Skip to main content
. 2025 Mar 13;91(4):e01388-24. doi: 10.1128/aem.01388-24

TABLE 2.

Ranking and feature importance score for different machine learning modelsa

Features or independent variables Adaptive Boosting Classifier Decision Tree Classifier Gaussian Naive Bayes Logistic Regression Multi-layer Perceptron Classifier Random Forest Classifier Stochastic Gradient Descent Classifier
Ranking FIS Ranking FIS Ranking FIS Ranking FIS Ranking FIS Ranking FIS Ranking FIS
gapA 6 0.10 3 0.14 1 0.59 8 0.10 6 10.47 8 0.09 8 4.05
ttr 7 0.08 6 0.02 4 0.40 3 0.84 7 9.89 4 0.11 2 18.56
usg 3 0.14 4 0.13 2 0.46 4 0.74 5 10.72 7 0.09 5 10.11
ttr/gapA 1 0.20 2 0.21 5 0.19 1 0.94 1 11.81 3 0.13 3 14.58
usg/gapA 4 0.12 5 0.08 6 0.13 5 0.64 8 9.68 5 0.11 4 14.11
Litter pH 8 0.08 8 0.01 3 0.44 2 0.92 3 10.88 6 0.10 6 8.21
Caked litter moisture 2 0.16 1 0.39 7 0.02 6 0.54 4 10.81 1 0.24 1 23.13
Friable litter moisture 5 0.12 7 0.02 8 0.02 7 0.14 2 11.28 2 0.13 7 5.86
a

FIS, feature importance score.