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The goals of this short review are to familiarize readers with the
stargazer mouse and to outline the major functional defects as-
sociated with this mutant. The roles of the stargazin protein in
calcium channel function and α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA)-receptor trafficking are discussed;
focus is placed on studies regarding the thalamus, whence absence
seizures potentially originate, and the cerebellum, which is associ-
ated with the ataxic phenotype. Finally, two additional alleles of
stargazer, waggler and stargazer 3Jackson (3J), illustrate the value
of an allelic series for understanding stargazin function.

The Origin of the Stargazer Mouse

Stargazer arose on the A/J mouse inbred strain at The Jackson
Laboratory in the 1980s. It was initially detected by its unsteady
gait and unusual, repeated head elevations. Breeding studies
revealed that stargazer was due to a single, recessive mutation
on mouse chromosome 15 (1,2). The first published report on
stargazer also described another very important phenomenon—
that this mouse had frequent spike–wave discharges (SWDs),
characteristic of absence seizures in humans (1).

The three mouse mutants, ducky, lethargic, and tottering,
share phenotypic features with stargazer, including ataxic gait,
paroxysmal dyskinesia (affecting limbs in ducky, lethargic, and
tottering but seen as neck dystonia in stargazer), and absence
seizures with SWDs between 5 and 7 Hz (3,4). These mouse
mutants have defects in voltage-dependent calcium channel
(VDCC) subunit genes: Cacna2d2 for ducky (5), Cacnb4 for
lethargic (6), and Cacna1a for tottering (7).

The mutation in stargazer was identified as a retroviral-like,
early transposon insertion in the second intron of the VDCC γ 2
subunit gene, Cacng2. This insertion severely reduced normal
Cacng2 expression (8–10). Several similarities were observed be-
tween the previously isolated VDCC γ protein found in muscle
(11) and the Cacng2 product. The proteins shared 25% amino
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acid identity, and both had a similar secondary structure, in-
cluding four transmembrane domains with both termini pro-
jecting into the cytoplasm. Furthermore, the Cacng2 protein
caused a small hyperpolarizing shift in VDCC steady-state in-
activation in vitro (8). The Cacng2 protein product is referred
to interchangeably as stargazin, γ 2, and CACNG2.

Absence Seizures with Stargazer Are Accompanied
by VDCC and T-type Changes

Absence seizures arise from disturbances of the corticothalamic
circuitry, including the cortex, thalamus, and thalamic reticular
neurons and their interconnecting neuronal pathways (12–15).
An oscillatory balance in the inhibitory and excitatory network
activities between the cortex and thalamus is maintained in the
normal state, but abnormal perturbations within this loop can
result in SWDs. For instance, within the thalamus, low-voltage
calcium channels (T-type or Cav3.1) act as critical pacemakers
in a recurrent cycle with the hyperpolarization-activated cation
Ih currents. Aberrant burst firing of the T-type channels results
in rhythmic oscillations that generate SWDs (16–18). Alterna-
tively, these SWDs can arise from abnormal neuronal discharges
from the pyramidal neurons in the cortex (19). The SWDs
exhibit widespread synchronization and rapid generalization,
detected by EEG recordings from the cortical surface.

The role of stargazin as a regulator of VDCC activity has
been questioned because the in vitro results show marginal
changes, at best (20–25). However, the recordings from tha-
lamocortical relay nuclei from slice preparations revealed that
both VDCC and low-voltage T-type channels are altered in
the stargazer mouse (26). These slices retained the integrity of
the tissue and were taken directly from mutant and control
mice. The stargazer mice showed both increased VDCC and
low-voltage calcium channel activity, with a depolarizing shift
in the steady-state inactivation of the T-type current. Further-
more, similar results were observed for the tottering mouse (26).

The α1G subunit is the major component of T-type cal-
cium channels in the thalamocortical relay neurons (27). A
mouse α1G knockout (Cacna1g tm1Hssh) was generated to ex-
plore the functional consequences of deleting this particular
channel. No burst-mode firing could be induced in the neu-
rons from the targeted knockout, and the mice were resistant
to baclofen-induced absence seizures (28). Moreover, when this
α1G knockout mutation was combined with stargazer, lethar-
gic, or tottering mutations, the incidence of absence seizures was
severely reduced (29). In summary, the similarities between the
phenotypes of these mice, the thalamic slice recordings, and the
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double-mutant studies provide strong evidence that stargazin
plays a role in VDCC regulation. Changes in VDCC activity
lead to an increase in low-voltage T-type activity within the tha-
lamus that, in turn, initiates aberrant SWDs, the hallmarks of
absence seizures.

Stargazin and AMPA-Receptor Trafficking

The ataxic phenotype is most commonly associated with
cerebellar defects (30–35). Although the cellular organization
within the stargazer cerebellum was grossly normal (1), nu-
merous neurophysiological defects associated with the gran-
ule cell layer have been described (36). Granule cells from the
cerebellum of stargazer and its allelic partner, waggler, were
found to be missing functional α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors (37,38). These
receptors mediate fast excitatory synaptic transmission in the
brain in response to glutamate. They recycle rapidly at the
plasma membrane and contribute to the overall synaptic plas-
ticity of the neuronal circuitry.

Following up on this loss of AMPA function, Chen and
colleagues (39) determined that the stargazin protein was es-
sential for the trafficking of AMPA receptors from the Golgi
complex to the plasma membrane and, furthermore, was re-
quired for the ultimate targeting of the receptors to the post-
synaptic membrane. Stargazin’s critical binding and trafficking
domains involved in the migration of the AMPA receptor to the
plasma membrane include the first extracellular loop and the
intracellular carboxy terminus (40). The final amino acids, trp-
trp-pro-val (TTPV), at the carboxy tail of stargazin, are essential
for the subsequent binding of the postsynaptic proteins, such
as PSD-95, to target the entire complex to its active site at the
postsynaptic membrane (39,41,42). Additionally, in vitro stud-
ies revealed that stargazin binding enhanced glutamate-induced
currents at the synapse (43) and ultrastructural changes in the
excitatory synapses within the cerebellum reflect the loss of nor-
mal AMPA-receptor trafficking in stargazer (44).

Stargazin and other closely related members of the γ sub-
unit family, including γ 3, γ 4 and γ 8, share a high degree of
amino acid conservation, including the TTPV motif. These four
proteins are referred to as transmembrane AMPA-receptor reg-
ulatory proteins, or TARPs, and all can promote expression of
functional AMPA receptors at the postsynaptic membrane (45).
TARP members associate independently with AMPA receptors
and cocluster with the receptors at the postsynaptic sites. How-
ever, in the cerebellar granule cells, only stargazin is expressed
significantly (20), explaining why AMPA-receptor localization
is noticeably defective in these cells.

Stargazer also lacked brain-derived neurotrophic factor
message in its granule cells (46). A reduction in the inhibitory
neurotransmitter GABA was observed, and fewer GABAergic

synapses were present (47). The GABAA-receptor α6 (an indi-
cator of mature granule cells) and β3 subunits were reduced in
granule cells (48). Finally, stargazer mice showed an impaired
cerebellum-dependent eye-blink conditioning response (49).
The outcome of all these impairments appears to be that, al-
though stargazer cerebellar granule cells retain the ability to mi-
grate correctly, they lack the neurotransmitter and neurotrophic
innervations required for their full maturation.

Additional Mutants for Studying Stargazin Function

Waggler, Stargazer 3Jackson (3J), and a γ4 Targeted
Mutant

The stargazer mouse has proved to be a complex model with
pleiotrophic defects. It can survive despite its severe phenotype,
with very reduced Cacng2 message expression and no detectable
protein (9,10). After stargazer, two spontaneous mutants have
been found with defects in the same Cacng2 gene: waggler and
stargazer 3J. Surprisingly, all three mutations are caused by sim-
ilar insertions into Cacng2 introns (10).

Waggler mice are ataxic but lack the head elevation of
stargazer. They also showed no stargazin protein expression but
had a variable SWD profile (10). Additionally, wagglers were
missing functional AMPA receptors in granule cells and showed
similar impairments in granule cell maturation to stargazer
(38,50). The waggler mutation arose from an early transposon
insertion in the first intron, whereas stargazer 3J, like stargazer,
had an early transposon insertion in the second intron at a more
distal 3′ position (10).

Stargazer 3J has the mildest phenotype of the three alle-
les. The mice are ataxic but retain approximately 25% of the
normal Cacng2 message. In contrast to stargazer and waggler,
stargazin protein also was detected in this allele (10). Stargazer
3J consistently showed no SWD activity, suggesting that suf-
ficient stargazin exists to overcome the seizure phenotype and
head tossing, but not the ataxia.

Recently a targeted mutation was introduced into the
VDCC γ 4-subunit gene, Cacng4 (51). The targeted homozy-
gous Cacng4tm1Frk mouse had no discernible phenotypic abnor-
malities, including no spontaneous absence seizure activity.

Absence Seizures in Double Cacng2;Cacng4 Mutants

Double-mutant studies can provide insight into functional in-
teractions, as illustrated by the studies of Song et al. (29), in
which the α1G knockout was combined with VDCC mutants.
However, early death can confound full phenotypic analysis—in
particular, EEG recording and ataxia, for which the mice must
age to about 2 weeks. For example, the double mutant between
stargazer and Cacng4tm1Frk rarely survived. However, double
mutants between waggler or stargazer 3J and Cacng4tm1Frk

were viable. Although neither single mutants had SWDs, the
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stargazer 3J; Cacng4tm1Frk double homozygotes proved to be
most informative, as the double mutants showed absence seizure
activity (51). In summary, the depletion of γ 4 alone appears
to have no effect on the mouse. However, both the duration
and recurrence of seizure episodes increased in the double ho-
mozygotes, exacerbating the seizures compared with the waggler
mutant and introducing seizures into the previously seizure-free
stargazer 3J. These results suggest that γ 4 has a role in seizure
susceptibility, but this role is revealed only when expression of
stargazin also is compromised.

Are the Functions of Stargazin Interconnected?

One study was performed of VDCC activity in the cerebel-
lum of stargazer mice. Whole-cell measurements from stargazer
granule cells showed no differences in VDCC currents com-
pared with wildtype (39), although individual VDCC, includ-
ing P/Q, N, R, and L types, were not assessed. Notably, increased
N- and L-type channels in the cerebellum of the tottering mouse
(with a mutation in the P/Q-type channel) are proposed to con-
tribute to tottering’s ataxic and dystonic phenotypes (52–54).

Conversely, no reports exist of AMPA-receptor localization
or activity in the stargazer mouse cortex and thalamus, although
stargazer hippocampal studies indicated that AMPA receptor
function is normal (37). Is there less AMPA-receptor activity
in the thalamus of stargazer, waggler, or stargazer 3J mice? The
double mutants between stargazer 3J and Cacng4tm1Frk may be
particularly informative for thalamic studies, as stargazin and
γ 4 constitute the major TARP expression in this region (20,51).
If both these functions are indeed altered in the thalamus, the
challenge will be to assess the relative contributions of VDCC
activation and AMPA-receptor mislocalization to the seizure
phenotype.

AMPA-receptor–knockout Mutants and Thalamic Defects

Studies of mouse mutants with knockouts of the AMPA-
receptor subunits could reveal an association between AMPA
receptors and absence seizures without the conflicting VDCC
mutational effects. Four subunits, GLUR1-4, form the het-
erotetrameric receptor (55), and knockout mice exist (Gria1-3)
of GLUR 1, GLUR 2, and GLUR 3, respectively (56–60). These
mutants have generally been studied for long-term potentiation
disorders; only one absence seizure study has been reported on
the Gria2 knockout (61). This mutant, despite having multiple
behavioral abnormalities (58,59), proved to be more resistant
to absence-seizure induction than were controls (61). Similar
studies may be worth pursuing with the Gria2; Gria3 double
knockout (60). This particular mutant combination showed a
striking reduction in AMPA-receptor activity; more closely re-
sembling the AMPA-receptor defect in stargazer than the single
Gria2 mutant.

Last, But Not Least, Stargazin Is Also a
Cell-adhesion Molecule

The structural similarities between stargazin and the claudin
family led to a recent article describing yet another role for
stargazin as a cell-adhesion molecule (62). Furthermore, Cacng2
message is expressed as early as embryonic day 12 in mouse (51).
Thus, stargazin may be involved in forming close cell–cell con-
tacts during neuronal development. Future studies comparing
stargazer with control mice should reveal more about stargazin’s
cell-adhesion function in vivo.

Conclusion

The stargazer mouse has proved to be an exceptionally informa-
tive mutant. With the removal of one small stargazin protein
from the brain, numerous disorders, including spontaneous ab-
sence seizures, ataxia, and head tossing, have materialized. The
breadth of research generated from this one mutant underscores
the power of mouse genetics. Spontaneous and genetically en-
gineered mouse mutants give researchers insight into individual
protein function within the context of the whole animal and
provide the mechanistic tools to reveal the pathways that un-
derlie the affected phenotype.
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