and add together the 
fourth and fifth of these equations. We put x = a(@+ S), the average cross- 
over value, and also y=$(or@+rS), z=ory+@S, q=$-x. Hence: 

28 = + 2r. 

K - = q(1 + { f K - p ) .  

2K f 2x = 1 f y f (1 - y ) ( l  + K) + Y V .  

7p = 3 - { + A - v. 

4 l  = q(3 + e + 2v) - q2(2 + 3 t  - e + 2K - 2v) .  

2q 
2 - 3q 2 - 3q 2 - 3q 

1 - 2 q  1 - 2 q  2 q  A=--- 1 p = -  1 v = -  
2 - 3q 2 - 3q 2 - 3q 

8 V  = q(3 + 25- + 8 + 2K - 2E.L + 2V). 

Omitting some rather tedious algebra, the solution of these equations is: 
1 

1 K=--- ,  , e=--- q { = - -  

as may easily be verified. 

and y=$(I-c,). 

portion of crossover zygotes, y =4x/1+6x (3.5). 
In  the case considered, do = 1, .-. clo = {do = 1 - 2x/1+6x. Hence the pro- 
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This is plotted in figure 1. If there is 50 percent crossing over in both 
sexes, x = 3, y =a. If there is 50 percent in one sex, and none in the other, 
x = 2, y = 5/12, that is 5/12 only of the zygotes are crossovers. 

To solve the equations (3.1) completely, we require, besides the equa- 
tions(3.2),agroupof 13 equations for C,+D,, etc. and also for the symmet- 
rical terms G,, Q,, T,, and X,. The full expression for D, is the sum of a 
constant term with the nth terms of 19 geometrical series. Their ratios are 
4 and the irrational roots of two algebraic equations of the 7th and 11th de- 
grees. These equations can, in part a t  least, be reduced to quartics, but a t  
least one quartic is irreducible. Hence only numerical calculation is prac- 
ticable. 

PARENTS AND OFFSPRING MATING. SEX-LINKED GENES 

In this system of mating a father is mated to his own daughter, a son of 
this union to his mother and subsequently to his daughter, and so on indefi- 
nitely. JENNINGS (1917) has dealt with it in the case of unlinked genes. We 
consider the results of inbreeding where the matings AABBXab and 
aabb X A B  are made in equal numbers and the daughters (assuming the 
female sex to be homogametic) backcrossed to the fathers. If the sons were 
backcrossed to their mothers they would of course give 100 percent non- 
crossover homozygotes a t  once. The result of the cross considered, be- 
tween fathers and F1 daughters, is the same as if the F1 were crossed with 
one another, and their children (Fz) backcrossed to parents. It will be 
shown later that this latter procedure gives the maximum of crossing over 
of autosomal genes. The case is fairly simple, since many types of mating 
are impossible after the first generation. For example aabb mothers have 
only ab sons. P is the crossover proportion, and CY = 1 - ,f3. 

Typiml 
maling 

A A  BB X A B 
AAbbXAb 
AABbXAB 
AABbXAb 
AB.abXAB 
Ab.aB X A b  
AB.abXAb 
Ab.aBXAB 

Number 
of types 

2 
2 
4 
4 
2 
2 
2 
2 

Putting Cn=Cn-Dn, dn=En-Fn, e,=Gn-Hn, f n = I n -  Jn 

i 
.*a Cn+l = C, + +dn + &e, - tPfn 

d,+l = id ,  + $Pen - iaf, 
e,+l = &e, + q(2a - p)fn 
fn+l  = $@(en + fn) 

GENETXCS 16: J1 1931 
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6 - 7~ 2 - 9x 
{ = Z  )e=---  3) v=-- 

3(2  + 3x1 3 0  + 3x1 
(4 .4)  (6 - 7x)en + ( 2  - 9x)fn :. c, = cn + {db + 

3 0  + 3x1 

In  the case considered el = G1 = 1 

6 - 7~ :. c, = ~ 

6 + 9x 

8x :. y = ~ 

6 + 9x (4 .5)  

Hence with 5 0  percent crossing over in the homogametic sex the final pro- 
portion of crossover zygotes is 8/21. If both sexes of Fl are crossed back to 
the parents, 

4X 
6 + 9x 

In this case it is quite possible to solve the equations (4.1) completely. 
Cn differs from C, by the sum of six terms of geometric series, whose 
ratios are 

y=-------. 

1 3 2x f -\/9--26x+192 2x k 6 7 % X + 3 X i  
4 ) 4 ’  4 

- 
7 

4 
- - 

Even here however the expression is rather complicated. 

PARENT AND OFFSPRING MATING. AUTOSOMAL GENES 

The mating system is the same as in the last case, except that both sons 
and daughters in F1 are crossed back to the parents. This case has been 
considered, for unlinked genes, by both JENNINGS (1917) and WRIGHT 
(1921b). If 1000 and 1006 are the crossover percentages, and a+P=y+G 
=1, we arrive at  equations (5.1). 
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dn+i = adn + Be, + $xfn + $(l - x)gn + Q ( l  - 2x)hn. 
enfl = ten - t(l - 2x)hn. 

fn+l = i (1  - x)fn + axgn + t ( l  - x)hn + Q(l - 2x + p)L. 
gn+l = $x(gn - hn) - QpL. 
hn+l = - Qen + axf, - t ( l  - x)gn + Q(3 - 2x)hn + f(x - p)L. 
in+i  = (1 - x)(fn + hn) + $(I - 2x + p)L. 

369 

' (5.2) 

TupiCal 
mating 

A A B B X A A B B  
AAbbXAAbb 

AABbXAABb 
A A B B X A A B b  

{ = 1 ++{. 
9 = +{ + 29 - Qk. 

e = ;(I - X) + ax!: + +(I - x)e + 4x1 + (1 - x)p. 

K = i x  + $(I  - x ) ~  + $x(e + - $(I - x ) ~ .  
= +( 1 - 2X){- t(1 - 2X)9 + t (1  - X)e - t X K  + Q(3 - 2X)k+ (1 - X)p. 

p = +(I - 2 X  + p)e - QpK + t(X - p)k + $(I - 2 X  + p)p. , 

AAbbXAABb 

' (5.3) 

AABbXAaBB 
AABbXAabb 

AABBXAB.ab 
A AbbX A b.aB 

AABB X Ab.aB 
AAbbXAB.ab 
AABbXAB.ab 

AABbXAb.aB 

AB.abXAB.ab 
AB.abXAb.aB 
Ab.aB X Ab.aB 

Number 
of t u w  

2 
2 
4 
8 

8 

4 
4 
4 
4 

4 
4 
8 

8 

1 
2 
1 
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2x 2 4x 2(1 - 2x) 
Hence { = 2 , q  = ___ , e=-  I K = -  t x =  - 7  

1 + 4x 1 + 4x 1 + 4x 1 + 4x 
1 - 2x 

1 + 4x 
P = - - J  

as may readily be verified. . 

1 
1 + 4x 

.-. C, = Cn + 2dn + ----[2fn + 2x(e, + 28,) + (1 - 2~) (2  h n  + in>] (5.4) 

In  the case considered Jo = f o  = 8 :. c, = 1/1+4x 

2x 
.e. y = -__ 

1 + 4x 
( 5 . 5 )  

Hence with 50 percent crossing over in both sexes, y = Q ,  with 50 percent 
crossing over in one only, y = 3. In order to obtain the maximum propor- 
tion of crossovers, we should mate FI inter se, and then mate Fz back to F1 
of the opposite sex. In this case 

Hence when x = 3, y = 8, and with 50 percent crossing over in one sex only, 
y =  $. The approach to equilibrium involves the solution of equations (5.2) 
and a set of nine similar equations for C,+D,, etc. along with E, and R,. 
C, differs from C, by the sum of terms from 14 geometric series. 

INBREEDING WITH ANY INITIAL POPULATION 

The five systems of equations ( l . l ) ,  (2.1), (3.1), (4.1) and (5.1) are true 
whatever be the initial composition of the population, provided that i t  
contains the genes A ,  a,  B ,  and 6 in equal numbers. This is not in general 
so. But we can render any population symmetrical by adding to it three 
other suitably chosen populations, these latter being added after one gen- 
eration of inbreeding, so as not to mate with the group first considered. 
This addition does not affect the proportion of crossover zygotes, and the 
proportion of the genes is of course unaltered by inbreeding. 

An example will make the method clear. We desire to know the final 
fate of a population consisting of zygotes in the proportion lAABB:4aaBb, 
when mating is at  random for one generation, and afterwards brothers and 
sisters only are mated. After one generation we add to it equal numbers of 
the children of three populations consisting of (1AA BB : 4A abb), (laabb : 
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4AABb) and (laabb:4AaBB). Hence, out of 100 typical matings of the 
mixed F1, 2 are AA’BBXAABB, 2 aabbXaabb, 4 of each of the 8 types ex- 
emplified by AABB XaaBb, 16 of each of the 4 types exemplified by AABb 
XAABb.  Dividing by 50, to give a total of 2: 

0 50 

FIGURE 1.-The curves show the percentage of crossover homozygotes a t  equilibrium (lOOy), 
plotted as ordinates against the average crossover value (1OOx) as abscissa, for the following five 
systems of mating: 

1. Self-fertilization. 
2. Brother-sister mating. Sex-linked genes. 
3. Brother-sister mating. Autosomal genes. 
4. Parent-off spring mating, FI daughters backcrossed to father, sex-linked genes. 
5. Parent-offspring mating, both FI sons and daughters backcrossed to parents, autosomal 

genes. 

GENETICS 16: JI 1931 
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Hence by equation (3.4), cco= 1/25+2/25.2(1-2~)/1+6~. 

10 + 76x 
25(1 + 6x) - *  y=--. 

This is the proportion of crossover zygotes. In  the population first con- 
sidered the ratio A : a  is 1:4, that of B:b is 3:2. Hence if [ A A B B ]  is the 
proportion of that type in the final population, 

1 3 
5 5 

[ A A B B ]  + [AAbb] = -, [AABB] + [ U U B B ]  = -, [AAbb] + [UUBB] = y 

5 + 22x 8x :. [AABB] = J [AAbb] = --? 

25(1 + 6x) 25(1 + 6x) 
10 + 68x 

25(1 + 6 2  

10 + 52x 
25(1 + 6x) 

[aaBB] = , [aubb] = 

Similarly the final composition of any other population may be found. 
It is often more convenient to split i t  up into groups, and consider each 
separately. Thus in the above case 1/25 of the final population is derived 
from A A B B X A A B B ,  that is, is all A A B B ;  16/25 is derived from the mat- 
ing aaBbXaaBb, that is, consists of equal numbers of aaBB and aabb; 
8/25 is derived from A A  Bb XaaBb, and the reciprocal cross. This gives all 
four zygotic types in proportions depending on the value of x. It is quite 
possible to form equations for the results of breeding from a population 
containing arbitrary numbers of each of the 20 zygotic types, but the ex- 
pressions obtained are neither short nor elegant. 

DOUBLE CROSSING OVER 

Consider the inbreeding of zygotes ABClabc, where the 3 genes A ,  B ,  C 
are linked and in that order. Let p be the proportion of crossing over be- 
tween A B  (that is, 1OOp the crossover value), and let q,  r be the same pro- 
portions for BC, AC. Then the proportion of double crossovers is ob- 
viously +(p+q-r). Similarly if, after inbreeding, the proportions of cross- 
over zygotes are f (p), f (q), f (r), the proportion of double crossover zygotes, 
that is, aaBBcc and AAbbCC, is +[f(p)+f(q)-f(r)]. Now f(p) is always of 
the form kp/l+lp. Hence we have, for the proportion Z of double cross- 
overs. 
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2 
4 

813 
2 
3 

Now $(p+q- r) is the proportion of gametic double crossovers, and there- 
fore smaller than pq, owing to interference, unless p and q are quite large. 
Hence since 1> 1 the last two terms in the nominator are the most impor- 
tant. When p and q are small, r is practically equal to their sum, and 2 = 
klpq, approximately. 

That is to say whereas the proportion of single gametic crossovers is k 
times the corresponding gametic value when the latter is small, the pro- 
portion of zygotic double crossovers is kl times the proportion of gametic 
double crossovers calculated if there were no interference, and many more 
times the real value. The values of k and kl, collected from equations (1.3), 
(2.5), (3.5), (4.5), (5.5) and their modifications, are given in table 2. 

TABLE 2 

4 
24 

32/3 
8 

12 

TYPE OF INBREEDINQ 

Self-fertilization 
Brother-sister mating 
Brother-sister mating 
Parent-off spring mating 
Parent-offspring mating after FI 
Parent-offspring mating both ways 
Parent-offspring mating father- 

daughter, or after FI 

kl I-- TYPE OF LINEAQE 

Autosomal 
Autosomal 
Sex-linked 
Autosomal 
Autosomal 
Sex-linked 

Sex-linked 

1 

4/3 2f3 1 2 

DISCUSSION 

The method of calculation here employed cannot be applied to most other 
types of inbreeding. It is wholly inapplicable to the important case where 
a male is bred to a large group of his half-sisters in each generation. The 
case of double first cousin matings with autosomal linkage involves the con- 
sideration of 10,000 different pairs of mating types, and other systems are 
still more complex. It may prove possible to solve such problems by an ex- 
tension of WRIGHT’S (1921a) correlation method, but we have been unable 
to do so. 

Inbreeding may be undertaken for several purposes. It may be desired 
to obtain and fix as many types as possible after crossing two different 
varieties, to obtain a pure line of a desired type, or merely a pure line of 
any sort. In  each case it is desirable to encourage crossing over. If the 
genetics of the organism concerned are known already, this can doubtless 
be done by ad hoc matings. In  general this is not possible. The reason why 
crossing over, that is, recombination, is desirable in all types of inbreeding 
is as follows. Hybrid vigor may be due partly to heterozygosis as such, but 
it is probably also in part due to the presence in the hybrid of dominant 
GENETICS 16: J1 1931 
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genes contributed by the two parents. If so the vigor of an extracted pure 
line will depend on the numbers of such dominants which are combined in 
it. In  so far as they are linked, the probability of such a combination will 
depend on the type of mating practised. 

It is clear from table 2 that the differences are very considerable. For 
example a recombination involving three fairly closely linked genes is 
about 3 times as likely with brother-sister mating as with parent-offspring 
mating, and six times as likely as with self-fertilization. In  the case of sex- 
linked genes the probability is over 10 times as great with brother-sister 
mating as with parent-off spring mating. However the disadvantages of 
the latter are considerably diminished if instead of beginning it by crossing 
the F1 to the parents, the first parent-offspring mating is between F1 and Fz. 
If the ideal genotype requires the occurrence of a number of crossings over 
the differences between different mating systems are greatly increased. 

For example if two pure lines of Drosophila whose males are of compo- 
sition Ab(CdE/CdE) (FgHIFgH), and aB(cDe/cDe) (fGh/fGh), respective- 
ly, are crossed, the proportion of pure lines finally containing all the dom- 
inants is 0.98 percent with brother-sister mating, 0.0372 percent with un- 
restricted parent-off spring mating, even when all crossover values are 50 
percent . 

It is clear then that the proportion of homozygosis reached is not the 
sole possible criterion of intensity of inbreeding. But the difference be- 
tween different systems due to the considerations here outlined will be far 
more intense in an organism with high linkage, such as Apotettix, Lebistes, 
Drosophila, or Funaria, than in one with little linkage, such as a mammal 
or Triticum vulgare. 

SUMMARY 

Formulae are given for the amount of crossing over which is found in the 
final population when organisms heterozygous for linked genes are inbred 
according to various systems. 
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