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Abstract
Background: Non-biological factors give rise to unwanted variations in cDNA microarray data. There
are many normalization methods designed to remove such variations. However, to date there have been
few published systematic evaluations of these techniques for removing variations arising from dye biases
in the context of downstream, higher-order analytical tasks such as classification.

Results: Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases,
and three scale methods that adjust scale differences were applied, individually and in combination, to five
distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation
(LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of
a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from
data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed.
We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as
baseline methods, our results show that single-bias-removal techniques which remove either spatial-
dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as
intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques
which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41
different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS
and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to
reduce LOOCV classification errors most consistently and effectively across all data sets. We also found
that the investigated scale normalization methods do not reduce LOOCV classification error.

Conclusion: Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal
normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS,
outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA
microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that
this criterion provides an informative measure for evaluating normalization methods. All the
computational tools used in this study were implemented using the R language for statistical computing
and graphics.
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Background
Molecular profiling technology allows for the simultane-
ous assaying of the abundance of tens of thousands of
transcripts in a biological sample. Once these abundance
values have been obtained for many samples, prevalent
higher-order data analyses may include clustering, classi-
fication, feature selection, and network estimation. A vari-
ety of algorithms seeking to address these higher-order
tasks have been investigated and applied, to interpret gene
expression patterns and to generate biological predic-
tions. However, the accuracy of these predictions may
depend on the low-level transformations utilized to pro-
duce abundance values from raw measurements, i.e., data
pre-processing may be a critical factor in determining the
validity and success of downstream studies. Some key pre-
processing steps for profiling data include image quantifi-
cation and normalization. Several image analysis software
(e.g., GenePix and SPOT) have been designed for image
analysis of the spots on microarrays [1,2]. Background
estimation has also been considered as an important issue
in image quantification, however, evidence [2,3] showed
that 'inappropriate' local background adjustment could
add noise into the microarray data and thus be detrimen-
tal to the downstream studies. Background adjustment,
therefore, is still an issue to be resolved. After image anal-
ysis, normalization usually needs to be performed. It is a
procedure designed to minimize the unwanted variations
in measurements arising from the technology, but to
retain the intrinsic biological variations, and is also the
focus of this work. In this study, we examined normaliza-
tion in the context of a particular transcriptional profiling
platform, cDNA microarrays [4-6], and the specific analyt-
ical task of classifying biological samples characterized by
gene expression profiles.

In cDNA microarray-based investigations, RNA from two
samples are reverse-transcribed and labeled with distinct
(red and green) fluorescent dyes, then hybridized to a
microarray spotted with DNA sequences ("probes"). An
ensuing scanned image of the microarray is processed to
yield an intensity measurement for each dye at every spot
(Figure 1). If R and G are the spot-specific, quantitated,
fluorescent intensities of the target and reference expres-
sion signals respectively, relative gene expression is
defined as the log ratio M = log2(R / G), and average

expression is the log intensity . Based on
different biological assumptions and design principles,
many normalization methods for cDNA microarray data
have been proposed. Global normalization techniques
adjust the center (e.g., mean or median) of the distribu-
tion of the log ratio M values on each microarray to a con-
stant [1,7-9]. These methods, however, do not correct for
any intensity- or spatial effect.

A variety of techniques have been proposed to remove
intensity effect. A non-linear approach employs robust
locally weighted regression (lowess) [10] to smooth the
dependence of log ratios on intensities [4,11,12]. The
basic assumption of this approach is either that the major-
ity of genes are not differentially expressed, or that genes
are influenced by random effects (i.e., the numbers of up-
regulated and down-regulated genes are similar)
[4,11,12]. A 'qspline' method uses a target array to adjust
R and G values so that their distribution is similar for all
arrays [13], but the performance of this method may
depend upon the choice of the baseline array [14]. A com-
posite method employs both external control samples
and total genes on a microarray to remove intensity effect
[15]. To relax critical biological assumptions, 'housekeep-
ing-gene'-related methods first identify non-differentially-
expressed genes, and then use these genes for normaliza-
tion [16-18]. Semi-linear models are designed to account
for the effects of print-tips (PTs), signal intensity, and

A RG= log2

A scanned image of an illustrative cDNA microarrayFigure 1
A scanned image of an illustrative cDNA microarray. 
The configuration (layout of spots) can be described via a 
previously defined notation encompassing four numbers (ngr, 
ngc, nsr, nsc) [12]. A print-tip (PT) group is a set of spots 
arranged in a grid with "nsr" rows and "nsc" columns. A 
microarray is a set of PT groups arranged in a pattern of 
"ngr" rows and "ngc" columns. The configuration of the 
microarray shown is (ngr = 2, ngc = 2, nsr = 24, nsc = 24), 
i.e., 2 × 2 PT groups each composed of 24 × 24 spots. The 
terms "local" and "global" level refer to the spots in a PT 
group and the entire microarray respectively.
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differences in gene expression levels jointly in a single
model [19,20].

The removal of intensity effect at the PT level can partially
remove spatial effect [4,11]. To remove spatial effect more
completely, the dependence of M values on physical posi-
tion can be smoothed using lowess [12], or can be elimi-
nated using weighted mean [13] or median filter methods
[17], both of which assume that differentially expressed
genes are not co-localized in the neighboring spots. Since
spatial- and intensity effect may be mutually dependent, a
method that removes global spatial effect and global
intensity effect in a single step has been proposed [21].

Whereas the above location normalization methods
remove spatial- and intensity effect, scale normalization
methods adjust differences in the scale of M values within
and/or between microarrays. The assumption is that since
the majority of genes are not differentially expressed, the
scale of their M values should be constant. A robust esti-
mate of the scale factor for scale normalization is median
absolute deviation [15].

Normalization approaches seek to ensure that dye effect is
removed, while biological variations are retained. Spatial-
and intensity effect and scale effect arise from printing,
hybridization, scanning, or other technical factors, and
can mask the signals arising from genuine biological vari-
ations in gene expression. Visual aids used to assess the
effectiveness of normalization methods [11,13,15,21]
include scatter plots of log ratio (M) versus average log
intensity (A) ("MA plots"). Spatial plots are a color-coded
representation of each spot on a microarray that depicts M
values, or a quality (e.g., shape, size) measure of some test
statistic. These two types of diagnostic plots [4,21] suggest
that raw M values are often biased estimates of relative
expression and that the dye intensities per spot need to be
adjusted. Quantitative criteria used to assess the robust-
ness of normalization methods in removing dye effect
include (i) rank variations of spot intensity in non-nor-
malized versus normalized data [9,22], and (ii) correla-
tion [16,21], variance [8,13], or error [18,22] of the
normalized M values in replicated data.

To ensure that biological variations are retained after nor-
malization, several functional criteria have been
employed. Prevailing approaches determine the ability to
predict a fixed number of differentially expressed genes in
real or simulated data using quantitative measures based
on t-statistics [4,11,13,21], adjusted p-values [11], and
false-discovery rates [23]. However, there is uncertainty
associated with these measures, and the true number of
differentially expressed genes is unknown. Spike-in data
have been used to assess normalization approaches for
Affymetrix GeneChip data [14,24,25]. However, external

control samples are not widely used for evaluation of nor-
malization methods for cDNA microarrays.

In this paper, we evaluated normalization methods for
cDNA microarray data using the k-NN LOOCV classifica-
tion error (of biological samples characterized by the gene
expression profiles), an alternative quantitative functional
measure that is relatively unambiguous, objective and
readily computed. We used k-NN classifiers because (i)
their sensitivity enables us to discriminate between, and
hence evaluate normalization techniques, (ii) they are
readily available, (iii) they perform well in practice, and
(iv) their non-parametric nature means that assumptions
about how the data are distributed have little influence on
classification performance. Since the primary aim of our
evaluation of normalization methods was to assist practi-
tioners in choosing effective data pre-processing schemes,
we did not consider factors that may influence classifica-
tion performance, such as feature selection and distance
metrics. We investigated a wide spectrum of well-known
and widely available normalization techniques: ten loca-
tion normalization methods that adjust spatial effect and/
or intensity effect (Table 1), and three scale methods that
adjust scale differences (Table 3). We applied these meth-
ods, individually and in combination (41 strategies in all,
Tables 1, 2, 3), to five diverse, published, cancer biology-
related cDNA microarray data sets (Table 4), and we gen-
erated data sets with spatial effect, intensity effect and
scale differences removed to varying degrees. Computing
the LOOCV classification error of k-NNs estimated from
these multi- and two-class data sets allowed us to investi-
gate which and how much of the dye effect are removed
by the 41 strategies.

Results
Spatial- and intensity-dependent normalization
Diagnostic plots
We used diagnostic plots to examine the ability of differ-
ent location normalization methods to remove spatial-
and/or intensity effect (Tables 1 and 2). Figure 2 shows
spatial plots for two specific LYMPHOMA microarrays
normalized with four approaches designed to correct spa-
tial effect (SLLOESS, SLFILTERW3, SLFILTERW7, IGS-
GLOESS). The non-normalized M values (NONRM) for
microarray "5850" display global spatial effect (left-to-
right, green-to-red pattern) whereas those for microarray
"5938" exhibit local spatial effect (top-to-bottom, green-
to-red pattern in each PT group). Removal of spatial effect
should result in a "random" red and green pattern of M
values. SLLOESS and SLFILTERW7 exhibit similar dye
bias-removal abilities in that they both remove global spa-
tial effect more effectively than local spatial effect.
SLFILTERW3 removes both global and local dye effect
effectively, largely because it uses a median filter of a small
window size (3 × 3 spots) for normalization. IGSGLOESS
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removes most, but not all, global and local spatial effect
(a strip of red spots on the right side of "5850" and on the
bottom of the PT groups in the first row of "5938"
remain). IGSGLOESS may not be as effective at removing
dye effect as expected because, as the developers indicate,
lowess curve construction uses the standardized spatial
variables (rloc, cloc), which may not be appropriate for
location variables [21].

Figure 3 shows intensity-dependent MA plots for one spe-
cific LYMPHOMA microarray overlaid with one lowess
curve (left) or one lowess curve per print tip group (right)
using six methods designed to correct intensity effect
(IGLOESS, ILLOESS, ISTSPLINE, QSPLINEG, QSPLINER,
IGSGLOESS). For non-normalized M values (NONRM),
the curvature in the MA plot indicates the presence of
intensity effect at the array (left) and PT (right) level. All
six methods remove global intensity effect completely

(flat lowess curves, left), but only ILLOESS and IGS-
GLOESS remove local intensity effect thoroughly (right).

Visual inspection of the diagnostic plots in Figures 2 and
3 suggest that SLFILTERW3 is an effective method for
removing both global and local spatial effect, whereas
ILLOESS is good at removing intensity effect.

k-NN LOOCV Classification error
For a functional, quantitative evaluation of location nor-
malization methods, we first computed k-NN LOOCV
classification error rates for data normalized using these
methods individually and/or in combination. Then for
each data set, we ranked the normalization methods
based on their LOOCV classification error rates. The
smaller the LOOCV classification error rate, the lower the
rank of the normalization strategy. In order to assess
whether normalization is beneficial (or not), we also

Table 1: Single-bias-removal location normalization techniques used in this study. These strategies remove spatial- or intensity effect 
in a single step. The abbreviations are as follows, (for a given microarray), Ml: location-normalized log ratio; median(M): median value 
of non-normalized log ratios; lowess(rloci, cloci): lowess curve fitted as a function of the row location (rloci) and column location (cloci) 
of spots in PT group i; median(Mw): median value of non-normalized log ratios within the window size determined by w; lowess(A): 
lowess curve fitted to an MA plot of spots on a microarray; lowess(Ai): lowess curve fitted to an MA plot of spots in PT group i; 
spline(Aiset): spline curve fitted to an MA plot of spots in the invariant set, iset; Rl: location-normalized R value; qspline(Gi): qspline 
smoothing using geometric mean of the G channels of all arrays as a target array; Gl: location-normalized G value; qspline(Rt): qspline 
smoothing using geometric mean of the R channels of all arrays as a target array.

Name * Description: Effect/Level Bioconductor R package/function(parameters)

NONRM No normalization Ml = M marray/maNorm(norm="none")
GMEDIAN Global Ml = M - median(M) marray/maNorm (norm="median", subset = T)
SLLOESS Spatial/local lowess Ml = M - loess(rloci, cloci) marray/maNormMain (f.loc = list(maNorm2D(g="maPrintTip", subset = T, span 

= 0.4))
SLFILTERW3 Spatial/Local median filter

Ml = M - median(Mw), W = 3 × 3
tRMA/SpatiallyNormalise** (M, width = 3, height = 3)

SLFILTERW7 Spatial/Local median filter
Ml = M - median(Mw), W = 7 × 7

tRMA/SpatiallyNormalise** (M, width = 7, height = 7)

IGLOESS Intensity/Global lowess Ml = M - loess(A) marray/maNorm (norm="loess", subset = TRUE, span = 0.4)
ILLOESS Intensity/Local lowess Ml = M - loess(Ai) marray/maNorm (norm="printTipLoess", subset = T, span = 0.4)

ISTSPLINE Intensity/Global spline Ml = M - spline(Aiset) affy/normalize.invariantset**(prd.td = c(0.003, 0.007))
QSPLINEG Intensity/Global qspline 

Rl = R - qspline(Gt), Gl = G - qspline(Gt), Ml = 
log(Rl / Gl)

affy/Rl ← normalize.qspline(R, 2^rowMeans(log2(G), na.rm = T), na.rm = T, 
*default*)
Gl ← normalize.qspline(G, 2^rowMeans(log2(G), na.rm = T), na.rm = T, 
*default*)

QSPLINER Intensity/Global qspline 
Rl = R - qspline(Rt), Gl = G - qspline(Rt), Ml = 
log(Rl / Gl)

affy/ Rl ← normalize.qspline(R, 2^rowMeans(log2(R), na.rm = T), na.rm = T, 
*default*)
Gl ← normalize.qspline(G, 2^rowMeans(log2(R), na.rm = T), na.rm = T, 
*default*)

* We adopted the terminology given in the table to avoid confusion within this work. Elsewhere, these methods are known as: GMEDIAN, global 
or median [4]; SLLOESS, 2D spatial [12]; SLFILTERW3, spatial normalization using median filter of the block size 3 × 3 [17]; SLFILTERW7, spatial 
normalization using median filter of the block size 7 × 7 [17]; IGLOESS, global loess [4, 26]; ILLOESS, print-tip loess [4]; ISTSPLINE, invariant set 
normalization [38]; QSPLINER, qspline using geometric mean of the R channels of all arrays as the target array [13]; QSPLINEG, qspline using 
geometric mean of the G channels of all arrays as the target array [13].
** The SpatiallyNormalise function in the tRMA package was modified to remove scale normalization. The normalize.invariantset function in Affy 
package was modified so that the function could be applied on cDNA microarray data.
*default* The default parameters for QSPLINEG and QSPLINER are (fit.iters = 5, min.offset = 5, spline.method="natural", smooth = T, spar = 0, 
p.min = 0, p.max = 1.0, incl.ends = T, converge = F)
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computed the following quantity for a normalization
method in each data set:

IMPROVEMENT = (ErrorRate(NONRM) - Error-
Rate(Method)) / ErrorRate(NONRM) × 100%

where ErrorRate(NONRM) is the error rate of NONRM,
and ErrorRate(Method) is the error rate of the method.
Tables 5 and 6 give results for five data sets (Table 4) and
23 location methods designed to remove spatial- and/or
intensity effect (Tables 1 and 2). Figures 4 and 5 are alter-
native, visual representations of the classification "Error
Rate" and "Rank" in Table 5.

Table 2: Double-bias-removal location normalization techniques used in this study. These strategies remove both spatial- and intensity 
effect either in a single step (IGSGLOESS) or in two steps (the remaining thirteen approaches) by combining methods listed in Table 
1.

Name Description: Method/Effect/Level

IGSGLOESS* Joint Intensity/Global & Spatial/Global Ml = M - lowess(A, 
rloc, cloc)

IGLOESS-SLLOESS Step 1: IGLOESS/Intensity/Global lowess
Step 2: SLLOESS/Spatial/Local lowess

ILLOESS-SLLOESS Step 1: ILLOESS/Intensity/Local lowess
Step 2: SLLOESS/Spatial/Local lowess

IGLOESS-SLFILTERW3 Step 1: IGLOESS/Intensity/Global lowess
Step 2: SLFILTERW3/Spatial/Local median filter

IGLOESS-SLFILTERW7 Step 1: IGLOESS/Intensity/Global lowess
Step 2: SLFILTERW7/Spatial/Local median filter

ISTSPLINE-SLLOESS Step 1: ISTSPLINE/Intensity/Global spline
Step 2: SLLOESS/Spatial/Local lowess

ISTSPLINE-
SLFILTERW3

Step 1: ISTSPLINE/Intensity/ Global spline
Step 2: SLFILTERW3/Spatial/Local median filter

ISTSPLINE-
SLFILTERW7

Step 1: ISTSPLINE/Intensity/Global spline
Step 2: SLFILTERW7/Spatial/Local median filter

QSPLINEG-SLLOESS Step 1: QSPLINEG/Intensity/Global qspline
Step 2: SLLOESS/Spatial/Local lowess

QSPLINEG-
SLFILTERW3

Step 1: QSPLINEG/Intensity/Global qspline
Step 2: SLFILTERW3/Spatial/Local median filter

QSPLINEG-
SLFILTERW7

Step 1: QSPLINEG/Intensity/Global qspline
Step 2: SLFILTERW7/Spatial/Local median filter

QSPLINER-SLLOESS Step 1: QSPLINER/Intensity/Global qspline
Step 2: SLLOESS/Spatial/Local lowess

QSPLINER-
SLFILTERW3

Step 1: QSPLINER/Intensity/Global qspline
Step 2: SLFILTERW3/Spatial/Local median filter

QSPLINER-
SLFILTERW7

Step 1: QSPLINER/Intensity/Global qspline
Step 2: SLFILTERW7/Spatial/Local median filter

* IGSGLOESS was implemented in the following package/function: MAANOVA R 
package/smooth (method="rlowess", f = 0.4, degree = 2). Elsewhere, IGSGLOESS is 
known as joint loess [21]. lowess(A, rloc, cloc): lowess curve fitted as a function of 
average log intensity (A), row location (rloc), and column location (cloc) of spots on a 
microarray.
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Single-bias-removal methods
These strategies can be classified into two categories, spa-
tial-dependent and intensity-dependent normalization
methods. Three spatial-dependent normalization meth-
ods (SLLOESS, SLFILTERW3, SLFILTERW7) reduce k-NN
LOOCV classification error rates to a similar extent (Tables
5 and 6) and have almost identical ranks (Figure 5),
despite the fact that their abilities to remove spatial effect
are quite different (Figure 2). Since both SLLOESS and
SLFILTERW7 fail to remove local spatial patterns effec-
tively (Figure 2, rows 2 and 4), SLFILTERW3 may be too
aggressive in removing "dye effect" (Figure 2, row 3).
However, the three intensity-dependent methods
(IGLOESS, ILLOESS, ISTSPLINE) reduce k-NN LOOCV
classification error rates to different degrees. The k-NN
LOOCV classification error rate and rank of IGLOESS are
similar to those of the three spatial-dependent methods
(SLLOESS, SLFILTERW3, SLFILTERW7) (Figure 5),
whereas ILLOESS, which removes intensity effect more
completely than IGLOESS, has smaller k-NN LOOCV clas-
sification error rates than IGLOESS in all five data sets.
ISTSPLINE, which uses a rank invariant set for normaliza-

tion, is also better than IGLOESS in all five data sets (Fig-
ure 5).

In all five data sets, except for LYMPHOMA (SLLOESS),
the single-bias-removal normalization methods
consistently yield smaller LOOCV classification error rates
than no-bias-removal methods, NONRM and GMEDIAN
(which only sets the median of the distribution of M val-
ues to zero). The greatest benefit, an IMPROVEMENT of
56%, is seen with GASTRIC CARCINOMA (SLLOESS, IST-
SPLINE) (Table 6).

Double-bias-removal methods
IGSGLOESS removes both spatial- and intensity effect in
one step, whereas the remaining seven approaches are
two-step strategies consisting of single-bias-removal
methods applied sequentially (first a method to remove
intensity effect, followed by a method to remove spatial
effect).

In general, double-bias-removal methods have smaller k-
NN LOOCV classification error rates and bigger
IMPROVEMENT than single-bias-removal methods, and

Table 3: Extant scale normalization techniques used in this study. For a given microarray, if Ml is a location-normalized log ratio, then 
Ms is the scale-normalized log ratio, where Ms = Ml / s, and s is median absolute deviation from the median (MAD), a robust estimate of 
the scale of the data distribution. The remaining abbreviations are as follows, median(Ml): median value of Ml values of spots on all 

microarrays in a data set; : median value of Ml values of spots in PT group i on a microarray.

Name * Description Bioconductor R package/function (parameters)

WSCALE Within-microarray scale normalization 

Ms = Ml / si

marrayNorm/maNormScale (norm="printTipMAD", subset = T, geo = T, 
Mscale = T)

BSCALE Between-microarray scale normalization
s = median(Ml - median(Ml))
Ms = Ml / s

marrayNorm/maNormScale (norm="globalMAD", subset = T), geo = T, 
Mscale = T)

WBSCALE Step 1: Within-microarray scale normalization marrayNorm/maNormScale (norm="printTipMAD", subset = T, geo = T, 
Mscale = T)

Step 2: Between-microarray scale normalization
s = median(Ml - median(Ml))

marrayNorm/maNormScale (norm="globalMAD", subset = T, geo = T, Mscale 
= T)

* We adopted the terminology given in this table to avoid confusion within this work. Elsewhere, the methods are known as: WSCALE, within-
print-tip-group scale normalization [4]; and BSCALE, between slide scale normalization [4, 15].

median Mli( )

s median M median Mi l li i
= − ( )( )

s median M median Mi l li i
= − ( )( )

M M ss l i
’ /=

M M ss s
" ’ /=
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all perform better than NONRM and GMEDIAN (Tables 5
and 6, Figures 4 and 5). Using an arbitrary cut-off value of
10 for both median and upper quantile ranks (Figure 5),
IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and
IGLOESS-SLLOESS (all of which remove intensity effect
globally and then spatial effect locally) appear to be the
best methods overall. These three two-step strategies not
only have the lowest ranks amongst all normalization
methods and across all data sets (Figure 5), they also
showed most consistent and significant IMPROVEMENT
over both NONRM and GMEDIAN across all five data sets
(Table 6). The benefits of using IGLOESS-SLFILTERW7
over no normalization (NONRM) range from an
IMPROVEMENT value of 40% in LUNG CANCER to 58%
in LYMPHOMA (Table 6), whereas the IMPROVEMENT
values of ISTSPLINE-SLLOESS range from 33% in GAS-
TRIC CARCINOMA to 62% in LYMPHOMA and the
IMPROVEMENT values of IGLOESS-SLLOESS range from
33% in LUNG CANCER to 56% in GASTRIC
CARCINOMA.

The ranks of the SLFILTERW3-related approaches
(IGLOESS-SLFILTERW3, ISTSPLINE-SLFILTERW3,
QSPLINEG-SLFILTERW3, QSPLINER-SLFILTERW3) are
higher than their SLFILTERW7 counterparts (Figure 5),
suggesting that a window size of 7 × 7 is more preferable
than that of 3 × 3. A smaller window size may over nor-
malize the data, and thus conceal real biological
variations.

Compared to the two-step approaches, the rank of the
one-step method, IGSGLOESS, is higher than IGLOESS-
SLFILTERW7 and ISTSPLINE-SLLOESS (yet lower than
IGLOESS-SLFILTERW3 and ISTSPLINE-SLFILTERW3).
This indicates that the one-step IGSGLOESS has no appar-
ent advantage over the two-step bias-removal strategies.

Overall, the classification performances of data normal-
ized using the double-bias-removal methods are better
than that of NONRM, and the benefits (IMPROVEMENT)
of doing so range from 21% in the case of LUNG CANCER

Table 4: The multi-class, cancer-biology related transcriptional profiling data sets analyzed in this work. For each of the five published 
studies, the fluorescent intensities, microarray images, and associated information were downloaded from the URLs indicated. The 
statistics refer to data sets produced after application of all pre-normalization data processing, location/scale normalization, and post-
normalization data processing steps. The abbreviations are as follows, Microarrays: number of cDNA microarrays; Probes: number of 
probes; K: total number of categories to which a sample could be assigned; Samples and Class: number of samples in the specified pre-
defined category; Configuration: configuration of a microarray using the convention described in Figure 1.

Data set name Description

LIVER CANCER [46] Microarrays: 181; Probes: 6,605; K = 2
Samples and Class: 76 normal; 105 tumor
Configuration: (ngr = 8, ngc = 4, nsr = 27, nsc = 28)
http://genome-www5.stanford.edu/cgi-bin/publication/viewPublication.pl?pub_no=107

LYMPHOMA [47] Microarrays: 81; Probes: 6,850; K = 3
Samples and Class: 29 normal, 43 diffuse large B-cell lymphoma (DLBCL); 9 follicular lymphoma (FL)
Configuration: (ngr = 4, ngc = 4, nsr = 24, nsc = 24); (ngr = 8, ngc = 4, nsr = 24, nsc = 24)
http://genome-www5.stanford.edu/cgi-bin/publication/viewPublication.pl?pub_no=79

RENAL CELL CARCINOMA 
[48]

Microarrays: 38; Probes: 13,608; K = 4
Samples and Class: 3 normal; 26 clear cell carcinoma (CCC); 5 granular cell carcinoma (GCC);
4 papillary carcinoma (PC)
Configuration: (ngr = 8, ngc = 4, nsr = 27, nsc = 28)
http://genome-www5.stanford.edu/cgi-bin/publication/viewPublication.pl?pub_no=210

GASTRIC CARCINOMA [49] Microarrays: 130; Probes: 15,541; K = 2
Samples and Class : 28 normal; 102 tumor
Configuration: (ngr = 12, ngc = 4, nsr = 30, nsc = 32); (ngr = 12, ngc = 4, nsr = 29, nsc = 32); 
(ngr = 12, ngc = 4, nsr = 30, nsc = 30)
http://genome-www5.stanford.edu/cgi-bin/publication/viewPublication.pl?pub_no=232

LUNG CANCER [50] Microarrays: 60; Probes: 20,601; K = 5
Samples and Class: 6 normal; 35 adenocarcinoma (AC); 11 squamous cell carcinoma (SCC); 
4 large cell lung cancer (LCLC); 4 small cell lung cancer (SCLC)
Configuration: (ngr = 8, ngc = 4, nsr = 27, nsc = 28)
http://genome-www5.stanford.edu/cgi-bin/publication/viewPublication.pl?pub_no=100
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(IGSGLOESS) to 100% in GASTRIC CARCINOMA (IGS-
GLOESS) (Table 6).

Qspline-related approaches
Unlike the location normalization methods discussed
above, qspline-related approaches require a target array.
QSPLINEG and QSPLINER are single-bias-removal tech-
niques and use G and R respectively as the target array. The
reduction in k-NN LOOCV classification error rates for
these methods is quite significant compared to the other
single-bias-removal methods. However, it is noticeable
that although QSPLINEG and QSPLINER produce similar
results in almost all data sets, their results are different in
LYMPHOMA (Figures 4 and 5). In addition, when
QSPLINEG or QSPLINER is combined with one of the
three spatial-dependent methods, the rank of the resulting
double-bias-removal technique is different from that of its
counterpart technique (Figure 5). These results suggest
that, similar to other baseline array-based normalization
methods [14], the performances of the qSpline-related
methods may also depend on the choice of the target
array.

Overall, the classification performance of data normal-
ized using the qspline-related methods is better than
NONRM by IMPROVEMENT values of 9% in LUNG CAN-
CER (QSPLINER-SLFILTERW3) and of 100% in GASTRIC
CARCINOMA (QSPLINEG, QSPLINER). None of these
qSpline-related methods, however, outperforms the
IGLOESS-SLFILTERW7 (Table 6).

Scale normalization
Figure 6 shows boxplots of the distribution of non-nor-
malized M values for microarrays in the five studies. Scale
effect is more apparent between (right) rather than within
(left) microarrays in a study. The LYMPHOMA data set
shows considerable variations in box size and whisker
length both within and between microarrays.
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Spatial plots of microarrays 5850 and 5938 in the Lymphoma data setFigure 2
Spatial plots of microarrays 5850 and 5938 in the 
Lymphoma data set. Spatial plots of microarrays 5850 and 
5938 in the LYMPHOMA data set. The plots show the 
results before and after location normalization designed to 
remove spatial effect. The spatial plot is a spatial representa-
tion of spots on the microarray color-coded by their M val-
ues (marrayPlots/maImage(x="maM", subset = T)). 
Spots in white are spots flagged in the original microarray 
data (missing values). Rows depict non-normalized 
(NONRM), and normalized Ml values (SLLOESS, 
SLFILTERW3, SLFILTERW7, IGSGLOESS).
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Tables 7 and 8 and Figure 7 show LOOCV classification
error rates, ranks and IMPROVEMENT for the k-NN clas-
sifiers estimated using 3 scale normalization methods
combined with other spatial- and/or intensity-dependent
normalization methods (18 strategies in all). For data
normalized first with spatial- and/or intensity-dependent
methods, little or no reduction in LOOCV classification
error rates was observed when within-microarray scale
normalization (WSCALE) was applied later. However,
when between-microarray scale normalization (BSCALE)
was used alone, or when both scale normalization tech-
niques were used sequentially (WBSCALE), there was an
increase in both median and upper quantile ranks (Figure
7), suggesting that BSCALE should not be applied on the
studied data sets. With regard to our running example, the
LYMPHOMA data set, scale normalization has no appar-
ent beneficial effect on classification performance.

Discussion
This computational investigation employed two types of
visual diagnostic plots and k-NN LOOCV classification
error rates to evaluate a broad suite of known normaliza-
tion strategies. These analyses were applied to cDNA
microarray data from five published cancer studies. Since
all these data sets were acquired using GenePix image
analysis software and a recent study showed that back-
ground adjustment using GenePix can increase variability
of microarray data and compromise downstream data
analyses [3], we used foreground intensity values of the
probes without background adjustment in this work. The
normalization approaches examined are based on a vari-
ety of different techniques and implementations that are
readily available and accessible.
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MA plots of microarray 5812 in the LYMPHOMA data setFigure 3
MA plots of microarray 5812 in the LYMPHOMA 
data set. The plots show the results before and after loca-
tion normalization designed to remove intensity effect. The 
MA plot is a scatter plot of log ratio M = log2(Rf / Gf) 

(abscissa) versus average log intensity  

(ordinate). Columns depict non-normalized (NONRM), and 
normalized Ml values (IGLOESS, ILLOESS, ISTSPLINE, 
QSPLINEG, QSPLINER, IGSGLOESS). Plots in the same 
row represent same data except that each plot in the left 
panel shows one lowess curve for all the spots (marray-
Plots/maPlot(data, z = NULL)); while that in the right 
panel shows one lowess curve per PT group (marrayPlots/
maPlot(x="maA", y="maM", z="maPrintTip")). Dif-
ferent colors and line types are used to represent different 
groups from different rows ("ngr", Figure 1) and columns 
("ngc") respectively.

A R Gf f= log2
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Our results show that the LOOCV classification error of k-
NN classifiers depends on how much of spatial- and
intensity effect can be removed by a normalization strat-
egy. Overall, the single-bias-removal location approaches
perform better than GMEDIAN and NONRM, while the
double-bias-removal location strategies perform better
than the single-bias-removal location approaches. Of the
twenty-three location normalization techniques investi-
gated, three two-step processes (IGLOESS-SLFILTERW7,
ISTSPLINE-SLLOESS and IGLOESS-SLLOESS), all of
which removes intensity effect at the global level and spa-
tial effect at the local level, appear to be the most effective
at reducing LOOCV classification error. However, remov-
ing spatial- or intensity effect alone is not sufficient for
reducing LOOCV classification error (see below).

A recent review of normalization methods [26] raised the
concern that removing spatial effect (SLLOESS and the
related methods) may add additional noise to normalized

data, and suggested that a safe alternative was removing
only intensity effect at the local level (ILLOESS) [26]. Our
results show that, although the classification performance
of data normalized with SLLOESS alone can be worse
than non-normalized data as in the case of the LYM-
PHOMA data set, when SLLOESS is combined with
another intensity-dependent approach (IGLOESS,
ILLOESS, ISTSPLINE, QSPLINEG, or QSPLINER), there is
considerable improvement over NONRM, with
IMPROVEMENT ranging from 23% in LIVER CANCER
(QSPLINER-SLLOESS) to 78% in GASTRIC CARCINOMA
(QSPLINER-SLLOESS, QSPLINEG-SLLOESS). Thus,
removing both spatial- and intensity effect is beneficial for
the downstream analytical task of classification. Another
study compared various lowess-based single-bias-
removal intensity normalization approaches, and found
that ILLOESS may not significantly improve the results
compared to IGLOESS [27]. Our results show that the
benefits (IMPROVEMENT) of IGLOESS over NONRM

Table 5: Leave-one-out cross-validation k-NN error rates for location normalized data. For each data set, the normalization methods 
were ranked based on their LOOCV classification error rates ("Rank"). The smaller the LOOCV classification error rate, the lower the 
rank. The methods are arranged in the following order: single-bias-removal methods (block 1), double-bias-removal methods (block 2) 
and the qspline-related methods (block 3). For a given data set, the smallest error rate(s) and rank(s) are shown in bold. The methods 
and data sets are described in Tables 1, 2 and 4, respectively.

Location Normalization method LIVER CANCER LYMPHOMA RENAL CELL 
CARCINOMA

GASTRIC 
CARCINOMA

LUNG CANCER

Error Rate Rank Error Rate Rank Error Rate Rank Error Rate Rank Error Rate Rank

NONRM 0.202 24 0.266 23 0.237 24 0.0347 24 0.359 23.5
GMEDIAN 0.163 21 0.247 21 0.158 22 0.0270 23 0.342 20.5
SLLOESS 0.136 9.5 0.272 24 0.132 16.5 0.0154 12 0.350 22
SLFILTERW3 0.155 16 0.216 20 0.132 16.5 0.0190 14 0.359 23.5
SLFILTERW7 0.144 12.5 0.253 22 0.132 16.5 0.0228 16 0.325 17.5
IGLOESS 0.133 8 0.186 15.5 0.132 16.5 0.0231 20 0.342 20.5
ILLOESS 0.110 2 0.154 13 0.132 16.5 0.0231 20 0.275 12.5
ISTSPLINE 0.129 7 0.177 14 0.114 7 0.0153 10 0.334 19

IGSGLOESS 0.136 9.5 0.130 10 0.132 16.5 0 2 0.283 15
IGLOESS-SLLOESS 0.113 3.5 0.117 6.5 0.119 10 0.0154 12 0.242 8.5
ILLOESS-SLLOESS 0.105 1 0.111 4 0.132 16.5 0.0193 15 0.267 10
IGLOESS-LFILTERW3 0.158 19.5 0.136 11 0.092 1.5 0.0231 20 0.242 8.5
IGLOESS-SLFILTERW7 0.113 3.5 0.111 4 0.119 10 0.0154 12 0.217 4
ISTSPLINE-SLLOESS 0.121 6 0.102 1 0.119 10 0.0233 22 0.192 1
ISTSPLINE-SLFILTERW3 0.157 18 0.139 12 0.092 1.5 0.0229 17.5 0.209 2.5
IISTSPLINE-SLFILTERW7 0.118 5 0.127 9 0.132 16.5 0.0229 17.5 0.209 2.5

QSPLINEG 0.158 19.5 0.192 17.5 0.096 3.5 0 2 0.275 12.5
QSPLINER 0.166 22 0.123 8 0.096 3.5 0 2 0.275 12.5
QSPLINEG-SLLOESS 0.138 11 0.198 19 0.119 10 0.00769 7.5 0.225 6
QSPLINEG-SLFILTERW3 0.144 12.5 0.186 15.5 0.172 23 0.00758 5 0.317 16
QSPLINEG-SLFILTERW7 0.149 14 0.192 17.5 0.106 6 0.00758 5 0.225 6
QSPLINER-SLLOESS 0.155 16 0.105 2 0.105 5 0.00769 7.5 0.225 6
QSPLINER-SLFILTERW3 0.155 16 0.111 4 0.145 21 0.00758 5 0.325 17.5
QSPLINER-SLFILTERW7 0.169 23 0.117 6.5 0.119 10 0.0114 9 0.275 12.5
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range from 5% in LUNG CANCER to 44% in RENAL CELL
CARCINOMA; while that the benefits (IMPROVEMENT)
of ILLOESS over NONRM range from 23% in RENAL
CELL CARCINOMA to 46% in LIVER CANCER. Therefore,
ILLOESS performs better than IGLOESS in our study.
However, as a single-bias-removal approach, ILLOESS still
fail to outperform IGLOESS-SLFILTERW7, ISTSPLINE-
SLLOESS and IGLOESS-SLLOESS, which are the best over-
all methods and whose IMPROVEMENT values over
NONRM range from 40% in LUNG CANCER to 58% in
LYMPHOMA for IGLOESS-SLFILTERW7, from 33% in
GASTRIC CARCINOMA to 62% in LYMPHOMA for IST-
SPLINE-SLLOESS and from 33% in LUNG CANCER to
56% in GASTRIC CARCINOMA for IGLOESS-SLLOESS
(Table 6).

A previous study employed k-NN classification of diluted
samples to assess a small number of global linear meth-
ods for normalization [28]. The study presented here is
more comprehensive, both in terms of the range of data

sets and the diversity of normalization techniques. Our
results indicate that the k-NN LOOCV classification error
of real biological samples provides an informative
functional quantitative measure that can be used to eval-
uate normalization approaches.

Differences in scale between microarrays can arise from
both unwanted technical factors (differences in experi-
mental reagents, equipment, personnel, and so on), as
well as from genuine biological variations. The scale nor-
malization techniques applied here aim to remove
unwanted technical factors, and assume the existence of
little biological variations between samples. For the five
studied data sets, scale normalization of non- or location-
normalized data do not result in an overall reduction in
LOOCV classification error. Indeed, two between-micro-
array normalization methods (BSCALE, WBSCALE) result
in an overall increase in LOOCV classification error
(poorer performance, Figure 7). These results suggest that
in the examined cancer-related data sets, there can be con-

Table 6: IMPROVEMENT of location normalization methods. IMPROVEMENT is defined (in the Results) based on improvement of 
LOOCV classification error rate of a given normalization method over that of NONRM. The methods are arranged in the same order 
as those in Table 5. For a given data set, the biggest IMPROVEMENT(s) is shown in bold. The methods and data sets are described in 
Tables 1, 2 and 4, respectively.

Location Normalization 
method

IMPROVEMENT 
(%, LIVER 
CANCER)

IMPROVEMENT 
(%, 

LYMPHOMA)

IMPROVEMENT 
(%, RENAL CELL 
CARCINOMA)

IMPROVEMENT 
(%, GASTRIC 

CARCINOMA)

IMPROVEMENT 
(%, LUNG 
CANCER)

IMPROVEMENT 
RANGE (%)

NONRM 0 0 0 0 0 0 - 0
GMEDIAN 19 7 33 22 5 5 – 33
SLLOESS 33 -2 44 56 3 -2 – 56
SLFILTERW3 23 19 44 45 0 0 – 45
SLFILTERW7 29 5 44 34 9 5 – 44
IGLOESS 34 30 44 33 5 5 – 44
ILLOESS 46 42 44 33 23 23 – 46
ISTSPLINE 36 33 52 56 7 7 – 56

IGSGLOESS 33 51 44 100 21 21 – 100
IGLOESS-SLLOESS 44 56 50 56 33 33 – 56
ILLOESS-SLLOESS 48 58 44 44 26 26 – 58
IGLOESS-SLFILTERW3 22 49 61 33 33 22 – 61
IGLOESS-SLFILTERW7 44 58 50 56 40 40 – 58
ISTSPLINE-SLLOESS 40 62 50 33 47 33 – 62
ISTSPLINE-SLFILTERW3 22 48 61 34 42 22 – 61
IISTSPLINE-SLFILTERW7 42 52 44 34 42 34 – 52

QSPLINEG 22 28 59 100 23 22 – 100
QSPLINER 18 54 59 100 23 18 – 100
QSPLINEG-SLLOESS 32 26 50 78 37 26 – 78
QSPLINEG-SLFILTERW3 29 30 27 78 12 12 – 78
QSPLINEG-SLFILTERW7 26 28 55 78 37 26 – 78
QSPLINER-SLLOESS 23 61 56 78 37 23 – 78
QSPLINER-SLFILTERW3 23 58 39 78 9 9 – 78
QSPLINER-SLFILTERW7 16 56 50 67 23 16 – 67
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Bar plots of leave-one-out cross-validation error rates for k-NNs in Table 5Figure 4
Bar plots of leave-one-out cross-validation error rates for k-NNs in Table 5. The classifiers were estimated from five 
data sets (Table 4) either without normalization (NONRM) or normalized using twenty-three normalization techniques that 
remove spatial- and/or intensity effect to varying degrees (Tables 1 and 2). In each plot, the normalization methods are 
arranged in the following order: (A) Methods that remove no dye bias (GMEDIAN), or a single dye bias (SLLOESS, 
SLFILTERW3, SLFILTERW7, IGLOESS, ILLOESS, ISTSPLINE). (B) Methods that remove two dye biases (IGSGLOESS, 
IGLOESS-SLLOESS, ILLOESS-SLLOESS, IGLOESS-SLFILTERW3, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS, ISTSPLINE-
SLFILTERW3, ISTSPLINE-SLFILTERW7). (C) Qspline-related methods (QSPLINEG, QSPLINER, QSPLINEG-SLLOESS, 
QSPLINEG-SLFILTERW3, QSPLINEG-SLFILTERW7, QSPLINER-SLLOESS, QSPLINER-SLFILTERW3, QSPLINER-
SLFILTERW7).
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Rank summary for location normalization methodsFigure 5
Rank summary for location normalization methods. The median and upper quantile ranks of each method are defined 
as the median and upper quantile values of the ranks of each method across all five data sets (see Table 5, "Ranks"). The bar 
plots present a visual depiction of the results in the table. (Median ranks are shown in pink; upper quantile ranks are shown in 
blue.)

Location Normalization Method Median Rank Upper Quantile Rank

Nonorm 24 24
Gmedian 21 22
sLloess 16.5 22
sLfilterW3 16.5 20
sLfilterW7 16.5 17.5
iGloess 16.5 20
iLloess 13 16.5
iSTspline 10 14
iGsGloess 10 15
iGloess–sLloess 8.5 10
iLloess–sLloess 10 15
iGloess–sLfilterW3 11 19.5
iGloess–sLfilterW7 4 10
iSTspline–sLloess 6 10
iSTspline–sLfilterW3 12 17.5
iSTspline–sLfilterW7 9 16.5
QsplineG 12.5 17.5
QsplineR 8 12.5
QsplineG–sLloess 10 11
QsplineG–sLfilterW3 15.5 16
QsplineG–sLfilterW7 6 14
QsplineR–sLloess 6 7.5
QsplineR–sLfilterW3 16 17.5
QsplineR–sLfilterW7 10 12.5
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Boxplots of the distributions of non-normalized M values for microarrays in the five studiesFigure 6
Boxplots of the distributions of non-normalized M values for microarrays in the five studies. In each boxplot, the 
box depicts the main body of the data and the whiskers show extreme values. The variability is indicated by the size of the box 
and the length of the whiskers (marray/marraymaBoxplot(y="maM")). Each panel in the left-hand column shows results 
for M values at the local level of a microarray chosen at random from a given data set. The bars are color-coded by PT group. 
Each panel in the right-hand column shows results for M values at the global level for 50 microarrays chosen at random from a 
given data set (the total number of microarrays in RENAL CELL CARCINOMA is 38). Each row corresponds to a particular 
study.
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siderable genuine biological variations (which is plausi-
ble because genomic aberrations found in cancer cells
[29,30] may alter the number and nature of expressed
genes compared to normal cells), and that these variations
are masked by the applied scale normalization. The data
sets considered here do not contain replicated data, so it
is difficult to ascertain how much of the scale effect result
from unwanted technical factors. Scale normalization
may be warranted in situations where technical differ-
ences can be discerned by examination of the replicated
data and genuine biological variations are known or
believed to exist. In such cases, scale normalization using
external control samples may be more useful than the
total gene approaches.

While our empirical analyses are thoroughgoing in terms
of both normalization procedures and test data sets, we
acknowledge that there are two caveats in this study that

deserve attention and further investigation. First, we
employed the LOOCV classification error as a functional
measure to assess normalization methods. In principle,
LOOCV provides an almost unbiased estimate of the gen-
eralization ability of a classifier [31], especially when the
number of the available training samples is severely lim-
ited (as in the case of LYMPHOMA and RENAL CELL CAR-
CINOMA in Table 4), and is thus highly desirable for
model selection or other relevant algorithm evaluation
[32,33]. However, it is also known that the LOOCV error
estimator may have high variance in some situations
[34,35], which could in turn affect the accuracy of the
rankings of the normalization methods. Empirically,
however, we found that the LOOCV errors we obtained
from various round of classification are quite stable,
therefore we believe that our estimation is in practice reli-
able and suitable for ranking. Nevertheless, error estima-

Table 7: Leave-one-out cross-validation k-NN error rates for scale normalized data. Error rate and rank of each scale normalization 
method. "Rank" is described in detail in Table 5. For a given data set, the smallest error rate(s) and rank(s) are shown in bold. The 
methods and data sets are described in Tables 3 and 4, respectively.

Location, Scale Normalization method LIVER CANCER LYMPHOMA RENAL CELL 
CARCINOMA

GASTRIC 
CARCINOMA

LUNG CANCER

Error Rate Rank Error Rate Rank Error Rate Rank Error Rate Rank Error Rate Rank

NONRM 0.202 19.5 0.266 18.5 0.237 24 0.0347 14.5 0.359 19.5
NONRM, WSCALE 0.185 14.5 0.303 23.5 0.211 22.5 0.0270 12 0.350 17.5
NONRM, BSCALE 0.227 23.5 0.272 20.5 0.132 8 0.0615 22 0.425 24
NONRM, WBSCALE 0.227 23.5 0.303 23.5 0.132 8 0.0462 21 0.392 23

SLLOESS 0.136 9 0.272 20.5 0.132 8 0.0154 3 0.350 17.5
SLLOESS, WSCALE 0.127 7 0.266 18.5 0.132 8 0.0193 6 0.342 15.5
SLLOESS, BSCALE 0.202 19.5 0.260 17 0.145 14.5 0.1000 24 0.300 11.5
SLLOESS, WBSCALE 0.191 16 0.284 22 0.119 2 0.0846 23 0.283 9.5

IGLOESS 0.133 8 0.186 15 0.132 8 0.0231 9.5 0.342 15.5
IGLOESS, WSCALE 0.141 10 0.148 11 0.132 8 0.0193 6 0.317 13.5
IGLOESS, BSCALE 0.215 22 0.216 16 0.158 18.5 0.0308 13 0.375 21
IGLOESS, WBSCALE 0.202 19.5 0.179 14 0.158 18.5 0.0231 9.5 0.383 22

ILLOESS 0.110 3.5 0.154 12 0.132 8 0.0231 9.5 0.275 7
ILLOESS, WSCALE 0.116 6 0.161 13 0.145 14.5 0.0231 9.5 0.300 11.5
ILLOESS, BSCALE 0.193 17 0.111 3 0.145 14.5 0.0385 17.5 0.359 19.5
ILLOESS, WBSCALE 0.202 19.5 0.105 1 0.145 14.5 0.0424 20 0.317 13.5

ILLOESS-SLLOESS 0.105 1.5 0.111 3 0.132 8 0.0193 6 0.267 4.5
ILLOESS-SLLOESS, WSCALE 0.105 1.5 0.136 9.5 0.132 8 0.00769 1 0.267 4.5
ILLOESS-SLLOESS, BSCALE 0.160 12 0.130 8 0.211 22.5 0.0385 17.5 0.275 7
ILLOESS-SLLOESS, WBSCALE 0.152 11 0.123 6 0.158 18.5 0.0347 14.5 0.259 3

IGLOESS-SLFILTERW7 0.113 5 0.111 3 0.119 2 0.0154 3 0.217 2
IGLOESS-SLFILTERW7, WSCALE 0.110 3.5 0.124 7 0.119 2 0.0154 3 0.209 1
IGLOESS-SLFILTERW7, BSCALE 0.180 13 0.117 5 0.171 21 0.0385 17.5 0.275 7
IGLOESS-SLFILTERW7, WBSCALE 0.185 14.5 0.136 9.5 0.158 18.5 0.0385 17.5 0.283 9.5
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tors that have shown to have low variance (e.g.,
bootstrapping and k-fold cross-validation [34,35]) are
worth further investigation in the future.

The second caveat of this work is that normalization
methods were evaluated using k-NN classification with-
out the aid of auxiliary techniques, such as feature
selection. The reasons we did not employ feature selec-
tion, but rather used all the probes that are present in the
majority of the microarrays for classification are as follow:
i) We believe that the influence of the dye effect (which
usually affect a large number of the probes) on the down-
stream data analysis can be better and more consistently
reflected when a large number of the probes are exam-
ined. As such, using all valid probes for training a classifier
can best reflect the effectiveness of the normalization
methods, whereas using subsets of the probes may gener-
ate inconsistent results due to the heterogeneous nature of

the dye effect across microarrays. ii) We also included low
intensity probes in the analyses. Although this may add
noise and therefore could compromise the absolute clas-
sification performance of the examined normalization
methods, we nevertheless think that these probes should
not be excluded because reducing variability in low inten-
sity probes is by itself an important objective of
normalization methods. That is, a good normalization
approach should be able to reduce variability in both low
intensity- and high intensity probes effectively. And iii)
we are aware that k-NNs without feature selection may
add variability to the classification results, however, k-NN
classification is also appealing in that it is simple and
requires no data pre-processing or assumption on data
distribution. In addition, k-NN classifiers have been
widely used in many classification tasks including high-
dimensional problems arising from image and text data
[36].

Table 8: IMPROVEMENT of the scale normalization methods. IMPROVEMENT is described in detail in Table 6. For a given data set, 
the biggest IMPROVEMENT(s) is shown in bold. The methods and data sets are described in Tables 3 and 4, respectively.

Location, Scale Normalization 
method

IMPROVEMENT 
(%, LIVER 
CANCER)

IMPROVEMENT 
(%, LYMPHOMA)

IMPROVEMENT 
(%, RENAL CELL 
CARCINOMA)

IMPROVEMENT 
(%, GASTRIC 

CARCINOMA)

IMPROVEMENT 
(%, LUNG 
CANCER)

NONRM 0 0 0 0 0
NONRM, WSCALE 8 -13 11 22 3
NONRM, BSCALE -12 -2 44 -77 -18
NONRM, WBSCALE -12 -13 44 -33 -9

SLLOESS 33 -2 44 56 3
SLLOESS, WSCALE 37 0 44 44 5
SLLOESS, BSCALE 0 2 39 -188 16
SLLOESS, WBSCALE 5 -7 50 -144 21

IGLOESS 34 30 44 33 5
IGLOESS, WSCALE 30 44 44 44 12
IGLOESS, BSCALE -6 19 33 11 -4
IGLOESS, WBSCALE 0 33 33 33 -7

ILLOESS 45 42 44 33 23
ILLOESS, WSCALE 43 39 39 33 16
ILLOESS, BSCALE 4 58 39 -11 0
ILLOESS, WBSCALE 0 61 39 -22 12

ILLOESS-SLLOESS 48 58 44 44 26
ILLOESS-SLLOESS, WSCALE 48 49 44 78 26
ILLOESS-SLLOESS, BSCALE 21 51 11 -11 23
ILLOESS-SLLOESS, WBSCALE 25 54 33 0 28

IGLOESS-SLFILTERW7 44 58 50 56 40
IGLOESS-SLFILTERW7, WSCALE 46 53 50 56 42
IGLOESS-SLFILTERW7, BSCALE 11 56 28 -11 23
IGLOESS-SLFILTERW7, 
WBSCALE

8 49 33 -11 21
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Rank summary for scale normalization methodsFigure 7
Rank summary for scale normalization methods. The median ranks and upper quantile ranks are defined as described in 
Figure 5. The bar plots present a visual depiction of the results in the table. (Mean ranks are shown in pink; median ranks are 
shown in blue.) In each plot, normalization strategies are arranged in the following order: a location normalization method, a 
location normalization method followed by WSCALE (+WSCALE), a location normalization method followed by BSCALE 
(+BSCALE), a location normalization method followed by WBSCALE (+WBSCALE).

Location, Scale normalization method Median Rank Upper Quantile Rank

Nonorm 19.5 19.5
Nonorm, Wscale 17.5 22.5
Nonorm, Bscale 22 23.5
Nonorm, WBscale 23 23.5
sLloess 9 17.5
sLloess, Wscale 8 15.5
sLloess, Bscale 17 19.5
sLloess, WBscale 16 22
iGloess 9.5 15
iGloess, Wscale 10 11
iGloess, Bscale 18.5 21
iGloess, WBscale 18.5 19.5
iLloess 8 9.5
iLloess, Wscale 11.5 13
iLloess, Bscale 17 17.5
iLloess, WBscale 14.5 19.5
iLloess–sLloess 4.5 6
iLloess–sLloess, Wscale 4.5 8
iLloess–sLloess, Bscale 12 17.5
iLloess–sLloess, WBscale 11 14.5
iGloess–sLfilterW7 3 3
iGloess–sLfilterW7, Wscale 3 3.5
iGloess–sLfilterW7, Bscale 13 17.5
iGloess–sLfilterW7, WBscale 14.5 17.5
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Due to the above two caveats, the relative rankings of the
investigated normalization strategies can hardly be
obtained accurately in this work. For example, our results
show that IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS
and IGLOESS-SLLOESS reduce LOOCV classification
errors most consistently and effectively across all five data
sets. It is difficult, however, to determine further which of
these three strategies is the best, because small differences
in classification results can either arise from inherent dif-
ferences in these approaches and/or from the variability
introduced by the LOOCV error estimator and less opti-
mal k-NN classifiers. Moreover, our results should not be
taken as a warrant of directly using baseline methods,
such as k-NNs without feature selection, for high-dimen-
sional classification tasks. More investigations are needed
to understand the interplay between normalization
(which improves data quality) and feature selection
(which improves the classifier by throwing away non-
informative data) to ascertain normalization strategies to
produce an optimal classifier.

Conclusion
Using LOOCV error of k-NNs as the evaluation criterion,
we assessed a variety of normalization methods that
remove spatial effect, intensity effect and scale differences
from cDNA microarray data. Overall, the single-bias-
removal location approaches (which remove either spa-
tial- or intensity effect from the data) perform better than
GMEDIAN and NONRM, while the double-bias-removal
location strategies (which remove both spatial- and inten-
sity effect) perform better than the single-bias-removal
location approaches. Of the 41 different strategies exam-
ined, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and
IGLOESS-SLBSCALE, all of which are two-step
approaches and remove both intensity effect at the global
level and spatial effect at the local level, appear to be the
most effective at reducing LOOCV classification error. The
investigated scale normalization methods do not have
beneficial effect on classification performance. These
results also indicate that spatial- and intensity effect do
have profound impact on downstream data analyses, such
as classification, and that removing these effects can
improve the quality of such analyses.

Methods
Extant data sets and software
Table 4 summarizes relevant information on the cDNA
microarray data sets from the Stanford Microarray Data-
base (SMD) reexamined here. These data sets were
selected because the published studies assayed samples
from distinct cancers, the profiling experiments were per-
formed at different times, four out of the five data sets
were produced by different investigators, and the microar-
rays used were printed with different probes on different

occasions. The LYMPHOMA study has been used as the
illustrative, running example.

A variety of computational tools for manipulating, ana-
lyzing, and visualizing microarray data are available.
These include open source implementations based on the
R language for statistical computing http://www.r-
project.org[37] such as the Bioconductor http://www.bio
conductor.org, MAANOVA http://www.jax.org/staff/
churchill/labsite/software/download.html, tRMA http://
www.pi.csiro.au/gena/tRMA, and braju http://
www.maths.lth.se/help/R/aroma packages. Standard R
and Bioconductor packages and functions were used apart
from one normalization method found in MAANOVA
(joint removal of both spatial- and intensity effect at the
global microarray level, IGSGBSCALE) and two
normalization methods found in tRMA (removal of
spatial effect at the local PT level, SLFILTERW3 and
SLFILTERW7).

Pre-normalization data processing
For each spot, the foreground red (Rf) and green (Gf)
quantitated fluorescent intensities (acquired using Gene-
Pix image analysis software) of the arrayed DNA
sequences were used to compute the non-normalized log
ratio, M = log2(Rf / Gf), and average log intensity,

. Because of the concern that local back-

ground values estimated by GenePix may add additional
noise to the data [3], these values were not subtracted
from their corresponding foreground values. For a given
microarray, the log ratios were normalized using location-
and/or scale-normalization techniques and its particular
configuration (the LYMPHOMA and GASTRIC
CARCINOMA studies employed microarrays with two
and three distinct configurations respectively).

Normalization methods
Tables 1 and 2 summarize the 23 location normalization
methods that remove none, one, or both of spatial- and
intensity effect (detailed descriptions of how they adjust
M values can be found elsewhere
[4,6,12,13,17,21,38,39]). In particular, Table 1 includes
two methods that remove no spatial- or intensity-depend-
ent dye bias: (i) NONRM neither removes any effect nor
alters the distribution of M values; and (ii) GMEDIAN
does not remove any effect but acts as a baseline normal-
ization method because it sets the mean or median of M
to zero. There are eight methods that remove either
spatial- or intensity effect: (i) SLBSCALE removes spatial
effect at the PT level using lowess; (ii) SLFILTERW3 and
SLFILTERW7 remove spatial effect using median filters of
the block sizes 3 × 3 and 7 × 7, respectively [17]; (iii) IGB-
SCALE removes intensity effect at the global level; (iv)
ILBSCALE removes intensity effect at the local level and as

A R Gf f= log2
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a byproduct removes spatial effect partially; (v) IST-
SPLINE removes intensity effect at the global level using
rank invariant set and a spline smoothing technique [38];
and (vi) QSPLINER (QSPLINEG) removes intensity effect
at the global level using spline smoothing applied to
quantiles obtained from R (G) and using the geometric
mean of the R (G) channels of all arrays as the target array
[13]. In Table 2, IGSGLOESS is a one-step process that
removes global intensity effect and global spatial effect,
while the remaining thirteen strategies are two-step proc-
esses that remove both dye effect by combining methods
in Table 1.

Table 3 summarizes the three scale normalization meth-
ods used (detailed descriptions of how these methods
adjust the scale of M values can be found elsewhere [4]).
WSCALE adjusts the scale of M values at the PT level.
BSCALE adjusts the scale of M values globally across all
microarrays in a data set. WBSCALE adjusts the scale
locally followed by globally, in two steps. These scale nor-
malization methods were applied to non-normalized data
(NONRM) and to data that had been normalized using
the five location methods SLLOESS, IGLOESS, ILLOESS,
ILLOESS-SLLOESS, or IGLOESS-SLFILTERW7. These
methods were selected to represent methods that remove
spatial and/or intensity effect at different levels.

Post-normalization data processing
For the five cancer-biology studies, examination of the
published data indicated that probes printed on different
microarrays (even those with the same configuration)
were not necessarily identical. For the N microarrays asso-
ciated with a given study (N can be equated with the value
given for "Microarrays" in Table 4), the 41 data sets used
to estimate k-NN classifiers and to determine their
LOOCV classification errors were created as follows. Each
microarray was handled as described in "Pre-normaliza-
tion data processing" and the ensuing M values were nor-
malized using the 41 distinct location and/or scale
techniques discussed above. A probe was retained for fur-
ther processing only if it was printed and present (i.e., suc-
cessfully measured and computed) in 95% of the N
microarrays. If a probe met these criteria, missing M val-
ues were imputed using the k-NNimpute algorithm [40]
as implemented in the Bioconductor package/function
pamr/pamr.knnimpute(k = 10) [41]. Given the 41 data
sets, the M values for a probe in all N microarrays were
centered and rescaled to a unit norm. For LYMPHOMA,
the final dimensionality (number of probes after post-
normalization data processing) of each of the N = 81 data
points was 6,850 ("Probes"). The 41 post-normalized
data sets for the five examined studies are available at
http://paccm.upmc.edu/BMCsup.html.

Classification error
Given D data points, each of which is assigned to one of
K categories (e.g., "normal", "DLBCL", "FL"), a LOOCV
procedure for this K-class data set is as follows. The data
set is partitioned into a test set of one data point and a
learning set of D-1 data points. The learning set is used to
train a classifier and the ensuing model is employed to
predict the class label of the test data point. This process is
repeated so that the class of each data point is predicted
using a classifier estimated from all other data points in
the data set. Classification error is the number of the
instances in which the predicted class of a data point dif-
fers from its known class. The error rate is this value
divided by the number of data points, D.

k-NN classifier
Given a K-class data set, the k-NN algorithm predicts the
class label of a test data point by first finding which of the
data points in the data set are its k closest neighbors. The
classes of these k nearest neighbors are examined and the
class of the test data point decided by a majority vote, with
ties being broken at random. If there are ties for the kth
nearest data point, all candidates are included in the vote.
Classification using k-NNs does not require any special
handling of multi-class data sets. A widely employed
measure of the proximity of two data points and the one
utilized here is the standardized Euclidean distance
[42,43]. Since all probes are treated with equal weight, the
classification results are affected by all the probes rather
than just a subset, as would have been the case if feature
selection had been employed. Euclidean distance has
been shown to be effective and accurate on a variety of
data sets [43,44].

The optimal number of nearest neighbors, k*, was deter-
mined via leave-one-out cross-validation. An original data
set of D data points was partitioned into a test set of one
data point and a learning set of D - 1 data points. Given a
specific k, the k-NN algorithm was used to predict the class
of each data point in the learning set using the D - 2
remaining data points. The classification error, εk, of the
learning set was determined. This procedure was per-
formed using k = {3,...,10} and k* taken to be the k pro-
ducing the smallest classification error, i.e., mink(εk). The
class of the test data point for the original data set was
predicted using k* and the k-NN algorithm. This entire
process was repeated such that each of the data points in
the original data set was used as a test set. The classifica-
tion error of the original data was calculated. The k-NN
step was performed using the R class/package [45]class/
knn.cv(k = "number of neighbors") where "number of
neighbors" was set to 3,...,10. The prediction step was per-
formed using class/knn(k = "optimal k") where "optimal
k" was k*.
Page 19 of 21
(page number not for citation purposes)

http://paccm.upmc.edu/BMCsup.html


BMC Bioinformatics 2005, 6:191 http://www.biomedcentral.com/1471-2105/6/191
List of abbreviations
AC: adenocarcinoma;

CCC: clear cell carcinoma;

DLBCL: diffuse large B-cell lymphoma;

FL: follicular lymphoma;

GCC: granular cell carcinoma;

k-NN: k-nearest neighbor;

LCLC: large cell lung cancer;

LOOCV: Leave-one-out cross-validation;

lowess: local regression estimation;

PC: papillary carcinoma;

PT: print-tip group;

SCC: squamous cell carcinoma;

SCLC: small cell lung cancer;

SMD: Stanford Microarray Database.

Authors' contributions
WW designed and performed computational experi-
ments, and drafted the manuscript. EPX participated in
experimental design and in drafting the manuscript. ISM
participated in experimental design and edited the manu-
script. CM and MJB read and edited the manuscript. All
authors contributed to, read and approved the final
manuscript.

Acknowledgements
We thank three reviewers for their critical yet helpful comments. We 
thank Professor David Banks in the Institute of Statistics & Decision Sci-
ences of Duke University for helpful discussion and suggestions. We also 
thank Aylin Rizki and Paraic A. Kenny for critical reading of the manuscript, 
and Kevin Peet and Penelope Siig for proofreading the manuscript. This 
work was supported by the Department of Energy (OBER 
DEAC0376SF00098), by NIH (grant CA64786 8744), and by an Innovator 
Award from the Department of Defense (DAMD17-02-1-0438) to M.J.B. 
Work by I.S.M. was supported by the California Breast Cancer Research 
Program, National Institute on Aging, National Institute of Environmental 
Health Sciences, and U.S. Department of Energy under contract No. 
DEAC0376SF00098.

References
1. Chen Y, Dougherty ER, Bittner ML: Ratio-Based Decisions and

the Quantitative Analysis of cDNA Microarray Images.  Jour-
nal of Biomedical Optics 1997, 2:364-374.

2. Yang YH, Buckley MJ, Speed TP: Analysis of cDNA microarray
images.  Brief Bioinform 2001, 2:341-349.

3. Qin LX, Kerr KF: Empirical evaluation of data transformations
and ranking statistics for microarray analysis.  Nucleic Acids Res
2004, 32:5471-5479.

4. Yang YH, Dudoit S, Luu P, Speed TP: Normalization for cDNA
microarray data: ; San Jose, California.  Volume 4266. Edited by:
Bittner ML, Chen Y, Dorsel AN and Dougherty ER. SPIE-International
Society for Optical Engineering; 2001:141-152. 

5. Quackenbush J: Microarray data normalization and
transformation.  Nat Genet 2002, 32 Suppl 2:496-501.

6. Smyth GK, Yang YH, Speed TP: Statistical issues in microarray
data analysis.  In Functional Genomics: Methods and Protocols Volume
224. Edited by: Brownstein MJ and Khodursky AB. Totowa, NJ,
Humana Press; 2003:111-136. 

7. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis
and display of genome-wide expression patterns.  Proc Natl
Acad Sci U S A 1998, 95:14863-14868.

8. Zien A, Aigner T, Zimmer R, Lengauer T: Centralization: a new
method for the normalization of gene expression data.  Bioin-
formatics 2001, 17:323S-331.

9. Kroll TC, Wolfl S: Ranking: a closer look on globalisation meth-
ods for normalisation of gene expression arrays.  Nucleic Acids
Res 2002, 30:e50.

10. Cleveland WS, Devlin SJ: Locally Weighted Regression: An
Approach to Regression Analysis by Local Fitting.  Journal of
the American Statistical Association 1988, 83:596-610.

11. Dudoit S, Yang YH, Callow MJ, Speed TP: Statistical methods for
identifying differentially expressed genes in replicated cDNA
microarray experiments.  , University of California, Berkeley;
2000. 

12. Dudoit S, Yang YH: Bioconductor R packages for exploratory
analysis and normalization of cDNA microarray data.  In The
Analysis of Gene Expression Data: Methods and Software Edited by: Par-
migiani G, Garrett ES, Irizarry RA and Zeger SL. New York, Springer;
2003:73-101. 

13. Workman C, Jensen LJ, Jarmer H, Berka R, Gautier L, Nielser HB,
Saxild HH, Nielsen C, Brunak S, Knudsen S: A new non-linear nor-
malization method for reducing variability in DNA microar-
ray experiments.  Genome Biol 2002, 3:research0048.

14. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of
normalization methods for high density oligonucleotide
array data based on variance and bias.  Bioinformatics 2003,
19:185-193.

15. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP: Nor-
malization for cDNA microarray data: a robust composite
method addressing single and multiple slide systematic
variation.  Nucleic Acids Res 2002, 30:e15.

16. Tseng GC, Oh MK, Rohlin L, Liao JC, Wong WH: Issues in cDNA
microarray analysis: quality filtering, channel normalization,
models of variations and assessment of gene effects.  Nucleic
Acids Res 2001, 29:2549-2557.

17. Wilson DL, Buckley MJ, Helliwell CA, Wilson IW: New normaliza-
tion methods for cDNA microarray data.  Bioinformatics 2003,
19:1325-1332.

18. Kepler TB, Crosby L, Morgan KT: Normalization and analysis of
DNA microarray data by self-consistency and local
regression.  Genome Biol 2002, 3:RESEARCH0037.

19. Huang J, Kuo HC, Koroleva I, Zhang CH, Soares MB: A Semi-linear
Model for Normalization and Analysis of cDNA Microarray
Data.  Iowa City, Statistics and Actuarial Science, The University of
Iowa; 2003. 

20. Fan J, Tam P, Woude GV, Ren Y: Normalization and analysis of
cDNA microarrays using within-array replications applied to
neuroblastoma cell response to a cytokine.  Proc Natl Acad Sci
U S A 2004, 101:1135-1140.

21. Cui X, Kerr MK, Churchill GA: Transformations for cDNA
Microarray Data.  Statistical Applications in Genetics and Molecular
Biology 2003, 2:Article 4.

22. Fang Y, Brass A, Hoyle DC, Hayes A, Bashein A, Oliver SG, Wadding-
ton D, Rattray M: A model-based analysis of microarray exper-
imental error and normalisation.  Nucl Acids Res 2003, 31:e96.

23. Wang X, Hessner MJ, Wu Y, Pati N, Ghosh S: Quantitative quality
control in microarray experiments and the application in
data filtering, normalization and false positive rate
prediction.  Bioinformatics 2003, 19:1341-1347.
Page 20 of 21
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11808746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11808746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15479783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15479783
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9843981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12034851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12034851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12225587
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11842121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11842121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11842121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11410663
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12874043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12874043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12184811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14739336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14739336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14739336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12907748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12907748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12874045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12874045
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12874045


BMC Bioinformatics 2005, 6:191 http://www.biomedcentral.com/1471-2105/6/191
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

24. Cope LM, Irizarry RA, Jaffee HA, Wu Z, Speed TP: A benchmark
for Affymetrix GeneChip expression measures.  Bioinformatics
2004, 20:323-331.

25. Irizarry R, cope L: Bioconductor Expression Assessment Tool
for Affymetrix Oligonucleotide Arrays (affycomp).  2004
[http://www.bioconductor.org].

26. Smyth GK, Speed TP: Normalization of cDNA microarray data.
METHODS: Selecting Candidate Genes from DNA Array Screens: Applica-
tion to Neuroscience  in press.

27. Park T, Yi SG, Kang SH, Lee S, Lee YS, Simon R: Evaluation of nor-
malization methods for microarray data.  BMC Bioinformatics
2003, 4:33.

28. Schuchhardt J, Beule D, Malik A, Wolski E, Eickhoff H, Lehrach H,
Herzel H: Normalization strategies for cDNA microarrays.
Nucleic Acids Res 2000, 28:E47.

29. Gray JW, Collins C: Genome changes and gene expression in
human solid tumors.  Carcinogenesis 2000, 21:443-452.

30. Albertson DG, Collins C, McCormick F, Gray JW: Chromosome
aberrations in solid tumors.  Nat Genet 2003, 34:369-376.

31. Cawley GC, Talbot NLC: Efficient leave-one-out cross-valida-
tion of kernel fisher discriminant classifiers.  Pattern Recognition
2003, 36:2585-2592.

32. Vapnik V, Chapelle O: Bounds on Error Expectation for SVM.
In Advances in Large Margin Classifiers (Neural Information Processing
Series) Edited by: Smola AJ, Bartlett PJ, Scholkopf B and Schuurmans
D. , MIT Press; 2000:261-280. 

33. Chapelle O, Vapnik V, Bousquet O, Mukherjee S: Choosing multi-
ple parameters for support vector machines.  Machine Learning
2002, 46:131 -1159.

34. Braga-Neto U, Dougherty ER: Bolstered error estimation.  Pat-
tern Recognition 2004, 37:1267-1281.

35. McLachlan GJ, Do K, Ambroise C: Analyzing Microarray Gene
Expression Data.  , Wiley-Interscience; 2004. 

36. Liu T, Moore A, Gray A: Efficient Exact k-NN and Nonparamet-
ric Classification in High Dimensions.  2003.

37. Team RDC: R: A language and environment for statistical
computing.  2004 [http://www.r-project.org]. , R Foundation for
Statistical Computing

38. Li C, Hung Wong W: Model-based analysis of oligonucleotide
arrays: model validation, design issues and standard error
application.  Genome Biol 2001, 2:RESEARCH0032.

39. Wu H, Kerr MK, Cui X, Churchill GA: MAANOVA: a software
package for the analysis of spotted cDNA microarray exper-
iments.  In The Analysis of Gene Expression Data: Methods and Software
Edited by: Parmigiani G, Garrett ES, Irizarry RA and Zeger SL. New
York, Springer; 2003:313-341. 

40. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani
R, Botstein D, Altman RB: Missing value estimation methods for
DNA microarrays.  Bioinformatics 2001, 17:520-525.

41. Hastie T, Tibshirani R, Narasimhan B, Chu G: Pam: prediction
analysis for microarrays.  2003 [http://cran.us.r-project.org/src/
contrib/Descriptions/pamr.html].

42. Olshen AB, Jain AN: Deriving quantitative conclusions from
microarray expression data.  Bioinformatics 2002, 18:961-970.

43. Holmes CC, Adams NM: A probabilistic nearest neighbour
method for statistical pattern recognition.  J Royal Statistical Soc
B 2002, 64:295-306.

44. Mitchie D, Spiegelhalter DJ, Taylor CC: Machine Learning, Neural
and Statistical Classification.  , Ellis Horwood; 1994. 

45. Ripley B: The class package in the VR bundle.  2003 [http://
cran.us.r-project.org/src/contrib/Descriptions/VR.html].

46. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J,
Dudoit S, Ng IO, Van De Rijn M, Botstein D, Brown PO: Gene
expression patterns in human liver cancers.  Mol Biol Cell 2002,
13:1929-1939.

47. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A,
Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore
T, Hudson JJ, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC,
Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R,
Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM:
Distinct types of diffuse large B-cell lymphoma identified by
gene expression profiling.  Nature 2000, 403:503-511.

48. Higgins JP, Shinghal R, Gill H, Reese JH, Terris M, Cohen RJ, Fero M,
Pollack JR, van de Rijn M, Brooks JD: Gene expression patterns in
renal cell carcinoma assessed by complementary DNA
microarray.  Am J Pathol 2003, 162:925-932.

49. Chen X, Leung SY, Yuen ST, Chu KM, Ji J, Li R, Chan AS, Law S, Troy-
anskaya OG, Wong J, So S, Botstein D, Brown PO: Variation in
gene expression patterns in human gastric cancers.  Mol Biol
Cell 2003, 14:3208-3215.

50. Garber ME, Troyanskaya OG, Schluens K, Petersen S, Thaesler Z,
Pacyna-Gengelbach M, van de Rijn M, Rosen GD, Perou CM, Whyte
RI, Altman RB, Brown PO, Botstein D, Petersen I: Diversity of gene
expression in adenocarcinoma of the lung.  Proc Natl Acad Sci U
S A 2001, 98:13784-13789.
Page 21 of 21
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960458
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960458
http://www.bioconductor.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12950995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12950995
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10773095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688864
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12923544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12923544
http://www.r-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11532216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11532216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11532216
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395428
http://cran.us.r-project.org/src/contrib/Descriptions/pamr.html
http://cran.us.r-project.org/src/contrib/Descriptions/pamr.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12117794
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12117794
http://cran.us.r-project.org/src/contrib/Descriptions/VR.html
http://cran.us.r-project.org/src/contrib/Descriptions/VR.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12058060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12058060
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10676951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12598325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12925757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11707590
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Table 1
	Table 2
	Table 3
	Table 4

	Results
	Spatial- and intensity-dependent normalization
	Diagnostic plots
	k-NN LOOCV Classification error
	Table 5
	Table 6
	Single-bias-removal methods
	Double-bias-removal methods
	Qspline-related approaches


	Scale normalization
	Table 7
	Table 8



	Discussion
	Conclusion
	Methods
	Extant data sets and software
	Pre-normalization data processing
	Normalization methods
	Post-normalization data processing
	Classification error
	k-NN classifier


	List of abbreviations
	Authors' contributions
	Acknowledgements
	References

