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We analyze the structure of stochastic dynamics near either a
stable or unstable fixed point, where the force can be approxi-
mated by linearization. We find that a cost function that deter-
mines a Boltzmann-like stationary distribution can always be
defined near it. Such a stationary distribution does not need to
satisfy the usual detailed balance condition but might have instead
a divergence-free probability current. In the linear case, the force
can be split into two parts, one of which gives detailed balance
with the diffusive motion, whereas the other induces cyclic motion
on surfaces of constant cost function. By using the Jordan trans-
formation for the force matrix, we find an explicit construction
of the cost function. We discuss singularities of the transforma-
tion and their consequences for the stationary distribution. This
Boltzmann-like distribution may be not unique, and nonlinear
effects and boundary conditions may change the distribution and
induce additional currents even in the neighborhood of a fixed
point.

Boltzmann distribution � cost function � detailed balance � cyclic motion

In equilibrium statistical mechanics, the principle of detailed
balance and the related fluctuation–dissipation theorem play

important roles. Einstein used the principle that the excess
energy that is put into each mode of an equilibrium system in the
course of thermal fluctuations is also removed from the same
mode by dissipative forces. This principle is implicit in his work
on Brownian movement (1), and explicit in later works on the
photoelectric effect (2), and on the relation between spontane-
ous and induced emission of electromagnetic radiation (3). It was
formulated as the principle of detailed balance by Bridgman (4)
and used to explain Johnson noise in electrical circuits by Nyquist
(5). It is related to the fact that the same processes that drive
fluctuations in the neighborhood of a typical equilibrium con-
figuration also drive the configuration back towards a typical
equilibrium or steady-state configuration when it is displaced
from equilibrium by an amount that is small, but large compared
with the fluctuations in thermal equilibrium. In this situation, the
equilibrium distribution in phase space is just the Boltzmann
distribution, proportional to e��E, where � is inversely propor-
tional to temperature, and E is the energy of the point in phase
space. Configurations that differ significantly from those that
contribute to the minimum of the free energy are driven back to
the neighborhood of this minimum by dissipative effects such as
thermal or electrical conduction or viscosity, and the magnitude
of these effects is related to the equilibrium fluctuations of
related variables.

In many situations, there is no thermodynamic equilibrium,
but external steady and fluctuating forces drive the system into
a steady or very slowly varying state for which the principle of
detailed balance does not hold. A light bulb powered by an
external battery or a chemical reaction in which the reactants are
introduced at a steady rate and the products of the reaction are
removed at a steady rate would both be examples of such a
situation. Even in a situation that is almost in equilibrium, such
as a system that is started in equilibrium at a local minimum of
the free energy but that can go over a saddle point to a deeper
minimum, the behavior near the saddle point does not satisfy the
principle of detailed balance, because there is a current over the
saddle point.

For such systems without detailed balance there is no general
method of obtaining the equilibrium distribution from a knowl-
edge of the steady and stochastic forces, such as the Boltzmann
distribution provides for a system with detailed balance. In
recent work, one of us (6) has developed a method valid near a
stable fixed point, which, even when detailed balance does not
hold, obtains a cost function analogous to the energy for the
Boltzmann distribution. If this method can be extended away
from the linear region in the neighborhood of a fixed point, it
may provide a new method for dealing with problems of this sort
(7, 8).

Great efforts have been spent on finding such a cost function
ever since the work of Onsager (9). Results up to 1990 have been
summarized, for example, by van Kampen (10). In general, such
efforts have been regarded as not very successful (11).

In spite of the difficulty, there have been continuous efforts on
the construction of cost function and related topics. Elegant
results have been obtained in several directions. Tanase-Nicola
and Kurchan (12) have considered explicitly the saddle points of
gradient systems. They started from the existence of potential or
cost function to avoid the most difficult problem of the irrevers-
ibility. The gain is that they can now obtain a powerful compu-
tational method to count the saddle points and to compute the
escape rate. They also provide an extensive list of related
literature.

The study on the mismatch of the fixed points of the drift force
and the extremals of the steady-state distribution has been
reviewed by Lindner et al. (13). Rich phenomena have been
observed, but the mismatch has been treated as ‘‘experimental’’
result. There is no mathematical�theoretical explanation on why
it should happen.

In another survey, the useful and constructive role played by
the noise has been demonstrated by examples (14). It is argued
that the noise is essential to establish the functions of dynam-
ical systems. Again, the mismatch problem is encountered,
and the constructed potential function is often regarded as
approximation.

From a different perspective, there has been an effort to
provide a solid foundation for nonequilibrium processes based
on the chaotic hypothesis (15). The chaotic hypothesis presumes
that the system is sufficiently chaotic that variation of parameters
of the system leads to a unique parameter-dependent steady
state, even though the change in Gibbs entropy is not path
independent (16). Under this hypothesis an interesting and
important fluctuation theorem has been obtained, which further
suggests the existence of the Boltzmann-like steady-state distri-
bution function. Hence, a cost function very likely exists under
this situation. A difficulty with this approach is that extremely
few practical physical systems have been shown to satisfy the
chaotic hypothesis.

Because the metastability is such an important phenomenon
and because of the difficulty encountered in the construction of
cost function, efforts have been made to go around the cost
function problem when computing the lifetime of a metastable
state. The effort results in the Machlup–Onsager functional
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method, summarized by Freidlin and Wentzell (17). This ap-
proach has been actively pursued recently (18, 19).

In this work, we give a careful discussion of the basis of our
method of constructing a cost function in the linear region close
to any fixed point, whether stable or unstable. We show that this
approach gives an unambiguous prescription under wide condi-
tions. The only case we have found that does not give an
unambiguous expression for the cost function has a subspace
within which the noise does not act and out of which the force
does not carry the state.

In Stating the Problem, we give a general discussion of a linear
system with noise. In Decomposition of the Force we show how a
cost function can be constructed by a decomposition of the force
matrix into two factors, one of which is a symmetric cost function
matrix, and that this gives a probability density of exponential
form, with the exponent proportional to the cost function. The
general proof of this result is obtained in the Appendix, where we
exploit the Jordan transformation for matrices with an incom-
plete set of eigenvectors. In Singularities we discuss the singu-
larities of the transformation and identify two types of singu-
larities, one of which corresponds to a flat subspace of the cost
function, whereas the other corresponds to the possibility that
the dynamics separates the system into two or more disjoint
subspaces. In Other Stationary Solutions we discuss solutions
other than the Boltzmann-like solution of the equation for a
stationary distribution and argue that such solutions may be
significant in any attempt to extend this solution to the nonlinear
regime. In Discussion we discuss the significance of this decom-
position of the force matrix and its relation to the principle of
detailed balance.

Stating the Problem
Many processes in natural sciences can be modeled quantita-
tively. One particularly important class of such modeling is that
described by first-order differential equations (20), supple-
mented by stochastic terms (10). We start with the nonlinear
dynamic equation

ẋ � f�x� � ��x, t�, [1]

which gives the stochastic evolution of the state represented by
the real d-dimensional vector, x� � (x1, . . . , xd). Here the
superscript � denotes the transposed vector. The force vector is
the d-component f(x), which gives the deterministic time evo-
lution of the system. For simplicity we take the noise term �(x, t)
to be Gaussian white noise, with zero mean, ��(t)� � 0, and
variance ��(x, t)��(x, t�)� � 2D(x)�(t � t�). The angle brackets
denote the average over noise distribution, and �(t) is the Dirac
delta function. In this work we assume D(x) to be independent
of x. The probability distribution function �(x, t) then satisfies
the Fokker–Planck equation

���x, t�
�t

�
�

�xi
��f i�x� � Dij

�

�xj
� ��x , t� . [2]

In the neighborhood of a fixed point, which we take to be at
the origin, the force can be replaced by its linear approximation

fi�x� � Fij xj. [3]

It was noticed by Ao (6) that, in the linear region near a stable
fixed point, Eqs. 1 and 3 can be decomposed in the form

�S � A�ẋ � �Ux � 	� t� , [4]

where the symmetric matrix S is semipositive definite and the
matrix A is antisymmetric. The noise function 	 has variance
given by �	(x, t)	�(x, t�)� � 2S�(t � t�). In this work we adopt

an equivalent, but simpler, approach of factorizing the force
matrix as

F � ��D � Q �U � ��S � A��1U , [5]

where D is the symmetric diffusion matrix, Q is an antisymmetric
matrix that can be determined, and U is the symmetric cost
function matrix, which was called a potential matrix in ref. 6. This
equation breaks the force Fx into two components, F(d)x �
�DUx, which generates a motion towards the origin if U is
positive definite, and F(c)x � �QUx, which gives a motion on the
manifold of constant U(x) � (1�2)x�Ux. The quadratic form
U(x) is the cost function.

It is immediately obvious that if the vector f is replaced by
F(d)x � �DUx in Eq. 2, a Boltzmann-like stationary distribution
of the form

��x� � exp	�U�x�
 , [6]

satisfies the equation, since the current density

ji�x� � �fi�x� 
 Dij���xj��, [7]

vanishes. Since F(c)x generates a current density

j�c��x� � �QUx��x� , [8]

which is divergence free, and conserves U and �, the combination
f(x) � [F(d)  F(c)] x also conserves the distribution given by Eq.
6, so that this is a stationary solution of Eq. 2.

This decomposition of the force matrix allows an explicit
time-independent solution of the Fokker–Planck equation to be
written down. In ref. 6 the solution of the equation for Q was
obtained by a power series expansion, without any discussion of
the convergence of this series. In the next section, we show that
there is a unique solution for the equation for Q under rather
wide conditions. It is not even required that the fixed point of F
be stable, although if it is not the stationary solution given by Eq.
6 is unbounded and could only, at best, give a useful solution in
a neighborhood of the fixed points with boundary conditions that
do not perturb this solution too strongly.

It is worth noting that, under the coordinate transformation
x 3 y � M�1x, the mapping F that relates ẋ to x transforms as

F 3 M�1FM, [9]

while the symmetric matrices U and D, which represent quadratic
forms, transform as

U 3 M�UM, D 3 M�1D�M���1, [10]

and Q transforms in the same way as D. These transformations
preserve the separation of D  Q into symmetric and antisym-
metric parts.

Starting from the work of Onsager (9), there has been
extensive literature on dynamical behavior near a stable fixed
point (21–23). The new construction clearly works for this
important situation and has indeed offered a new angle. How-
ever, it is not sufficient to generalize the decomposition of the
force in Eq. 5 to the nonlinear regime by an equation of the form
f � �(D  Q )grad U, since the Boltzmann form, Eq. 6 may not
satisfy the Fokker–Planck Eq. 2 if the antisymmetric matrix Q is
space dependent. The generalization to nonlinear systems needs
further study. In the next three sections, we establish the
decomposition firmly in the linear regime and investigate its
limitations and implications.

Decomposition of the Force
In this section, we develop a general method for making the
decomposition of the force matrix given in Eq. 5. Since this
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equation, together with the symmetry of U, D, and antisymmetry
of Q, leads to

U � ��D � Q��1F � �F��D 
 Q��1, [11]

the equation to determine Q is

FQ � QF� � FD 
 DF� . [12]

This is a system of d(d � 1)�2 linear equations to determine the
same number of independent components of Q, so it has a unique
solution unless the set of equations is singular. Inversion of the
matrix D  Q then gives the matrix S  A of Eq. 4.

Our method of solution is best illustrated by considering the
case that F is real symmetric or has distinct eigenvalues, so that
it can be diagonalized in terms of its left and right eigenvectors.
Eq. 12 then takes the form

��� � ���Q̃ �� � ��� 
 ���D̃��, [13]

where the �� are the eigenvalues of F, and the tilde denotes this
representation in terms of eigenvectors. This equation gives an
immediate solution for Q provided that no pair of the eigenvalues
of F adds up to zero. The eigenvalues can only add to zero when
the fixed point is unstable, which is discussed in Singularities.

For completeness, we must consider the general case with
degenerate eigenvalues for asymmetric F, in which case there
may not be a complete set of eigenvectors. This case is dealt with
in Appendix, using the Jordan representation of a nonsymmetric
matrix.

Singularities
There are two places in our argument where the transformation
from the force matrix F to the symmetric cost function matrix U
might be singular. Eq. 12 for the antisymmetric matrix Q can be
solved, and we have an explicit solution in Decomposition of the
Force unless the determinant of the coefficients in d(d � 1)�2
inhomogeneous equations is zero. The second possibility is that
the matrix D  Q whose inverse appears in Eq. 11 might have
zero determinant.

In Decomposition of the Force we showed that the conditions
for the equation for Q to be singular are that two of the
eigenvalues of F sum to zero, or, as can be seen from Eq. 33 in
Appendix, when the null space of F2 has two or more dimensions.
Neither of these cases arise for a stable fixed point. There are two
distinct cases of ��  �� � 0, according to whether the two
eigenvalues are real eigenvalues of opposite sign or whether they
form a complex conjugate pair. We study the behavior of the
eigenvalues and eigenvectors of U in these two cases, assuming
that the two eigenvalues of F are nondegenerate and that F has
no zero eigenvalue.

Instead of studying the eigenvectors of U directly, we study the
eigenvalues and eigenvectors of

U�1 � �F�1�D � Q � � �R��1�D̃ � Q̃ �R�, [14]

which has the same eigenvectors but reciprocal eigenvalues.
Here R is the matrix whose columns are the right eigenvectors
of F, and � is the diagonal matrix with the eigenvalues of F as
its diagonal elements. The generalization of these definitions of
R and � to the case where the eigenvalues of F are not complete
is given in Appendix in Eqs. 28, 30, and 35. For a pair of
eigenvalues with ��  �� � 0, with no other sums of two
eigenvalues small and no other small individual eigenvalues, the
only large terms in the matrix Ũ�1 � ���1(D̃  Q̃ ) are,
according to Eq. 13,

�Ũ�1��� � �Ũ�1��� � �
2D̃��

�� � ��

. [15]

When all other matrix elements are neglected, this approxima-
tion, combined with Eq. 14, gives

�
j

�U�1�ijLj � �
2D̃��

�� � ��

���Ri� � ��Ri�� . [16]

This equation, combined with the relation RL � I, shows that the
approximate eigenvector corresponding to a large eigenvalue
w�1 can be written as

a�Ri� � a�Ri� � �
j

�a�Rj� � a�Rj���


RjLi, [17]

provided the amplitudes and eigenvalues satisfy the equation

w�1a� � �
2D̃��

�� � ��
� a��

j

Rj�Rj� � a��
j

Rj�
2 � ,

w�1a� � �
2D̃��

�� � ��
� a��

j

Rj�
2 � a��

j

Rj�Rj�� .
[18]

This equation gives the two small real eigenvalues of U as

w � �
�� � ��

2D̃��
� �

j

Rj�Rj� � 	�
i

Ri�
2 �

j

Rj�
2 � �1

,

[19]

and the corresponding eigenvectors as

a�

a�

� � 	�j Rj�
2

�j Rj�
2

. [20]

For the case of a pair of real eigenvalues of opposite signs, we
can see that, as the sign of ��  �� is changed by a change in the
parameters of F, D, the stable and unstable manifolds of U
change places with one another. The stable and unstable man-
ifolds of U bisect the stable and unstable manifolds of F in the
original representation, as is obvious if one normalizes the real
eigenvectors of Ũ by R̂i� � Ri����j Rj�

2 and R̂i� similarly, giving
eigenvectors R̂i� � R̂i�. In the limit �� � ��, U is f lat in this
two-dimensional subspace.

For a complex conjugate pair of eigenvalues with ��  �*� �
0 the behavior is a little different. Using the property Rj� � R*j�,
we find the term inside the bracket in Eq. 19 is always positive.
The two eigenvalues of U then have the same sign, so U is either
stable or unstable, depending on the sign of ��  ��, in this
two-dimensional subspace. As the real part of �� changes sign,
a two-dimensional stable manifold becomes unstable, or vice
versa.

It can be seen from Eq. 32 in Appendix that where one of the
eigenvalues satisfying ��  �� � 0 corresponds to a higher-
dimensional subspace, there may be higher-order zeros of the
eigenvalues of U.

If the matrix D is positive definite, there is no possibility that
D  Q could be singular. If u is a vector in the null space of D 
Q , we have

0 � u��D � Q �u � u�Du, [21]

since the antisymmetry of Q makes its expectation value vanish.
Therefore, D � Q cannot be singular when D is positive definite.

However, we do not usually want to specify that the noise acts
on all coordinates. Typically, when two of the coordinates are the
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position and momentum of a particle, people will take the noise
to change the momentum but not the position of the particle.
However, Eq. 21 shows that for non-negative definite D, vectors
in the null space of D  Q are in the intersection of the null
spaces of D and Q . Eq. 12 then shows that, for such a vector u
in the null space of D and Q ,

0 � F�D 
 Q �u � �D � Q �F�u, [22]

and so u is only in this null space if F�u, or any power of F� acting
on u, is still in the null space.

This condition is in agreement with what one should expect.
The noise does not have to act directly on all coordinates, but,
if there is a subspace in which there is no noise and that is left
invariant by the motion, there can be no equilibration within that
subspace except collapse towards a stable fixed point.

Other Stationary Solutions
Although the Boltzmann-like form given in Eq. 6 gives a
stationary solution of the Fokker–Planck equation, it is only the
unique solution under certain rather restrictive boundary con-
ditions. One can see clearly why this might be an issue by
considering the one-dimensional form of the equation near a
stable fixed point, which can be written as

d2�

dx2 �
d
dx

�x�� � 0. [23]

In addition to the Boltzmann-like solution �(0) proportional to
exp(�x2�2), this equation has a current-carrying solution of the
form

��1��x� � e�x2/2

0

x

ex�2/2dx�. [24]

This expression is proportional to 1�x for large values of x, so,
if the linear approximation to the equation is valid up to fairly
large values of x, the coefficient of such a term must be
exponentially small to prevent the probability density given by
�(0)  �(1) from being negative.

In d-dimensional systems there are similar solutions falling off
like 1��x�d for large �x�. For such solutions of Eq. 2 the current at
large distances from the origin is primarily driven by the linear
force Fx, and the diffusive motion is a small correction, so, while
the density falls off like �x��d, the conserved current falls off like
�x��d1. Again, current conservation shows that this contribution
to the density must be positive and negative in different parts of
space, so that its coefficient at the origin must be exponentially
small, with an exponent that depends on the size of the region
in which the linear approximation is valid.

Near a maximum, �(0) � exp(x2�2), of the cost function, the
one-dimensional current-carrying solution has the form

��1��x� � ex2/2

0

x

e�x�2/2dx�. [25]

This solution grows at large distances in the same way as �(0), with
a change of sign at the origin. In d dimensions a saddle point can
sustain a relatively large current across it, because there are
current-carrying states for which � is of the same order of
magnitude as �(0).

To get such a current across a stationary point in a linear
system, it is necessary to impose some external current sources
and sinks. However, if we want to describe a nonlinear force field
in terms of its approximately linear behavior in the neighbor-
hood of its fixed points, adjacent neighborhoods can generate

external current sources and sinks for one another, so we should
not be surprised to find such currents if we linearize in a local
region. These ‘‘external’’ currents will not only produce flows at
the boundaries but will shift the flow lines away from the surfaces
of constant cost function U shown in Eq. 8.

In the neighborhood of the minimum of the cost function,
current-carrying solutions resembling the one-dimensional Eq.
24 shift the maximum of the density away from fixed point, since
the gradient of �(1) is nonzero. Because, as we remarked in
connection with this equation, the amplitude of such a term must
fall off exponentially with the size of the region of linearization,
to prevent negative densities, it should not be possible to obtain
such a term by a conventional perturbation theory in the
neighborhood of the stable fixed point. Our numerical explora-
tion of nonlinear systems of this sort suggests that these current-
carrying solutions are significant, because the maximum of the
density is displaced from the zero of the force. One possibility is
to introduce such current-carrying states, in addition to a �(0)

determined by the cost function, to make this method applicable
to nonlinear systems.

Discussion
The main result of this work is to show that, for a system with a
deterministic motion controlled by a linear force and a diffusive
motion driven by constant white noise, the force matrix F can be
decomposed into two parts, �DU and �QU. Provided the fixed
point of F is stable, the first of these components leads to a
steady-state distribution of the Boltzmann form, exp(�U(x)),
with no probability current, the usual form of an equilibrium
distribution when detailed balance holds. The second part gives
a flow on the surface of constant U.

The cost function matrix U can be diagonalized by an orthog-
onal transformation, and, if it is positive definite, it can be
transformed to the identity matrix by choosing a new scale for the
variables. In this representation the dissipative part of the force
matrix is F(d) � �D, which is suggestive of Einstein’s relation
between diffusion and dissipation (1) or of the fluctuation–
dissipation theorem (24, 25).

When the cyclic motion induced by F(c) is included the relation
between the eigenvalues of F and D becomes more complicated.
If the motion in a two-dimensional subspace is dominated by a
fast cyclic motion within the subspace, there will be a complex
conjugate pair of eigenvalues of F, so that they have a common
relaxation rate given by the real part of the eigenvalues. These
possibilities require much more detailed work than we have yet
given them.

This situation is actually not so different from the situation
usually encountered in statistical mechanics, at least if a classical,
rather than a quantum, description is used. For a damped
harmonic oscillator, there is a cyclic motion in phase space, as
well as the thermal noise and viscous damping acting on the
momentum coordinate, whereas for black-body radiation in a
cavity there is cyclic motion between electric and magnetic fields,
in addition to the resistive damping and noise from the walls of
the cavity.

What is remarkable is not that the steady-state density can be
written as the exponential of a cost function, because if there is
a steady state we could always define the cost function as minus
the logarithm of the steady-state density. We find it remarkable
that for a linear stochastic system of this sort, it is generally true
that the force can be decomposed into two parts, one of which
gives detailed balance in its strictest sense, whereas the other
gives a cyclic motion on the surfaces of constant cost function.

The question of whether this technique can be extended to
nonlinear systems is an important one but requires careful
investigation. We have done preliminary work based on pertur-
bative inclusion of nonlinear terms and made comparison with
numerical calculations. It is clear that Eqs. 4 and 5 need some
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modification for nonlinear effects and also that if we try to solve
the problem by matching limited regions in which linearity holds
approximately, the matching may introduce solutions of the
linearized Fokker–Planck equation other than the Boltzmann-
like �(0). Different regions will have to serve as sources and sinks
for their adjacent regions.

Appendix
For cases in which the force matrix F has degenerate eigenvalues
and is not symmetric, so that it may not have a complete set of
eigenvectors, we use the Jordan transformation (26) of a general
real matrix. The Jordan transformation uses a complete set of
independent column vectors v� with the property

Fv� � ��v� � ���1v��1, [26]

where �� is zero if �� � ��1 and is either unity or zero for �� �
��1. The set of row vectors u� with the orthonormality property
u�v� � ��� then satisfies the equation

u�F � ��u� � ��u�1. [27]

Let us define matrices R and L as Ri� � vi
� and L�i � ui

�. Since
the vectors u� are orthonormal to the set v�, we have LR � I,
so that these matrices are inverse to one another. Ri�, L�i are real
for real ��. For complex ��, its complex conjugate is also an
eigenvalue, �� � �*�, since F is a real matrix. In this case, R�i �
R*�i, Li� � L*i�. The Jordan transformation is then given by

LFR � �. [28]

The matrix � is now block diagonal, where each nonzero block
has identical diagonal elements, which are degenerate eigenval-
ues, and unity in each place immediately above the diagonal.

With this result, Eq. 12 can be rewritten as

�Q̃�� � �D̃ 
 D̃�� , [29]

where

Q̃ � LQL�, D̃ � LDL� . [30]

The matrix Q̃ remains antisymmetric and D̃ remains symmetric.
In this representation Eq. 29 takes on the form

��� � ���Q̃ �� � ��Q̃ �1,� � ��Q̃ �,�1

� ��� 
 ���D̃�� � ��D̃�1,� 
 ��D̃�,�1. [31]

It has the solution, for � � �,

Q̃�� �
�� 
 ��

�� � ��

D̃�� � 2�� �
��1

(�1)��1

��� � ����1 D̃��,�


 2���
��1

(�1)��1

��� � ����1 D̃�,��

� 2 �
�,��1

(�1)��1�� � � 
 1�!
�!�!��� � �����1

����� 
 ����D̃��,��, [32]

where the sums go over all values of �, � for which the indices
lie within the same block of the block-diagonal matrix �. For the
case �� � �� this reduces to

Q̃�� � ��
��1

(�1)�

�2���� D̃��,� � �
��1

(�1)�

�2���� D̃�,��

� �
�,��1

�� � � 
 1�!
�!�!

(�1)��

�2����� �� 
 ��D̃��,��. [33]

For the case in which all the �� are zero, Eq. 32 is equivalent to
Eq. 13.

In this Jordan representation of force matrix F, the state
variable is transformed by

y � Lx, [34]

and the corresponding transformation of U is given by

Ũ � R�U R. [35]

Eq. 11 then becomes

�D̃ � Q̃�Ũ � �� , [36]

which is form-invariant with Eq. 11 under the Jordan trans-
formation.

We thank M. Cross, H. Qian, S. W. Rhee, L. Yin, and X.-M. Zhu for
discussions. We especially thank E. Siggia, whose criticisms of this paper
have led us to make some important modifications. This work was
supported in part by Institute for Systems Biology (P.A.), National
Institutes of Health Grant HG002894, and by National Science Foun-
dation Grant DMR-0201948.

1. Einstein, A. (1905) Annalen d. Phys. 17, 549–556.
2. Einstein, A. (1912) Annalen d. Phys. 37, 832–838.
3. Einstein, A. (1917) Phys. Zeits. 18, 121–128.
4. Bridgman, P. W. (1928) Phys. Rev. 31, 90–102.
5. Nyquist, H. (1928) Phys. Rev. 32, 110–113.
6. Ao, P. (2003) ArXiv: physics�0302081.
7. Sasai, M. & Wolynes, P. G. (2003) Proc. Natl. Acad. Sci. USA 100, 2374–2379.
8. Zhu, X.-M., Yin, L., Hood, L. & Ao, P. (2004) Funct. Integr. Genom. 4, 185–195.
9. Onsager, L. (1931) Phys. Rev. 37, 405–426.

10. van Kampen, N. G. (1992) Stochastic Processes in Physics and Chemistry
(Elsevier, Amsterdam).

11. Cross, M. C. & Hohenberg, P. C. (1993) Rev. Mod. Phys. 65, 851–1112.
12. Tanase-Nicola, S. & Kurchan, J. (2004) J. Stat. Phys. 116, 1201–1245.
13. Lindner, B., Garcia-Ojalvo, J., Neiman, A. & Schimansky-Geier, L. (2004) Phys.

Rep. 392, 321–424.
14. Wio, H. S. & Lindenberg, K. (2003) AIP Conference Proc. 658, 1–60.

15. Gallavotti, G., Bonetto, F. & Gentile, G. (2004) Aspects of Ergodic, Qualitative,
and Statistical Theory of Motion (Springer, Berlin).

16. Ruelle, D. P. (2003) Proc. Natl. Acad. Sci. USA 100, 3054–3058.
17. Freidlin, M. I. & Wentzell, A. D. (1998) Random Perturbations in Dynamical

Systems (Springer, New York), 2nd Ed.
18. Maier, R. S. & Stein, D. L. (2000) Phys. Rev. Lett. 85, 1358–1361.
19. Beri, S., Mannella, R. & McClintock, P. V. E. (2004) Phys. Rev. Lett. 92, 020601.
20. Kaplan, D. & Glass, L. (1995) Understanding Nonlinear Dynamics (Springer,

Berlin).
21. Lax, M. (1966) Rev. Mod. Phys. 38, 359–379.
22. Krommes, J. A. & Hu, G. (1993) Phys. Fluids B 5, 3908–3941.
23. Qian, H. (2001) Proc. R. Soc. London A 457, 1645–1655.
24. Callen, H. B. & Welton, T. A. (1951) Phys. Rev. 83, 34–40.
25. Callen, H. B. & Greene, R. F. (1952) Phys. Rev. 86, 702–710.
26. Hirsch, M. W. & Smale, S. (1974) Differential Equations, Dynamical Systems,

and Linear Algebra (Academic, New York).

Kwon et al. PNAS � September 13, 2005 � vol. 102 � no. 37 � 13033

PH
YS

IC
S


