Skip to main content
. 2025 Mar 13;91(4):e01388-24. doi: 10.1128/aem.01388-24

TABLE 1.

Testing performance of machine learning classifiers for Salmonella prevalence prediction

Model name Optimal hyperparameters Precision Recall F1 score Accuracy
Adaptive Boosting Classifier learning_rate: 0.1, n_estimators: 100 0.90 0.87 0.87 0.87
Decision Tree Classifier criterion: “gini,” max_depth: None, min_samples_leaf: 2, min_samples_split: 5 0.96 0.96 0.96 0.96
Gaussian Naive Bayes var_smoothing: 1 × 10–9 0.87 0.87 0.87 0.87
Logistic Regression C: 100, solver: “newton-cg” 0.84 0.83 0.83 0.83
Multi-layer Perceptron Classifier activation: “tanh,” alpha: 0.0001, hidden_layer_sizes: (100, 50, 50), learning_rate: “constant,” solver: “adam” 0.37 0.61 0.46 0.61
Random Forest Classifier max_depth: None, max_features: “log2”, min_samples_split: 10, n_estimators: 100 0.87 0.87 0.87 0.87
Stochastic Gradient Descent Classifier alpha: 0.001, learning_rate: “optimal,” loss: “perceptron,” penalty: “l1” 0.37 0.61 0.46 0.61