CYTOPLASMIC MALE STERILITY IN BARLEY. XI. THE msm2 CYTOPLASM

H. AHOKAS

Department of Genetics, University of Helsinki, P. Rautatiekatu 13, 00100 Helsinki 10, Finland

Manuscript received December 29, 1981 Revised copy accepted April 26, 1982

ABSTRACT

A new cytoplasmic male sterility in barley (Hordeum vulgare s.l.) is described and designated as msm2. The cytoplasm was derived from a selection of the wild progenitor of barley (H. vulgare ssp. spontaneum). This selection, 79BS14-3, originates from the Southern Coastal Plain of Israel. The selection 79BS14-3 has a normal spike fertility in Finland. When 79BS14-3 was crossed by cv. Adorra, the F1 displayed partial male fertility and progeny of recurrent backcrosses with cv. Adorra were completely male sterile. Evidently 79BS14-3 is a carrier of a recessive or semidominant restorer gene of fertility. The dominant restorer gene Rfm1a for another cytoplasmic male sterility, msm1, is also effective in msm2 cytoplasm. The different partial fertility restoration properties of msm2 and msm1 cause these cytoplasms to be regarded as being distinct. Seventy spontaneum accessions from Israel have been studied for their capacity to produce F₁ restoration of male fertility both in msm1 and in msm2 cytoplasms with a cv. Adorra-like seed parent (nuclear gene) background. The msm2 cytoplasm shows partial restoration more commonly than msm1 in these F_1 combinations. The mean restoration percentage per accession for msm2 is 28. and for msm1 4. Most of the F1 seed set differences of the two cytoplasms are statistically significant. When estimated with partially restored F1 combinations, msm2 cytoplasm appeared to be about 50 times more sensitive to the male fertility-promoting genes present in the spontaneum accessions. The spontaneum sample from Central and Western Negev, which has been found to be devoid of restoration ability in msm1 cytoplasm, had only low partial restoration ability in msm2 (mean 0.3%). The female fertility of msm2 appears normal. The new msm2 cytoplasm could be useful in producing hybrid barley.

IN the 1980 season the F_1 barley hybrid 79BS14-3 × Adorra displayed partial male fertility. The selection 79BS14-3 is a wild barley (Hordeum vulgare ssp. spontaneum (C. Koch) Thellung) selected from seeds collected at Berekhya, the Southern Coastal Plain, Israel. The seeds collected were kindly provided by DR. MOSHE FELDMAN. The cultivar Adorra is an Austrian two-rowed domesticated barley. The topmost spikelets of the F_1 hybrid were frequently sterile because of rudimentary anthers in these florets. The emasculated F_1 spikes bore complete seed sets when backcrossed with cv. Adorra. The F_1 sterility was thus different from that caused by translocation heterozygosity. When backcrossed with cv. Adorra, the BC₁ produced a few partially male fertiles, but the major proportion was completely male sterile plants. Male sterility has been maintained by recurrent backcrosses with cv. Adorra, suggesting cytoplasmic transmission of sterility. This article describes the restoration genetics of this cytoplasm designated as msm2, compared with that of msm1 cytoplasm, which has been the material described in the previous articles of this series.

MATERIALS AND METHODS

A BC₁ descendant (79BS14-3/2*Adorra) with quite small, degenerated, sterile anthers, and thus evidently without partially restoring genes, was backcrossed with cv. Adorra. This single 79BS14-3/ 3*Adorra progeny was used for the program of determining the F₁ restoration ability of a number of sponaneum barleys. Seventy-one of these spontaneum barleys originate from Israel and are called accessions (see below). The plant material has been described in earlier papers (AHOKAS 1980, 1981). A single pollen donor plant was also tested from the collection of the weedy barleys in MOROCCO (MOLINA-CANO and CONDE 1980) obtained from DR. J. L. MOLINA-CANO (Spain).

The method of cultivation of the F_1 plants and testing of seed sets under bags in the 1981 season followed the practice used before with msm1 (AHOKAS 1980). The mean plant density was 76 plants per m^2 .

In pedigrees, the sign * is used to indicate the backcrosses as proposed by PURDY et al. (1968). The code 80-414-01 appearing in some pedigrees is the restorer derivative of the following cross: msm1/4*Adorra/3/msm1/3*Adorra//Sel. 77-1/4/4*Adorra, where Sel.77-1 is the Upper Galilean spontaneum selection carrying the msm1 cytoplasm and the restorer genes Rfm1a/Rfm1a (AHOKAS 1979a, 1980).

RESULTS

The backcrosses of 79BS14-3 with cv. Adorra as the recurrent pollen parent retained male sterility both in greenhouse and field environment. Ninety spikes or 1959 florets of 79BS14-3/3*Adorra and 79BS14-3/4*Adorra generations did not set any seed under bags. However, female fertility is evidently complete, since routine hand-pollinations with cv. Adorra for backcrosses resulted in a 95.9% seed set in 1078 florets of 50 spikes.

In spikes under bags, partial fertility in the F_1 hybrid 79BS14-3/Adorra was also found in the 1981 season (Table 1). The F_1 hybrid msm1/12*Adorra// 79BS14-3 had a significantly (P < 0.001) lower seed set than 79BS14-3/Adorra. These two cross combinations are isogenic, differing only in their cytoplasms. These crosses provide the first line of evidence for msm2 cytoplasm being different from msm1 cytoplasm. The same nuclear genotype in Adorra cytoplasm (Adorra/79BS14-3) had the normal seed set of 98.4%, which is highly significantly different (P < 0.001) from those above. When the restorer gene Rfm1a was introduced in the F_1 genotype with msm2 cytoplasm (79BS14-3/80-414-01), the seed set was normal (98.1%) and not significantly different from that of the genotype without Rfm1a gene but with Adorra cytoplasm (Adorra/ 79BS14-3), whose seed set was 98.4%. These four F_1 combinations in Table 1 were raised in side-by-side rows, and the seed sets are based on the 21 earliest emerging spikes.

Further evidence for the efficiency of the restorer gene Rfm1a in msm2 is presented in Table 2. Using near isogenic nuclear background with cv. Adorra, Rfm1a/+ heterozygotes in msm2 appeared to have normal fertility: 20 bagged spikes containing 459 florets had a 98.9% seed set. The F₁ segregation of the heterozygous pollen parent (Rfm1a/+) and the F₂ segregation fit 1:1 and 3:1 ratios, respectively (Table 2). These data suggest that the restoration results from a single dominant gene, and is evidently caused by Rfm1a. A further argument for the effective functioning of msm1 restoring genes can be found in Table 3. The accessions 79BS15-B and PI 296853 are carriers of the restorer

n bagged spikes of isogenic or near-isogenic F_1 combinations in either msml, msm2 or Adorra cytoplas
ytc
a c
orr
Adi
JL 1
2
sm
E
'n
ms
er
ith
n e
ıs i
ior
nat
ibi
шо
5
ic l
en
ŝοŝ
ir-i
lea
JL I
ic c
en
sog
of i
ss (
ike
l sp
ged
gg
n b
ig i
Selfing in be
Se

TABLE 1

sm

						See	Seed set in 21 bagged spikes	agged spi	kes
			Percentage of Percentage of	Percentage of		Florets	ets		
Declignee	Cvtoplasm	Genotype at <i>Rfm1</i> locus ^a		79BS14-3 nuclear genotype ^b	Period of bagging in days (date of median) [°]	With seed	Without seed	%	Signifi- cance ^d
	mem1	+/+	50.0	50.0	8 ([ulv 14)	145	300	32.6	
msm1/12*Adorra///9b514-3	1116111	+/+	50.0	50.0	12 (July 17)	397	46	89.6	
79BS14-3/Adorra	21116111	+/Bfm10	49.0	50.0	12 (July 23)	415	8	98.1	σ
79BS14-3/80-414-01 Adorra/79BS14-3	Adorra	+/+	50.0	50.0	10 (July 16)	435	7	98.4	а
" of the second state of the second state of the Adorra of that of 79BS14-3.	llala of cv Ador	ra or that of 79BS14	-3.						
Sign + retains to the received on some provident of the restorer genes.	Iominant restorer	gene and possibly	additional mine	or restorer gei	nes.				
Callfler of a receasive of scinical managements and an analysis	a wore hadned in	each nedioree.							
							,		

^c The 21 earliest emerging spikes were bagged in each pedigree. ^d The significance for the total 2 × 4 table is P < 0.001 ($\chi^2 = 813$). Crosses marked with the letter "a" are not significantly different, the differences of all the other pairs are significant at P < 0.001.

CYTOPLASMIC MALE STERILE BARLEY

TABLE	2
-------	---

Segregation of the Rfm1a restorer gene in msm2 cytoplasm with Adorra-like genetic background

			Segre	gation	
Pedigree	Restorer genes in the latter pollen parent	Genera- tion	Male fertile	Male sterile	Significance
79BS14-3/2*Adorra//80-414-01	Rfm1a/Rfm1a	\mathbf{F}_1	118	0	
79BS14-3/3*Adorra//80-414-01	Rfm1a/Rfm1a	\mathbf{F}_1	61	0	
79BS14-3/3*Adorra/3/msm1/ 11*Adorra//80-414-01	Rfm1a/+	\mathbf{F}_{1}	57	55	$\chi^2_{1:1} = 0.036; P > 0.80$
79BS14-3/2*Adorra//80-414-01	Rfm1a/Rfm1a	\mathbf{F}_2	173	53	$\chi^2_{3:1} = 0.289; P > 0.50$

genes Rfm,r and Rfm,m, respectively (AHOKAS 1980, 1981). Both the F₁ of these accessions in msm2 cytoplasm resulted in restored fertility (Table 3). The F₂ segregation of the cross 79BS14-3/Adorra was 130 male sterile or partially male fertile to 39 fertile. This fits a 3:1 ratio ($\chi^2 = 0.33$; P > 0.50), suggesting that 79BS14-3 is a carrier of a recessive or semidominant restorer gene. The F₂ seed was produced in bagged F₁ spikes.

Seventy-one accessions of spontaneum barleys have been tested for restoration both in msm1 and msm2 cytoplasms with an Adorra-like seed parent background produced by repeated backcrosses using cv. Adorra as the pollen parent. A single accession has been tested only in msm2. The results appear in Table 3 and in Figure 1. With the exception of the Moroccan weedy barley, each sample originated from one of the six geobotanical regions of Israel. The mean restoration percentage in msm2 and msm1 were 28.4% and 4.1%, respectively (Table 3). Although the msm1 material was tested in other seasons than the F_{1s} in msm2 cytoplasm, the result provides a second argument for the genetic difference between msm2 and msm1. An Algerian domesticated barley CI 3694 has been found to be one of the most potent partially restoring cultivars (AHOKAS 1979b). A single pollen donor plant of CI 3694 was crossed with each of the cytoplasms. The F_1 s were grown in side-by-side rows in the 1981 season. The F_1 selfings were 21.2% in the 259 florets or 15 bagged spikes of msm1/ 12*Adorra//CI 3694, and 57.5% in the 240 florets or 16 bagged spikes of msm2/ $3 \times \text{Adorra}//\text{CI}$ 3694 ($\chi^2 = 68$; P < 0.001). In addition to the results in Table 1, the crosses with CI 3694 also indicate that the observed difference with spontaneum material is not caused by any seasonal difference.

With the partial restorers, one can estimate the relative sensitivity of the two cytoplasms to the partially restoring genes appearing in the F₁s with an Adorralike seed parent background. The spontaneum crosses with 0.0% restoration in either or both of the cytoplasms, and the crosses with 79BS15-B and PI 296853 carrying the complete restorer genes were excluded. The partial restoration efficiency was 51.2 ± 11.7 ($\bar{\mathbf{x}} \pm \mathbf{s}_{\bar{\mathbf{x}}}$) times higher in msm2 than in msm1 cytoplasm.

When selecting the spontaneum sample for the test crosses in msm2, nothing was known about the mode of restoration in this cytoplasm. 79BS14-3 originates from the Southern Coastal Plain of Israel. It was for this reason that the accessions from this region were selected. The Central Coastal Plain included in the sample does not differ ecologically to any great extent from the Southern Coastal Plain. The sample from Central and Western Negev was found to be devoid of restoration ability in msm1 (AHOKAS 1981). The accessions from the

TABLE 3

Pollen p	arent	Tests in	msm2 cytor 1981 seaso	lasm in the n		Significance
Identification	Geobotanical region"	No. of bagged spikes	No. of bagged florets	Seed set under bags (%)	Seed set in msm1 cyto- plasm ⁶ (%)	between seed sets in msm1 and msm2 cy toplasms ^c (P)
79BS05-A	CWN	17	279	0.0	0.0	NS^d
79BS05-B	CWN	17	274	0.0	0.0	NS
79BS06-A	CWN	19	292	0.0	0.0	NS
79BS07-A	CWN	17	295	0.3	0.0	NS
79BS08-A	CWN	18	268	0.0	0.0	NS
79BS08-B	CWN	19	301	0.7	0.0	NS
79BS09-A	CWN	19	272	0.0	0.0	NS
79BS10-A	CWN	16	274	0.0	0.0	NS
79BS11-A	CWN	19	314	0.0	0.0	NS
79BS12-A	CWN	18	325	0.3	0.0	NS
79BS12-B	CWN	21	329	0.9	0.0	NS
79BS12-C	CWN	18	308	1.6	0.0	NS
79BS12-D	CWN	10	294	0.0	0.0	NS
79BS12-E	CWN	20	352	0.0	0.0	NS
79BS13-A	CWN	17	284	0.0	0.0	NS
79BS13-R 79BS13-B	CWN	18	283	0.0	0.0	NS
79BS13-C	CWN	10	304	0.3	0.0	NS
79BS15-A	SCP	21	332	0.3 11.7	0.0	<0.001
79BS15-A 79BS15-B	SCP	20	305	91.8	98.3	<0.001
	CCP					
79BS16-A	CCP	15	244	0.0	0.0	NS
79BS16-B		16 16	283	0.0		
79BS28-A	UJV		301	40.9	0.8	<0.001
79BS29-A	UJV	15	245	7.3	2.9	NS
79BS29-B	UJV	15	239	87.0	11.2	<0.001
79BS29-C	UJV	17	285	26.0	0.0	< 0.001
79BS30-A	G	17	297	46.1	1.1	< 0.001
79BS30-B	G	16	265	77.4	10.4	< 0.001
79BS30-C	G	16	222	76.1	14.3	< 0.001
79BS31-A	G	17	256	0.0	0.0	NS
79BS31-B	G	16	286	5.9	0.0	< 0.01
79BS32-A	G	16	234	1.3	0.0	NS
79BS34-A	G	16	270	0.0	0.0	NS
M79-1159-A	BSV	16	307	16.0	0.0	< 0.001
M79-1159-C	BSV	32	631	3.2		< 0.02
M79-1159-D	BSV	16	330	51.2	0.8	< 0.001
R79-1161	CWN	17	237	1.7	0.0	NS
R79-1162	CWN	18	288	0.0	0.0	NS
R79-1163	CWN	18	246	0.4	0.0	NS
PI 296796	JF	18	287	30.3	0.0	<0.001
PI 296800	UJV	16	240	44.6	0.0	< 0.001
PI 296801	SCP	15	210	0.0	0.0	NS
PI 296821	UJV	21	318	27.7	0.2	<0.001
PI 296829	UJV	17	260	61.5	0.8	< 0.001
PI 296830	UJV	17	237	56.5	0.6	< 0.001
PI 296831	SCP	18	265	87.9	23.6	< 0.001
PI 296853	CCP	20	302	97.4	94.9	NS
PI 296854	CCP	16	254	0.0	0.0	NS
PI 296874	CCP	17	322	14.9	1.0	< 0.001
PI 296904	UJV	18	299	96.0	24.0	< 0.001

Seed sets in bagged spikes of F_1 hybrids in msm2 cytoplasm with an Adorra-like seed parent background and various spontaneum barleys as the pollen parent

TABLE 3—Continued

Pollen p	arent	Tests in	msm2 cytop 1981 seaso			Significance between seed
Identification	Geobotanical region ^a	No. of bagged spikes	No. of bagged florets	Seed set under bags (%)	Seed set in msm1 cyto- plasm ^b (%)	sets in msm1 and msm2 cy- toplasms ^c (P)
PI 296932	CCP	15	227	9.3	0.0	<0.001
PI 349803	CCP	16	252	0.0	0.0	NS
PI 391096	BSV	18	264	35.6	4.1	< 0.001
PI 391097	BSV	17	274	47.4	0.8	< 0.001
PI 391098	CCP	15	250	60.4	0.0	< 0.001
PI 391099	CCP	17	262	55.0	0.0	< 0.001
PI 391100	ССР	19	301	57.1	0.0	< 0.001
PI 391101	CCP	17	242	41.7	0.0	< 0.001
PI 391102	CCP	22	304	53.3	0.0	< 0.001
PI 391103	CCP	18	304	56.3	0.0	< 0.001
PI 391104	CCP	18	264	28.0	0.0	< 0.001
PI 391105	CCP	17	236	78.4	0.0	< 0.001
PI 391107	SCP	23	312	31.1	1.6	< 0.001
PI 391108	SCP	14	236	54.2	0.5	< 0.001
PI 391109	SCP	19	313	63.6	0.0	< 0.001
PI 391110	SCP	16	248	74.6	0.4	< 0.001
PI 391111	SCP	17	272	75.0	0.0	< 0.001
PI 391112	SCP	16	254	39.4	0.5	< 0.001
PI 391113	SCP	16	259	52.1	0.0	< 0.001
PI 391114	SCP	17	290	39.0	0.0	< 0.001
PI 391134	CWN	18	280	0.4	0.0	NS
PI 391137	CWN	16	240	0.0	0.0	NS
Moroccan		15	233	0.0	0.0^{e}	NS

The average number of F₁ plants per cross was 18, ranging from 10 to 41. The corresponding seed set percentages in msm1 cytoplasm are presented for comparison.

"Keys for the abbreviations: BSV = Bet Shean Valley; CCP = Central Coastal Plain; CWN = Central and Western Negev; G = Golan; JF, Judean Foothills; SCP = Southern Coastal Plain; UJV = Upper Jordan Valley.

^b Accurate seed sets presented in AHOKAS 1979b, 1980, 1981 Appendix.

^c Significance between the pooled seed sets of the two cytoplasms: $\chi^2 = 3531$; P < 0.001.

^d Not significant.

^e Four additional pollen parents resulted in 0.0% F₁ seed sets in msm1-Adorra.

Bet Shean Valley, the Upper Jordan Valley, and Golan are interesting, because they are geographically distinct from the Southern Coastal Plain populations in the spontaneum material previously tested in msm1 cytoplasm. The distribution of restoration in the Southern Coastal Plain sample taken as a standard, differs significantly (P < 0.025) from the pooled remainder of the sample (Table 4). However, of the regional samples only that from the Negev differ significantly (P < 0.001) from that of the Southern Coastal Plain (Table 4).

The sample from the Southern Coastal Plain, that from the Central Coastal Plain, and that from the Bet Shean Valley and the Upper Jordan Valley had significantly different (P < 0.005) restoration distributions in msm2 and msm1 cytoplasms, whereas the Negev and the small Golan sample did not differ significantly (Table 4). The pooled seed sets of the cytoplasms differ very significantly (P < 0.001, Table 3 footnote c). The single accession PI 296796 from the Judean Foothills region was selected for the test because of the large anthers in the PI 296796 plants (AHOKAS 1980), which may be used to recombine wind pollinators in barley. Although a maintainer of sterility in msm1, PI 296796 was

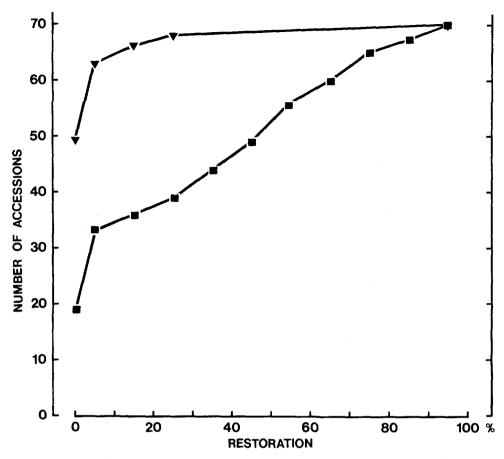


FIGURE 1.—Cumulative sum frequency distribution of msm1 and msm2 restorers among the 70 spontaneum accessions tested in each cytoplasm. $\nabla = msm1$; $\blacksquare = msm2$.

found to be a distinct partial restorer in msm2 (Table 3). In partially restored msm2 spikes, the fertile florets appear in the basal parts of the heads, which is also the behavior of partially restored msm1 spikes (Анокая 1979b).

DISCUSSION

The present results confirm that the cytoplasm of 79BS14-3 induces male sterility with a suitable nuclear gene background, e.g., that of cv. Adorra and many spontaneum barleys, especially those originating from the desert of Negev. The dominant msm1 restorer gene Rfm1a is also capable of restoring male fertility in msm2 cytoplasm. The higher and highly significant different F_1 fertility restoration abilities of CI 3694 and many spontaneum barleys in msm2 than in msm1 and the results presented in Table 1 (items 1 and 2) are, however, strong evidence that these cytoplasms, msm1 and msm2, are different from each other. Electrophoretic separation of the plastidial and mitochondrial DNA fragments after digestion with restriction endonucleases may be helpful in distinguishing these cytoplasms from each other.

Only some cultivars of domesticated barley have been tested in msm2 so far.

	, second s	accessions main taining F ₁ sterilit	accessions main- taining F ₁ sterility	Mean percentage of restoration $\tilde{x} \pm s_{\tilde{x}}$	e of restoration s _x	Significance between each re- gional msm2 restoration distri-	
Geobotanical region ^a	NO. OI accessions studied	In msm2	In msm2 In msm1	in msm2	In msm1	bution and that of Southern Coastal Plain ^{b,c}	ern tion distributions in <i>msm</i> 2 and <i>msm</i> 1 cytoplasms ^{6,d}
SCP	12	8	50	51.7 ± 8.0	10.4 ± 7.9		D = 0.750; P < 0.005
BSV + UJV	14	0	29	42.9 ± 7.0	3.3 ± 1.7	D = 0.226; NS	D = 0.786; P < 0.001
CCP	$14 \text{ or } 15^{e}$	27	86	36.8 ± 8.0	6.9 ± 6.5		D = 0.662; $P < 0.005$
CWN	22	59	100	0.3 ± 0.1	0.0 ± 0.0	D = 0.917; $P < 0.001$	
U	7	29	57	29.5 ± 12.6	3.7 ± 2.1	D = 0.488; NS	

Comparisons of regional distributions of F_1 restoration ability of spontaneum accessions in msm2 and msm1 cytoplasms

TABLE 4

[•] For the appreviations, see roothote a of Table 3. [•] Significance determined according to the Kolmogorov-Smirnov two-sample test. The samples were classified into 13 classes of restoration: 0.0, 0.1–1.0, 1.1-5.0, 5.1–10.0, 10.1–20.0, 20.1–30.0, 30.1–40.0, 40.1–50.0, 50.1–60.0, 60.1–70.0, 70.1–60.0, 80.1–90.0, 90.1–100%. ^c Significance between the SCP sample distribution and that of the pooled sample of the other regions: D = 0.489; P < 0.025, "Significance between the restoration distributions of pooled samples in the two cytoplasms: D = 0.464, P < 0.001.

* The msm1 and msm2 samples contain 14 and 15 accessions, respectively.

These cultivars have proved to be maintainers of sterility or displayed low partial restoration. The domesticated barley cultivars are also usually maintainers of sterility in msm1 (AHOKAS 1979a, 1979b). Thus, with respect to the restoration ability in these cytoplasms, the spontaneum barleys from Central and Western Negev resemble the domesticated barley more than the spontaneum barleys from several other less xeric geobotanical regions of Israel. At present, it cannot be explained why the desert spontaneum and the domesticated barley resemble each other in the rarity of restoration ability.

The spontaneum accessions tested suggest that these wild barley populations, with the exception of the desert sample, contain much genetic variation in terms of capacity to restore fertility in msm2. The nuclear gene variation revealed by msm2 cytoplasm is actually more pronounced than that by msm1 cytoplasm (Figure 1). The Israeli populations of spontaneum barleys have been found to be highly variable or polymorphic in several respects: in flavonoids (FRÖST and HOLM 1975), in their resistance to pathogenic fungi (FISCHBECK et al. 1976; MOSEMAN and CRADDOCK 1976; WAHL et al. 1978), in morphology (KAMM 1977; NEVO et al. 1979), in electromorphs or protein patterns by gel electrophoresis (DOLL and BROWN 1979; NEVO et al. 1979; KAHLER and ALLARD 1981), in kernel protein and lysine contents (AHOKAS 1982), and in restoration of fertility in msm1 cytoplasm (AHOKAS 1979b, 1980, 1981). The patterns of electromorph variation (NEVO et al. 1979) and the existence of resistance to pathogenic fungi (ANIKSTER, MOSEMAN and WAHL 1976; WAHL et al. 1978) were explained by natural selection.

Because the Israeli spontaneum barleys are principally self-pollinators (BROWN, ZOHARY and NEVO 1978), the restorer gene(s) may have persisted in a given cytoplasm over long periods, especially in environments favoring self-pollination. The possibility exists that evolution has led to a relatively mild cytoplasmic mutant like msm2 under a recessive or semidominant restorer gene or genes, and to a more stringent cytoplasmic mutant like msm1 under dominant restorers like Rfm1a/Rfm1a. Restoring genes appear in a pre-adaptive manner in respect to cytoplasmic male sterility in these spontaneum barley populations. All the 19 restorer accessions for msm1 carry a dominant restorer in a fertile cytoplasm (AHOKAS 1980, 1981, unpublished). Many of the partially restoring genotypes (Table 3) could be expected to cause a complete restoration when in double doses in msm2 cytoplasm. Of the 49 partial restorer accessions with more than 0.1% F_1 seed set (Table 3), 39 cytoplasms have been studied by crossing at least twice with cv. Adorra as the recurrent pollen parent. These 39 accessions have a fertile cytoplasm in comparison with msm2 and msm1.

The discovery of these cytoplasmic variants make it probable that other types of cytoplasmic variations also exist in these populations. Chloroplast DNA variation has been found in *Nicotiana debneyi* populations in Australia (Scow-CROFT 1979) and mitochondrial DNA variation in indigenous maize races of Latin America (WEISSINGER et al. 1982).

The application of msm1 cytoplasm in producing hybrid barley is under investigation. If there are difficulties in complete restoration with the Rfm1agene in some environments or parental combinations, the present msm2 cytoplasm may overcome such problems since it is evidently more sensitive to restorer genes. On the other hand, with msm2 the maintenance of complete male sterility may fail with some pollen parents. Such pollen parents might be used as the R lines when recombined with a restorer gene.

The restoration of fertility by a suitable chemical treatment of the vegetative plants is more likely to be successful with msm2 than with msm1 because of the milder nature of msm2. Chemical restoration of fertility might facilitate the maintenance and multiplying of the male sterile stocks. It should be noted, however, that no chemical is presently known that will restore fertility in cytoplasmically male sterile plants. There is some hope to find such chemical restorers for msm2 or msm1 because an increase in a particular cytokinin fraction has recently been shown in the Rfm1a restorer gene carriers (AHOKAS unpublished).

I am very much obliged to MOSHE FELDMAN (The Weizmann Institute of Science, Rehovot, Israel) for the seeds of the 79BS collections.

I thank WILLIAM F. SHERIDAN and two anonymous referees for their valuable comments on the manuscript. The work was partly carried out under the auspices of the Research Council for Agriculture and Forestry (the Academy of Finland).

LITERATURE CITED

AHOKAS, H., 1979a Cytoplasmic male sterility in barley. Acta Agric. Scand. 29: 219-224.

- AHOKAS, H., 1979b Cytoplasmic male sterility in barley. III. Maintenance of sterility and restoration of fertility in the msm1 cytoplasm. Euphytica 28: 409-419.
- Анокаs, H., 1980 Cytoplasmic male sterility in barley. Part 7. Nuclear genes for restoration. Theor. Appl. Genet. 57: 193-202.
- AHOKAS, H., 1981 Cytoplasmic male sterility in barley. X. Distribution of msm1 fertility restoration ability in the wild progenitor of barley in Israel. Ann. Bot. Fenn. 18: 313-320.
- AHOKAS, H., 1982 Variation of kernel protein and lysine in the wild progenitor of barley. Hereditas **96:** 29–37.
- ANIKSTER, Y., J. G. MOSEMAN and I. WAHL, 1976 Parasite specialization of Puccinia hordei Otth. and sources of resistance in Hordeum spontaneum C. Koch, pp. 468-469. In: Proceedings of the 3rd International Barley Genetics Symposium, Barley Genetics III. Edited by H. GAUL. Karl Thiemig, Munich.
- BROWN, A. H. D., D. ZOHARY and E. NEVO, 1978 Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel. Heredity **41**: **49**–62.
- DOLL, H. AND A. H. D. BROWN, 1979 Hordein variation in wild (Hordeum spontaneum) and cultivated (H. vulgare) barley. Can. J. Genet. Cytol. 21: 391-404.
- FISCHBECK, G., E. SCHWARZBACH, Z. SOBEL and I. WAHL, 1976 Types of protection against barley powdery mildew in Germany and Israel selected from Hordeum spontaneum. pp. 412-417. In: Proceedings of the 3rd International Barley Genetics Symposium, Barley Genetics III. Edited by H. GAUL. Karl Thiemig, Munich.
- FRÖST, S. and G. HOLM, 1975 Variation of flavonoid patterns in Hordeum spontaneum and H. agriocrithon. Hereditas 80: 167-172.
- KAHLER, A. L. and R. W. ALLARD, 1981 Worldwide patterns of genetic variation among four esterase loci in barley (Hordeum vulgare L.). Theor. Appl. Genet. 59: 101-111.
- Камм, A., 1977 The range of brittle types of Cerealia barleys in Israel. Pamphlet No. 165. Agriculture Research Organization, Bet Dagan.
- MOLINA-CANO, J. L. and J. CONDE, 1980 Hordeum spontaneum C. Koch em. Bacht., collected in Southern Morocco. Barley Genet. Newsl. 10: 44-47.
- MOSEMAN, J. G. and J. C. CRADDOCK, 1976 Genetic basis for barley germ-plasm conservation. pp. 51-57. In: Proceedings of the 3rd International Barley Genetics Symposium, Barley Genetics III. Edited by H. GAUL. Karl Thiemig, Munich.

- NEVO, E., D. ZOHARY, A. H. D. BROWN and M. HABER, 1979 Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33: 815-833.
- PURDY, L. H., W. Q. LOEGERING, C. F. KONZAK, C. J. PETERSON and R. E. ALLAN, 1968 A proposed standard method for illustrating pedigrees of small grain varieties. Crop Sci. 8: 405-406.
- SCOWCROFT, W. R., 1979 Nucleotide polymorphism in chloroplast DNA of Nicotiana debneyi. Theor. Appl. Genet. 55: 133-137.
- WAHL, I., N. ESHED, A. SEGAL and Z. SOBEL, 1978 Significance of wild relatives of small grain and other wild grasses in cereal powdery mildews. pp. 83-100. In: The Powdery Mildews. Edited by D. M. SPENCER. Academic Press, London, New York, San Francisco.
- WEISSINGER, A. K., D. H. TIMOTHY, C. S. LEVINGS III, W. W. L. HU and M. M. GOODMAN, 1982 Unique plasmid-like mitochondrial DNAs from indigenous maize races of Latin America. Proc. Natl. Acad. Sci. USA 79: 1–5.

Corresponding editor: W. F. SHERIDAN