Skip to main content
. 2003 Apr;84(4):2734–2755. doi: 10.1016/S0006-3495(03)75079-6

TABLE 3.

Model parameters: TCA cycle

Symbol Value Units Description Eq. Ref.*
Inline graphic 3.2 s−1 Catalytic constant of CS 13 a
Inline graphic 0.4 mM Concentration of CS 13 b
Inline graphic 1.26 10−2 mM Michaelis constant for AcCoA 13 a
Inline graphic 6.4 10−4 mM Michaelis constant for OAA 13 a
CKint 1.0 mM Sum of TCA cycle intermediates' concentration 14 c
Inline graphic 12.5 s−1 Forward rate constant of ACO 15 a
Inline graphic 2.22 Equilibrium constant of ACO 15 a
Inline graphic 1.94–16.3 s−1 Rate constant of IDH 16 a
Inline graphic 0.109 mM Concentration of IDH 16 b
Inline graphic 0.19 mM Inhibition constant by NADH 16 a
Inline graphic 6.2 10−2 mM Activation constant by ADP 16 a
[H+] 2.5 10−5 mM Matrix proton concentration 16 k
kh,1 8.1 10−5 mM Ionization constant of IDH 16 a
kh,2 5.98 10−5 mM Ionization constant of IDH 16 a
Inline graphic 1.52 mM Michaelis constant for isocitrate 16 a
Inline graphic 0.923 mM Michaelis constant for NAD+ 16 a
Inline graphic 0.00141 mM Activation constant for Ca2+ 16 a
Inline graphic 0.15–5.0 s−1 Rate constant of KGDH 17 a
Inline graphic 0.5 mM Concentration of KGDH 17 f
Inline graphic 1.94 mM Michaelis constant for αKG 17 a
Inline graphic 38.7 mM Michaelis constant for NAD 17 a
Inline graphic 0.0308 mM Activation constant for Mg2+ 17 a
Inline graphic 1.27 10−3 mM Activation constant for Ca2+ 17 a
nαKG 1.2 Hill coefficient of KGDH for αKG 17 f
Mg2+ 0.4 mM Mg2+ concentration in mitochondria 17 d
Inline graphic 0.127 mM−1 s−1 Forward rate constant of SL 18 f
Inline graphic 3.115 Equilibrium constant of the SL reaction 18 a
[CoA] 0.02 mM Coenzyme A concentration 18 b
Inline graphic 1.0 s−1 Rate constant of SDH 19 f
Inline graphic 0.5 mM SDH enzyme concentration 19 f
Inline graphic 3.0 10−2 mM Michaelis constant for succinate 19 e
Inline graphic 1.3 mM Inhibition constant by fumarate 19 e
Inline graphic 0.15 mM Inhibition constant by oxalacetate 19 e
Inline graphic 0.83 s−1 Forward rate constant for FH 20 a
Inline graphic 1.0 Equilibrium constant of FH 20 a
kh1 1.1310−5 mM Ionization constant of MDH 22 j
kh2 26.7 mM Ionization constant of MDH 22 a
kh3 6.68 10−9 mM Ionization constant of MDH 23 j
kh4 5.62 10−6 mM Ionization constant of MDH 23 j
koffset 3.99 10−2 pH-independent term in the pH activation factor of MDH 22 a
Inline graphic 2.775 101 s−1 Rate constant of MDH 21 f
Inline graphic 0.154 mM Total MDH enzyme concentration 21 b
Inline graphic 1.493 mM Michaelis constant for malate 21 a
Inline graphic 3.1 10−3 mM Inhibition constant for oxalacetate 21 a
Inline graphic 0.2244 mM Michaelis constant for NAD+ 21 a
Inline graphic 0.644 s−1 Forward rate constant of AAT 24 a
Inline graphic 6.6 Equilibrium constant of AAT 24 a
KC_ASP 0.01 s−1 First order rate constant of aspartate consumption 25 f
Model parameters: oxidative phosphorylation
ra 6.394 10−10 s−1 Sum of products of rate constants 26,27 g,h
rb 1.762 10−13 s−1 Sum of products of rate constants 27 g,h
rc1 2.656 10−19 s−1 Sum of products of rate constants 26 g,h
rc2 8.632 10−27 s−1 Sum of products of rate constants 26 g,h
r1 2.077 10−18 Sum of products of rate constants 26,27 g,h
r2 1.728 10−9 Sum of products of rate constants 26,27 g,h
r3 1.059 10−26 Sum of products of rate constants 26,27 g,h
ρres 0.0006–0.05 mM Concentration of electron carriers (respiratory complexes I-III-IV) 26,27 g,h
Kres 1.35 1018 Equilibrium constant of respiration 28 g,h
ρres(F) 0.0045 mM Concentration of electron carriers (respiratory complexes II-III-IV)
ΔΨB 0.05 V Phase boundary potential 26,27,31 g,h
g 0.85 Correction factor for voltage 26,27 g,h
Kres(F) 5.765 1013 Equilibrium constant of FADH2 oxidation 29
[FADH2] 1.24 mM Concentration of FADH2 (reduced) 29
[FAD] 0.01 mM Concentration of FAD (oxidized) 29
pa 1.656 10−5 s−1 Sum of products of rate constants 31,32 g,h
pb 3.373 10−7 s−1 Sum of products of rate constants 32 g,h
pc1 9.651 10−14 s−1 Sum of products of rate constants 31 g,h
pc2 4.585 10−14 s−1 Sum of products of rate constants 31 g,h
p1 1.346 10−8 Sum of products of rate constants 31,32 g,h
p2 7.739 10−7 Sum of products of rate constants 31,32 g,h
p3 6.65 10−15 Sum of products of rate constants 31,32 g,h
ρF1 0.06–1.8 mM Concentration of F1F0-ATPase 31,32 g,h
KF1 1.71 106 Equilibrium constant of ATP hydrolysis 33 g,h
R 8.315 V C mol−1 °K−1 Gas constant
T 310.16 °K Mammalian body temperature
F 96480 C mol−1 Faraday constant
Pi 20.0 mM Inorganic phosphate concentration 33 i
Cm 15.0 mM Total sum of mito adenine nucleotides 34 d
VmaxANT 0.05–24.0 mM s−1 Maximal rate of the ANT 35 g,h
h 0.5 Fraction of ΔΨm 35 g,h
[ADP]i 0.05–0.2 mM Cytoplasmic ADPi concentration 35
[ATP]i 6.5 mM Cytoplasmic ATPi concentration 35 d
gH 0.01 mM s−1 V−1 Ionic conductance of the inner membrane 36 g,h
ΔpH −0.6 pH units pH gradient across the inner membrane 37 k
CPN 10.0 mM Total sum of mito pyridine nucleotides 30 b
Cmito 1.812 mM V−1 Inner membrane capacitance 2 l,m
Model parameters: calcium dynamics
Inline graphic 0.625–1.25 μM s−1 Vmax uniport Ca2+ transport 38 g,h
[Ca2+]i 2.0 10−2–1.2 μM Cytosolic Ca2+ concentration 38 i
ΔΨ° 0.091 Volts Offset membrane potential 38 g,h
Kact 3.8 10−4 mM Activation constant 38 g,h
Ktrans 0.019 mM Kd for translocated Ca2+ 38 g,h
L 110.0 Keq for conformational transitions in uniporter 38 g,h
na 2.8 Uniporter activation cooperativity 38 g,h
Inline graphic 0.005–0.2 mM s−1 Vmax of Na+/Ca2+ antiporter 39 g,h
b 0.5 ΔΨm dependence of Na+/Ca2+ antiporter 39 g,h
KNa 9.4 mM Antiporter Na+ constant 39 g,h
[Na+]i 10.0 mM Cytosolic Na+ concentration 39 g,h
KCa 3.75 10−4 mM Antiporter Ca2+ constant 39 g,h
n 3 Na+/Ca2+ antiporter cooperativity 39 g,h
f 0.0003 Fraction of free [Ca2+]m 12 g,h
*

References: a, Dudycha et al., 2000; b, Albe et al., 1990; c, calculated from Jeffrey et al., 1999; d, Corkey et al., 1986; e, Singer, 1966; f, adjusted; g, Magnus and Keizer, 1997; h, Magnus, 1995; i, Crompton, 1999; j, calculated from data of Emyanitoff and Kelly, 1982; k, Jung et al., 1989; l, Gunter and Pfeiffer, 1990; m, Wojtczak et al., 1986.