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ABSTRACT 

A one-locus two-allele model of trioecy (presence of hermaphrodites, males 
and females in one population) is considered, in order to study the conditions 
for the persistence of this system. All possible assignments of the three sex 
types to the three genotypes are considered. This leads to three different modes 
of inheritance of trioecy, namely (a) females heterozygous, (b) males heterozy- 
gous and (c) hermaphrodites heterozygous, where in each mode each of the 
remaining two sex types is homozygous for one of the alleles. For mode (c) 
trioecy is always persistent, and the dependence of the sex ratio (for the three 
sex types) on the ovule and pollen fertilities and on the hermaphrodite selfing 
rate is specified. For the other two modes, (a) and (b), trioecy is not protected, 
i.e., it may not persist for any fertilities, viabilities or selfing rates. Thus, in this 
situation it is important to study the conditions under which the "marginal" 
systems of sexuality of trioecy, i.e., hermaphroditism, dioecy and gynodioecy in 
mode (a), and hermaphroditism, dioecy and androdioecy in mode (b), may 
become established. The results show that each marginal system may evolve 
from each other via trioecy. The evolution of dioecy is easier in mode (a) than 
in (b), so that female heterogamety would be expected to occur more often than 
male heterogamety in the present model. Under some conditions the breeding 
system obtained in equilibrium populations may depend on the initial genotype 
frequencies.-The necessity of considering modes of inheritance for sexual 
polymorphisms is demonstrated by comparing our results with those obtained 
from an evolutionary stable strategy (ESS) analysis of a purely phenotypic 
model. 

HE seed plants may be regarded as fundamentally bisexual, in that individ- T uals are often able to function both as male and as female. However, 
populations containing unisexual individuals are often found, and such unisex- 
ual individuals may comprise the whole population (e.g., BAWA and OPLER 
1975), or they may occur together with bisexual individuals. Unisexual individ- 
uals may show rudimentary structures of the opposite sex or may be imperfectly 
differentiated and produce small or even considerable quantities of gametes of 
the opposite sex. Such unisexual individuals often show clear taxonomic rela- 
tionships to bisexual individuals from allied populations, species or genera 
(WESTERGAARD 1958; LLOYD 1975). In spite of this fundamental bisexuality, the 
seed plants present a rich array of breeding systems involving unisexuality. In 

Genetics 103 529-544 March, 1983 



530 H.-R. GREGORIUS, M. D. ROSS, AND E. M. GILLET 

addition to dioecy, with separate male and female individuals, and subdioecy in 
which some unisexual individuals are imperfectly differentiated, there is gyn- 
odioecy (separate females and bisexuals), androdioecy (males and bisexuals), 
and trioecy (males, females and bisexuals). These breeding systems have ap- 
parently repeatedly evolved from bisexuality (BAWA 1980; ROSS 1982), and such 
evolution is the main theme of this paper. 

Previous theoretical papers have been concerned with gynodioecy, which is 
fairly common, and androdioecy, which is quite rare (e.g., ROSS and SHAW 1971; 
LLOYD 1974, 1975; ROSS and WEIR 1975; ROSS 1978; CHARLESWORTH and CHAR- 
LESWORTH 1978; GREGORIUS, Ross and GILLET 1982, 1983), but there appears to 
be no previous theoretical study of trioecy. This breeding system also is 
apparently rare but has been studied in the ash, Fraxinus excelsior (DARWIN 
1877; ROHMEDER 1952), and may also occur in a species of blueberry, Vaccinium 
angustifolium (AALDERS and HALL 1963; HALL, AALDERS and WOOD 1966). Other 
possible examples, such as Fuchsia procumbens (GODLEY 1955, 1963), may be 
also interpreted as subdioecy. 

Although it is well known that sexual reproduction in plants may involve 
various breeding (more specifically, sexual) systems, most models in population 
genetics are based on monoecious or dioecious populations. For both of these 
systems of sexuality the effect of selection is confined to change in gene and 
genotype frequencies among individuals of one sexual type, together with the 
regulation of the sex ratio in dioecious populations. In such models the problem 
of the maintenance of the sexual types themselves does not arise, since mon- 
oecious populations consist only of a single sexual type, and dioecious popula- 
tions cannot persist with only a single sexual type (male or female). However, 
the ratio between the pollen and ovule fertility may vary considerably among 
individual plants (e.g., HOROVITZ and HARDING 1972), up to the extreme situation 
in which some plants produce only female gametes and others only male 
gametes. Hence, at least temporarily, a population might consist of a mixture of 
bisexual (monoecious, hermaphrodite, andromonoecious, gynomonoecious, etc.) 
plants and unisexual (male, female) plants. In principle, this situation may give 
rise to five different systems of sexuality at the population level: dioecy, pure 
bisexuality (monoecy or hermaphroditism), gynodioecy, androdioecy and 
trioecy. The last three of these systems differ basically from the first two in 
that they allow for directional selection against one or more sexual types. In 
initially gynodioecious populations the females might be lost, and males might 
be lost in initially androdioecious populations. Consequently, selection with 
respect to sexual types can change these two systems of sexuality into a 
hermaphrodite (monoecious) one. Similarly, selection in trioecious populations 
may result in bisexuality, dioecy, gynodioecy, or androdioecy. This emphasizes 
the significance of trioecy for the evolution of all the other systems of sexuality, 
in particular dioecy. 

The aims of this paper are: (1) to find conditions that allow the maintenance 
of trioecy; (2) to find conditions in which trioecious populations lose their 
bisexuals, with resultant dioecy; their females, with resultant androdioecy; their 
males, with resultant gynodioecy; or both males and females, with resultant 
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bisexuality; (3) to consider the effects of the mode of inheritance of the sex 
polymorphism on these questions; and (4) to understand why trioecy is appar- 
ently rare in nature. Does trioecy function only as a transient state leading from 
one system of sexuality, e.g., hermaphroditism, to another system such as 
dioecy? These questions are treated with the help of three one-locus two-allele 
models of trioecy, by investigating the stability properties of the four marginal 
(i.e., one or two morph) systems of sexuality (bisexuality, dioecy, androdioecy 
and gynodioecy). 

The experimental evidence suggests that both males and females differ from 
hermaphrodites at several gene loci in V. angustifolium (AALDERS and HALL 
1963; HALL,  AALDERS and WOOD 1966). In experimental trioecious populations 
of the combined monoecious (from northern Spain) and dioecious (from south- 
ern Spain) races of Ecballium elaterium, however, genetic control was through 
one gene with three alleles ( G A L A N  1950; WESTERGAARD 1958). Consequently, 
the present models, although entirely feasible, are simpler than those found in 
nature. This raises the questions of why this should be so, and why should we 
study models of systems apparently not found in nature? The first question we 
are able to answer partially, since we found that trioecy could not be maintained 
in two of our three models. The second question also is partially answered by 
these results, since it is necessary to study both what is and what is not present 
in nature, in order to understand why one system is more successful than the 
other. 

DESCRIPTION OF THE MODEL 

The basic features of the model applied in this series are the following: 
population size is effectively infinite and reproduction occurs in separated 
generations: selfing among bisexuals is specified by the proportion of their 
ovules that are self-fertilized, and all of the nonself-fertilized ovules are assumed 
to be fertilized at random by pollen originating from the population pool of free 
pollen (i.e., the totality of pollen grains not used in selfing). 

The assumption of a one-locus two-allele control of trioecy implies that each 
of the three sexual types is represented by exactly one genotype. Theoretically, 
there are three different modes of assignment of sexual types to genotypes, 
namely 

(a) bisexuals are homozygous for the one allele, males are homozygous for 
the other allele and females are heterozygous, 

(b) bisexuals are homozygous for the one allele, females are homozygous for 
the other allele and males are heterozygous, 

(c) males are homozygous for the one allele, females are homozygous for the 
other allele and bisexuals are heterozygous. 

In preceding papers we addressed the problem of finding plausible models of 
gene action for different models of genetic control of systems of sexuality. The 
inherent principle is that all alleles could be considered to possess a bisexual 
potential, where the expression of the male, female or both potentials depends 
on particular incompatibility relationships realized at the diploid stage. This 
principle may ad. lib. also be applied to our three models. 
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Model (c) plays an exceptional role since, by definition, it guarantees persist- 
ence of trioecy for arbitrary pollen and ovule fertilities, as well as selfing rates 
and viabilities. This is easily recognized to be due to the fact that the bisexuals 
are heterozygous. Hence, trioecy in model (c) constitutes a structurally stable 
trimorphic system of sexuality. 

If the bisexuals are homozygous, as in (a) and (b), the picture changes 
drastically, Model (a) comprises as marginal situations populations that consist 
only of bisexuals or of males and females. Under some conditions, a population 
may also be made up of bisexuals and females only. Thus, the marginal systems 
of sexuality implied by model (a) are bisexuality, dioecy and possibly gyno- 
dioecy. For model (b) the situation is similar, except that gynodioecy has to be 
replaced by androdioecy; with respect to dioecy (a) and (b) differ in that the 
former specifies the females and the latter specifies the males as the heteroga- 
metic sex. Therefore, in contrast to (c) these two models allow not only the 
study of conditions for the maintenance of trioecy, but also of whether and 
how one system of sexuality evolves from another within a single population. 
As is easily seen, this phenomenon is closely related to the conditions for 
stability of the marginal systems of sexuality in models (a) and (b). These 
questions may in turn be treated from the viewpoint of protectedness or 
nonprotectedness of certain alleles and genotypes. An allele is called protected 
if it cannot be lost from any state of the population where all possible genotypes 
are present with positive frequencies; moreover, it is required that the allele 
cannot stay for an indefinite number of generations at arbitrarily low frequen- 
cies. If all alleles are protected in this sense, then the allelic polymorphism is 
called protected (GREGORIUS 1982). For example, if the bisexual genotype is 
protected, then it cannot be lost in a trioecious population and, consequently, 
dioecy may not evolve from bisexuality. If, on the other hand, the hermaphro- 
dites are not protected, a trioecious population could evolve toward dioecy. 

To reduce the number of symbols in the following sections to a minimum, in 
all three models we use the convention that the average numbers of ovules and 
free pollen grains produced by the bisexuals are normalized to unity, and note 
that these fertilities include the effect of viability selection (GREGORIUS and 
Ross 1981). Based on this convention, + and p denote the fertilities of the 
females and males, respectively, and U denotes the average rate of self-fertili- 
zation of the bisexuals. Mating proceeds as follows. Let Ph, Pf  and P ,  be the 
proportions of hermaphrodites, females and males in the population. A propor- 
tion 

U P h / ( P h  + + x P j )  

[(I - 0 ) P h  + + x Pf]/(Ph + @ P f )  

of the available ovules are self-fertilized. The remaining proportion of ovules 

is fertilized at random by the free pollen, of which proportion Ph is produced by 
the hermaphrodites and p P ,  by the males. 

All mathematical derivations concerning the analysis of protectedness or 
stability are deferred to an appendix. 
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RESULTS OF THE ANALYSIS 

Probably the most remarkable result emanating from the APPENDIX is that for 
the models (a) and (b), in which hermaphrodites are homozygous, trioecy is not 
protected. This means that trioecy cannot become established from one of its 
marginal systems of sexuality (bisexuality, dioecy and gynodioecy or andro- 
dioecy) if the missing sexual types are introduced at low frequencies. Alterna- 
tively, this result means that there exist frequency regions for the three sexual 
types such that the population loses at least one of its sexual types when 
starting within these regions. This finding follows from the observation that it 
is impossible in these models to realize a situation in which all marginal systems 
of sexuality are simultaneously repulsive, i.e., where each sexual type starting 
at low frequency subsequently increases. Therefore, it remains only to study 
the conditions under which some sexual types may persist and others may not. 
This will be done for each model separately. 

Model (a): Here, the females are heterozygous, and they are protected if and 
only if 9 > 2, i.e., if and only if females produce on the average more than twice 
as many ovules as hermaphrodites. This is identical with the condition for the 
maintenance of females among bisexuals only, i.e., in the marginal gynodioe- 
cious system of sexuality containing no male plants (LEWIS 1941; and many later 
authors). If the males are introduced into this system, the question arises as to 
how fertile they should be to become established. Establishment and thus 
protectedness of the males is guaranteed for 0 > 2 if 

P'- (>O) .  
9 - 2  

Otherwise, if 

then trioecy returns to gynodioecy if males are present at low frequency, i.e., 
gynodioecy is locally stable. If 9 5 2, then females are not protected and, 
consequently, trioecy tends to pure bisexuality if males and females are rare, 
i.e., monoecy is locally stable. 

It is very difficult for the males to become established if C$ exceeds 2 only 
slightly. If, for example, 9 = 2.1, then the males must on the average produce 
more than 21 times as much pollen as the bisexuals. On the other hand, to arrive 
at moderate values for p the required magnitudes for 9 are not quite as extreme; 
nevertheless, protection of the males for p = 1.5 requires that 9 should exceed 
6. Figure 1 illustrates the region of (p, C$) values for which males are protected. 

In an analogous manner protectedness and nonprotectedness of hermaphro- 
dites can be treated from the viewpoint of instability (repulsivity) and local 
stability of dioecy. Dioecy is locally stable, i.e., trioecy returns to dioecy after 
the introduction of some bisexuals if 

1 
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FIGURE 1.-The hatched region gives the male ( p )  and female (4) fertilities for which males are 
protected in model (a). 

and otherwise, if 
1 
2 

IJ > - @(l - U p ) ,  (2b) 

then the bisexuals are protected, and thus trioecy moves away from its dioecious 
marginal system of sexuality. Consequently, provided p > 1, dioecy is locally 
stable if the selfing rate of the bisexuals is not too large. In particular, the 
conditions (Ib) and (2a) may be realized simultaneously, such that gynodioecy 
as well as dioecy are locally stable. Similarly, if 4 5 2 and (Za) holds, bisexuality 
and dioecy are both locally stable. Hence, if one of these two situations occurs 
in a trioecious population, it depends on the initial frequencies of the three 
sexual types whether the population tends to the one or the other marginal 
system of sexuality. 

Among the remaining cases one is of particular interest, since it refers to a 
fundamental aspect of evolution in higher plants, namely, what are the condi- 
tions for the evolution of dioecy from hermaphroditism or monoecy? Clearly, 
such evolution requires that males and females be protected. According to the 
afore-mentioned considerations this is guaranteed if @ > 2 and (la) is met. 
Combining both inequalities into one yields after a little rearrangement, 4 @(p 
- 1) > p. Hence, since p 2 U X p, (la) implies (Za), i.e., local stability of dioecy. 
Therefore, Figure 1 also specifies the range of male and female fertilities for 
which dioecy evolves from hermaphroditism or monoecy via trioecy. Strictly 
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speaking, we have only proven that p < + +(,U - 1) implies protectedness of 
males and females as well as convergence to dioecy if bisexuals are rare. 
However, in numerous computer runs we confirmed the conjecture that there 
exists no intermediate frequency barrier for bisexuals that prevents convergence 
to dioecy. Moreover, it is worth mentioning that the selfing rate of the bisexuals 
has no decisive influence on the evolution of dioecy in the present model. 

Model (b): Compared with the previous model, the role of males and females 
is now interchanged. The heterozygous males are protected if and only if 

a < 1 - 2 / p  

which requires that p > 2.  Analogously to model (a), this is also the condition 
for the maintenance of males among bisexuals only, which is known from 
earlier studies of androdioecy (LLOYD 1975; ROSS and WEIR 1976; CHARLESWORTH 
and CHARLESWORTH 1978). The following considerations proceed along the same 
lines used in the treatment of model (a). 

Females are protected if males are, i.e., a < 1 - 2 / p ,  which is equivalent to 
p(1 - a) > 2 and, in addition, if 

p ( l  - U 2 L ( > 0 ) .  
+ > p(1-  a) - 2 

On the other hand, if 

A1 - 07 
p(1 -  a) - 2 ’ 

p ( l - a ) > Z  and + <  

then androdioecy is locally stable. If p(1 - a) 5 2 ,  then bisexuality is locally 
stable. Since p(1- az)/[p(l - a) - 21 is an increasing function of a, protectedness 
of males and females becomes more difficult the larger the selfing rates of the 
bisexuals. This is illustrated in Figure 2 where the (+, p )  regions of protectedness 
for males and females are given for several rates of self-fertilization. 

Only if the bisexuals do not self-fertilize are the conditions of protectedness 
for males and females the same as in model (a) with, of course, + and p 
interchanged. 

Dioecy is locally stable if 

a < + - l ,  * (4a) 

0 > + - 1 ,  (4b) 

and if 

which requires + < 2 ,  then the bisexuals are protected. Consequently, it is also 
possible for the present model that a trioecious population tends to two different 
marginal systems of sexuality (dioecy and androdioecy, or dioecy and bisex- 
uality), when starting with different initial frequencies for its three sexual types 
(see also Figure 2(a) of ZIEHE and GRECORIUS 1982). 

On the other hand, if males and females are protected according to (3a), then 
a simple rearrangement of this inequality yields + - 1 > a + [2+/p(1- a)], which 
shows that (3a) implies (4a). Hence, (3a) and its graphical illustration in Figure 



536 H.-R. GREGORIUS, M. D. ROSS, AND E. M. GILLET 

20 

15 

10 

5 

C 
I 
t 

I .  I 
I ’  I 

1 2 3  5 10 14 Lc 

FIGURE 2.-For each given selfing rate (U) the region to the right of and above the pertaining 
curve specifies the female (+) and male (p) fertilities for which females and males are protected in 
model (b). 

2 specifies also the range of male and female fertilities and selfing rates for 
which dioecy may evolve from bisexuality via trioecy. The statements concern- 
ing convergence to dioecy in the previous model apply analogously to the 
present one. 

When both models of inheritance of trioecy [refer to Figures 1 and 2 or 
inequalities (la) and (sa)] are compared it becomes evident that the conditions 
for the evolution of dioecy are less stringent if the females are heterozygous (or 
equivalently the males are homozygous) provided males and females are viewed 
relative to the pollen and ovule fertilities, respectively, of the bisexuals. This is 
due to the fact that the selfing rates enter into the conditions of protectedness 
of males and females if the males are heterozygous. 

Model (c): Since this mode of inheritance assumes that the bisexuals are 
heterozygous, trioecy persists at any event. However, the fertilities and the 
selfing rate determine the sex ratios that are eventually realized among the 
zygotes. It is proven in the APPENDIX that hermaphrodites exceed a frequency 
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of 0.5 immediately after the first generation, and consequently, they are always 
more frequent than the males and females together. The frequency proportion 
between the two unisexual types changes gradually over the generations and, 
ultimately, settles down at the following ordering relationships: 

males are more frequent than females if p(1 - a) > $; 
females are more frequent than males if p(1 - a) < $; 
males and females are equally frequent if p(1 - a) = +. 
As we see, the sex ratio of the unisexuals does not only depend on their 

fertilities, but it is also affected by the selfing rate of the bisexuals. More 
specifically, selfing favors the females since under the present normalization 
males must be (1 - a)-' times as fertile as females to guarantee a 1:l sex ratio. 

DISCUSSION 

In the preceding two papers about gynodioecy and androdioecy (GREGORIUS,  
ROSS and GILLET 1982,1983) we emphasized the necessity of considering several 
possible modes of inheritance of sexual polymorphisms when trying to explain 
their evolution and maintenance. We showed that different reasonable models 
of genetic control for these sexual dimorphisms lead to markedly different 
conditions for the maintenance of unisexual types. Such differences are, there- 
fore, unlikely to be discovered with the help of solely phenotypic models. At 
the extreme it is even possible to construct genetical models that alone imply 
stability of andro- and gynodioecy irrespective of the selective forces or selfing 
rates involved. This situation is trivially realized for any biallelic model in 
which all hermaphrodites are heterozygous, and, as we have seen with respect 
to the present model (c), the same principle applies to trioecy. Such a situation 
is hard to realize for any phenotypic model. Since dioecy also is essentially 
subject to a biallelic control mechanism we have to accept at least theoretically 
that other systems of sexuality such as gynodioecy, androdioecy and trioecy 
may have a similar status with respect to their evolutionary stability as dioecy. 
This of course raises the question as to why systems of sexuality other than 
monoecy or hermaphroditism and dioecy seem to occur infrequently in nature, 
We do not intend to answer this question, but we suspect that a satisfactory 
answer cannot be found without having regard to the problem of the likelihood 
for the emergence and evolution of particular systems of gene action. 

The situation is exactly reversed in our biallelic models (a) and (b) of trioecy 
in which all bisexuals are homozygous for the same allele. In this case trioecy 
cannot persist indefinitely for constant viabilities, fertilities and selfing rate. In 
other words, trioecy is only a transient system of sexuality that always ap- 
proaches one of its marginal systems, namely, bisexuality, dioecy and gyno- 
dioecy or androdioecy; which of these is eventually realized depends on the 
relative male and female fertilities and the selfing rate of the bisexuals, but it 
may also depend on the initial frequencies of the three sexual types. Therefore, 
the trioecious models (a) and (b) are particularly useful for studying possible 
conditions for the evolution of one system of sexuality, notably dioecy, from 
another such system, notably hermaphroditism or monoecy, within a single 
population. As it is shown dioecy evolves from hermaphroditism or monoecy 
only if new mutant males and females are protected. Since the first mutational 
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event usually creates a heterozygote, this implies that as the first step gyno- 
dioecy becomes established in model (a) and androdioecy in model (b). Conse- 
quently, if the dioecious population has evolved according to model (a), then 
the females are the heterogametic sex, and if it has evolved according to model 
(b), the males form the heterogametic sex. 

The conditions for the evolution of dioecy are by no means symmetric for 
these two models, as might have been expected at first sight. Whereas the 
selfing rate of the hermaphrodites does not appear at all in these conditions for 
model (a), it plays a crucial role for model (b). This result for model (a) contrasts 
with the results from some earlier models of gynodioecy (e.g., ROSS and WEIR 
1975; LLOYD 1975). High rates of self-fertilization require unrealistically large 
male or female fertilities to allow evolution of dioecy via androdioecy, i.e., in 
model (b) (consult Figure 2). Moreover, the effects of male and female fertility 
on the evolution of dioecy are inversely related in the two models: If in model 
(b) dioecy evolves for 9 = x and p = y and for a given selfing rate, then evolution 
of dioecy is also guaranteed in model (a) for arbitrary selfing rates if x and y are 
interchanged, i.e., 9 = y and p = x. Recall that the male and female fertilities p 
and 9 are comparable to each other since they are multiples of the pollen and 
ovule fertilities, respectively, of the hermaphrodites. 

This asymmetrical relationship between the two models with respect to the 
role played by the unisexuals continues within each of the models: Suppose 
that in model (a) the conditions for the evolution of dioecy are met for a 
situation in which the males are relatively more fertile than the females, i.e., @ 
= x and p = y with x < y; then dioecy evolves also if these fertilities are 
interchanged between the two sexes, i.e., if 9 = y and p = x. However, this 
conclusion does not always hold in the reverse direction; if evolution of dioecy 
occurs for 9 = x, p = y and x =- y, it might not be guaranteed for = y and p 
= x. The opposite is true for model (b): evolution of dioecy for 9 = x, p = y with 
x > y and a given selfing rate implies evolution of dioecy for the same selfing 
rate if 9 = y and p = x; the reverse direction does not always hold. Therefore, 
loosely speaking, the chances for dioecy to evolve via gynodioecy are more 
numerous if the females are relatively more fertile than the males, whereas this 
is the other way around for the path via androdioecy. 

To substantiate our criticism of purely phenotypic models we contrast our 
results to those of CHARNOV, MARYNARD SMITH and BULL (1976). These authors 
considered exactly the same model as we did with the exception that they made 
no assumptions concerning the mode of genetic control of sexuality and ex- 
cluded self-fertilization. All of their conclusions are based only on certain 
relationships between 9 and p and must, therefore, be expected to also apply to 
any assumption specifying possible modes of genetic control for the three 
sexual types, including our three models. The analysis used in the above-cited 
paper is built upon a comparison of the fitness values of the three sexual types. 
These fitness values correspond to the “realized fitnesses” derived in a more 
general context in part I of the present series (GREGORIUS and Ross 1981). 
Translated into the notation used here, the authors state “that a dioecious 
population is stable only if l/@ + l /p  < 1.” Since in our model (c) dioecy is 
unstable by definition for all selection values, this statement is of course not 
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Herm ap hrodi tism 
FIGURE %--The change of frequencies in sexual types over generations for model (a) in a de 

Finetti-diagram. Evolution toward dioecy or bisexuality depends on initial frequencies. 

true. But even if the formation of the hermaphrodite genotype is not forced by 
an initially dioecious population in the succeeding generations, as in the models 
(a) and (b), the condition 1/+ + U p  < 1 is sufficient neither for local stability of 
dioecy nor for the evolution from monoecy to dioecy. This is easily verified 
with the help of the inequalities (2a) and (4a), or ( la) and (3a), respectively (with 
U = 0). However, both inequalities (la) and (3a) for the evolution of dioecy from 
monoecy imply 1/+ + 1/p < 1. Hence, it seems that either one of the genetical 
models (a) or (b) leads to more stringent conditions for the stability of dioecy 
than the purely phenotypic model. In view of the absence of assumptions about 
inheritance in the phenotypic model this is a logical contradiction, and the same 
reasoning applies analogously to some of the results contained in a later paper 
by CHARNOV (1979). These discrepancies seem to follow from the fact that a 
phenotypic model does not allow in general for the treatment of the dynamic 
aspects of the model without specifying the inheritance of the traits considered. 

Another interesting situation is found in models (a) and (b), in which a major 
disturbance in genotype frequencies may lead to a different equilibrium type 
from that initially present. For example, equations (2a) and (2b) show that for 
model (a) with certain +, p and U values both hermaphroditism and dioecy are 
locally stable equilibrium types. Thus, the introduction of a few mutants would 
not disturb either equilibrium type, but the coming together of two previously 
distinct populations could result in the evolution of either hermaphroditism or 
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dioecy, depending entirely on the proportions of the various genotypes in the 
initial mixed population. Thus, the evolution of dioecy or of hermaphroditism 
could be entirely independent of the selection values (4, p and a), and depend 
only on the initial genotype frequencies. Figure 3 gives population trajectories 
in a de-Finetti diagram for 4 = 1.5, p = 3.5 and a = 0.5 and for a range of initial 
genotype frequencies. For example, the initial genotype frequency set Ph = 0.8, 
P f  = P ,  = 0.1 leads to hermaphroditism in equilibrium populations, whereas Ph 
= 0.2, P f =  P,  = 0.4 leads to dioecy. 

Another topic of interest is that the evolution of dioecy is apparently easier 
to achieve under the models when females are heterogametic than when males 
are. This situation is of course contrary to what is found in nature, where male 
heterogamety is the more frequent (WESTERGAARD 1958), and it suggests that it 
may be desirable to use the methods given here in studies of other genetic 
models. 

This work was supported by a Heisenberg fellowship (H.R. G.) and a grant from the Deutsche 
Forschungsgemeinschaft (M. D. R.). 
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APPENDIX 

Case (a)  

Begin with a genotypic polymorphic structure G = (Ph. P f .  Pm) .  Ph. P f ,  P ,  denote the frequencies 
of the hermaphrodites, females and males, respectively. In the present model, the females are 
assumed to be heterozygous, and the hermaphrodites and males are each represented by one of the 
homozygous genotypes. The transition equations read: 

where 6 = Ph + +P,, 
As follows from GREGORIUS (1982), the allele of the males is protected if + > 2 and not protected 

if Q, < 2. It can be easily seen that the female genotype is protected if and only if the allele of the 
males and, equivalently, the allelic polymorphism is protected. Since it is not possible for the 
frequency of a genotype to become zero in a finite number of generations, a homozygote genotype 
can be lost only by convergence of the genotypic sti ucture to an equilibrium point on the boundary 
where this genotype has frequency zero. 

= P,, + p p , .  
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On the boundary Ph = 0, the transition equations for Pf ,  P, read P i =  + = PI,, and hence Gd: = (0, 
4, +) is globally attractive along the boundary. Letting G denote genotypic polymorphic structures, 

P i  1 20 
-7 - + - =: L<j 

If Ld < I, then e d  is attractive, and the hermaphrodite is not protected. If Ld > 1, then(% is repulsive 
and the hermaphrodite is protected, since e d  is the only equilibrium point on this boundary. 

On the boundary Pm = 0, the fixation point Ph = 1 is always an equilibrium point, and it is globally 
attractive along this boundary if 4 5 2. If 4 > 2, then there exists an additional equilibrium point 
6, defined by 

ph G+Gd P 4 

which is attractive for all points on the boundary except the fixation point Ph = 1. (If + = 2 ,  then 
G b  is the point Ph = 1.) Assuming + 5 2 and letting G denote genotypic polymorphic structures, 

If L b  < 1, then 6, is attractive and the male genotype is not protected. If L b  > 1, then& is repulsive. 
Protectedness of the allelic polymorphism implies + 2 2 .  But if 4 = 2, then 6 b  is the fixation point 

Ph = 1 and Lb = 0 < 1, and hence the fixation point is attractive. Therefore, the allelic polymorphism 
is protected if and only if 4 > 2 .  

If the genotypic polymorphism is protected, then + > 2 and Ld, L b  2 1. It can be easily shown that, 
due to the interdependence of the expressions for Ld and Lb, Ld, Lb 5 1 is equivalent to L = L b  = 1. 
If L d  = 1, then L b  = (+ - 2) / (+  - Zu), so that Ld = Lb = 1 implies 0 = 1. But then the transition 
equation for Pf reads P i  = Pf X + +/6 and it holds that P i  = Pf,  i.e., + + = 6, on the straight line 
connecting 6 d  and &. Setting P i  = Pf and rearranging, the equation of this line is Pf  = 4 - (I/+) x 
Pfi. To see that all points on this line are fixed points, consider the transition equation for P h  which, 
after insertion of 6 = + 4, U = 1 ,  and the expression for Pf,’now reads 

=+- 1 P,) 
2 4  

and thus 

Hence, in the vicinity of the fixed points & and G 6 ,  at least all points on the line + 4 = 6 do not 
fulfill the requirement of protectedness which states that the population trajectory should be 
properly repelled. Consequently, it is not possible to have both homozygotes protected simultane- 
ously, and it follows that the genotypic polymorphism is never protected. 
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Case ( b )  

We begin with a genotypic polymorphic structure G = (Ph, P,, P f )  where Ph, P,, Pfagain denote 
the frequencies of the hermaphrodites, males, and females, respectively. In this model, the males 
are heterozygous and the hermaphrodites and females are each represented by one of the homo- 
zygous genotypes. The transition equations read: 

where 6 = Ph + +P,, ,ii = Ph + pP,. 
It follows from GRECORIUS (1982) that the allele of the females is protected if (1 - a)p > 2 and not 

protected if (1 - u)p < 2. It is obvious that the protectedness of the allele of the females and, 
equivalently, the allelic polymorphism is equivalent to the protectedness of the male genotype. As 
in case (a), a homozygote genotype can be lost only by convergence of the structure to an equilibrium 
point located on the bounda_ry where this genotype has frequency zero. 

On the boundary ph = 0, G d  := (0, 4, 4) is a unique globally attractive equilibrium point. Letting G 
denote genotypic polymorphic structures, 

l + a  7-- -: L d .  
P 6  - 
ph G + G d  

If Ld < 1, then &is  attractive, and the hermaphrodite is not protected. If L d  > 1, thened is repulsive, 
and the hermaphrodite is protected. 

On the boundary P, = 0, the fixation point Ph = 1 is always an equilibrium point, and it is globally 
attractive along this boundary if (1 - U) p 5 2. If (1 - U) p > 2, then there exists an additional 
equilibrium point G b  defined by 

whicGis attractive for all points on the boundary except the fixation point Ph = 1. (If (1 - a) p = 2, 
then Gb is the fixation point.) Assuming (1 - a) p 2 2 (and thus U < 1) and letting G denote genotypic 
polymorphic structures, 

It holds that Lb = 1/Ld X [ ( l  - a)p - 2]/[11 - a)p]. If L g  < 1, then G b  is attractive and the female 
genotype is not protected. If Lb > 1, then Gb is repulsive. 

Protectedness of the allelic polymorphism implies (1 - u)p 2 2. But in the case (1 - u)p = 2,<6 is 
the fixation point ph = 1 and L b  = 0 < 1, and hence the fixation point is attractive. Therefore, the 
allelic polymorphism is protected if and only if (1 - u)p > 2. 

If the genotypic polymorphism is protected, then (1 - u)p > 2 and L d ,  L6 2 1. It can be easily 
shown that, due to the interdependence of the expressions for Ld and L b ,  L d  X L b  < 1. Therefore, the 
condition L d ,  Lb 2 1 can never be fulfilled and, hence, the genotypic polymorphism is not protected. 

Case ( c )  
Once again we begin with a genotypic polymorphic structure G = (Pf, ph, 

P,), where Pf ,  Ph, P, are defined as in the previous cases. Here, the hermaphrodifes are heterozy- 
gous, whereas the females and males are each represented by one of the homozygous genotypes. 



544 H.-R. GREGORIUS, M. D. ROSS, AND E. M. GILLET 

The transition equations read: 

where 4 = +Pf + Ph, 2-  Ph + ppm. 
It follows that 

so that after the first generation Ph > +. This implies the protectedness of the genotypic polymor- 
phism for all sets of parameters 9, p > 0 and 0 5 U 5 1. 

The existence of invariant regions in the set of all genotypic structures can be shown by means 
of the relationship 

- Uppm -k 3 (@pf + + ph) - 
- 4 Uppm + f @pm + 4 Ph) 

- /i + WP/ - (1 - u)pPm - 
F + (1 - u)pP* 

It follows that P; /Pk  < 1 if and only if 

W P f -  (I - ~ ) p P m  - (I - 0)pPm Z[+Pf- (1 - ~ ) p P m ]  < 0, 

which in turn results in: [P f /Pm < 11 is invariant if 4 < (1 - o)p,  [P f /P ,  > 11 is invariant if + > (1 - 
u)p, and if q5 = (1 - u)p, then [P f /Pm < 11, [Pf /Pm = 11, and [Pj/Pm > 11 are invariant. 

The following equation yields statements concerning the attractiveness of these regions. 

P i  
P', P, P m F  + (1 - ~ ) p P m ]  

Pf  P,F + 2GPf - (1 - u)pP,] - P f E  + (1 - u)pPm] _ - _ =  

Denoting the numerator by A, then 

A F(Pm - P f )  + Pm[2+Pf - (1 - .)p(Pj + Pm)].  

(1) Let q5 < (1 - u)p and P f r  P,. Then 

A 5 K(Pm - Pf)  + (1 - dpPm(Pf  - Pm) 

= (Pm - P f ) ( p -  (1 - u)pP,). 

Since ji - (1 - u)pP, > 0, it follows that A < 0 and thus 

(2) For q5 > (1 - u)p and P f s  Pm it follows analogously that A > 0 and hence P;/P', > Pf/P,. 
(3) If @ = (1 - u)p, then A = (P ,  = Pf)@ - (1 - u)pP,). Hence, Pf /Pm < 1, Pj/Pm > 1 imply P a p ' ,  > Pf /  
P ,  and P a p ' ,  < Pf/P,, respectively. Consequently, 

(1') if $J < (1 - u)p, then Pf < P, ultimately holds, 
(2') if q5 > (1 - u)p, then Pf > P, ultimately holds, 
(3') if @I = (1 - o)p,  then Pf = P, ultimately holds. 


