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ABSTRACT 

The expected value of the squared linkage disequilibrium is derived for a 
neutral locus associated with a chromosomal arrangement that is maintained in 
the population by strong balancing selection. For a given value of recombination, 
the expected squared linkage disequilibrium is shown to decrease as the inten- 
sity of selection maintaining the arrangement increases. The transient behavior 
of the expected square linkage disequilibrium is also derived. This theory 
applies to loci that are closely linked to inversions in Drosophila species and to 
loci closely linked to the differential segments of the translocation complexes in 
ring-forming species of Oenothera. In both cases the strong linkage disequilibria 
that have been observed in natural populations can be explained by random 
drift. 

large number of studies have been done to determine the extent to which A significant linkage disequilibrium exists in natural populations (HEDRICK, 
JAIN and HOLDEN 1978). The studies in Drosophila species have generally found 
little or no linkage disequilibria between loci, but significant linkage disequilibria 
between inversions and loci closely linked to the inversions are consistently 
observed (PRAKASH and LEWONTIN 1968 KOJIMA, GILLESPIE and TOBARI 1970; 
LANGLEY, TaBARI and KOJIMA 1974; PRAKASH 1976; CHARLESWORTH, CHARLES- 
WORTH and LOUKAS, 1977; CHARLESWORTH et al. 1979). These observed linkage 
disequilibria between inversions and closely linked loci have been explained as 
due to selection of loci associated with the inversions (PRAKASH and LEWONTIN 
1968; LEWONTIN 1974), to association of neutral alleles with inversions when 
they were initially formed (NEI and LI 1975, 1980; ISHII and CHARLESWORTH 
1977) or to random drift of neutral alleles at a locus associated with an inversion 
(NEI and LI 1975). It is this last explanation that is examined in this paper. 

There are two aspects of the behavior of inversions in natural populations of 
Drosophila that need to be taken into account in any meaningful theory of 
random drift of neutral alleles at a locus that is closely linked to an inversion. 
First, since recombination between genes within an inversion is suppressed, 
inversions are inherited as a block. Second, inversion polymorphism is wide- 
spread and is maintained by strong balancing selection (DOBZHANSKY 1951). 
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This observed heterosis of inversion heterozygotes is thought to arise because 
sets of co-adapted genes are bound together by the inversions. 

Strong linkage disequilibria have also been observed in the Oenothera species 
which are permanent translocation heterozygotes (LEVY and WINTERNHEIMER 
1977; ELLSTRAND and LEVIN 1980). Permanent translocation heterozygosity in 
these species is maintained because there is alternate segregation of the chro- 
mosomes in the ring formed at meiosis and there exists a system of balanced 
lethals (CLELAND 1972). The balanced lethals are either zygotic, which results in 
50% seed sterility, or gametophytic, in which the (Y complex is inherited through 
the egg and the ,L3 complex through the pollen. There is no recombination in the 
central segments of the chromosomes, which contain the balanced lethals, 
although recombination does occur in the paired regions at the ends of the 
chromosomes. This lack of recombination and alternate segregation of the 
chromosomes results in blocks of genes being inherited as a single unit (JENNER 
complexes) (CLELAND 1972). Therefore, the theory of random drift at a neutral 
locus closely linked to these complexes requires the same two assumptions as 
the theory of random drift at a neutral locus closely linked to an inversion, i.e., 
the chromosomal arrangements are inherited as blocks and are maintained in 
the population by strong balancing selection. 

Recurrence equations for the expected squared linkage disequilibrium of a 
neutral locus closely linked to a chromosomal arrangement are obtained using 
coefficients of identity. The equilibrium value assuming the infinite allele model 
(KIMURA and CROW 1964) and the transient behavior are obtained. It is shown 
that, as the intensity of selection maintaining the polymorphism increases, the 
expected squared linkage disequilibrium decreases. 

THEORY 

Let C1 and Cz be two chromosomal arrangements differing by an inversion 
that are maintained at equilibrium in the population by a heterozygotic advan- 
tage. Let N be the total population size and N11, Nlz and Nz2 be the numbers of 
GC1, ClCz and CzCz individuals in the population after selection. The number 
of C1 and Cz chromosomes in the population after selection are 

N1 = 2Nll + Nlz and Nz = 2N22 + N12 (1) 

and the proportions of the C1 chromosomes in ClCl homozygotes and C1C2 
heterozygotes after selection are 

PI = 2Nll/N1 and Q1= N12/Nl (2a) 

while 

Pz = 2N22/N2 and Q = N12/N2 P b )  

are the proportions of the C2 chromosomes in CZCZ homozygotes and ClC2 
heterozygotes, respectively. If 1 - s, 1, and 1 - t are the fitness values of CIC1, 
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ClC2 and CZCZ individuals, respectively, then 

Nil = NP2(1 - s)/W, Nlz = XNPQ/W, N22 = NQ2(1 - t)/W 

and 

N 1 = 2 N P  and Nz=2NQ 

where 

547 

(3) 

t S 
p = -  and Q = -  

s + t  s + t  

and 

W = (1 - s)P2 + 2PQ + (1 - t)Q2, 

Therefore, 

PI = (1 - s)P/W and Q1 = Q/W ( 4 4  

PZ = (1 - t)Q/W and Q2 = P/W. (4b) 

and 

Let A be a neutral locus located on the same chromosome and let r be the 
frequency of recombination in C1C2 individuals between the A locus and the 
inversion. It is assumed that there are an infinite number of possible alleles at 
the A locus and that the mutation rate to new alleles, which differ from all pre- 
existing alleles, is p, i.e., the infinite alleles model of KIMURA and CROW (1964). 

The N1 type Cl chromosomes in the next generation are drawn randomly, 
with replacement, from the gametes produced by the individuals in the present 
generation. Therefore, the probability that a C1 chromosome in the next gener- 
ation comes from a ClCl individual is P1 and from a ClC2 individual, Ql. 
Similarly, the probability that a Cz chromosome comes from a C2C2 individual 
is Pz and from a ClC2 individual, (22. If a chromosome comes from a ClCz 
individual, then it has a probability r of being a recombinant. 

Three coefficients of identity by descent are required to describe the proba- 
bilities that the genes of the A locus on two randomly chosen chromosomes are 
identical. If a: (a:) denotes the gene at the A locus on an arbitrary CI (C2) 
chromosome, then the three coefficients of identity are 

Q11 = Prob(a,! E a:) 

= Prob(ai E a?) 

Q z ~  = Prob(aq E a?) 

i # j 

i # j 

( “ = ’ I  is read “is identical to”). The recursion equations for the expected value of 
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these three identity coefficients by descent over replicate populations are 

If N >> 1, p = 0 (A), and r = 0 (i), then these equations can be approximated 

by 
1 

Qll + 2Q1rCh + - 
Ni 
1 

Qii + 2 Q S i z  + ~ N P  =(l-=- 1 

Qi2 = Qr@ll + (1 - 2p - Qlr - Q4Q12 + Q1rQ22 

= P B l i  + (I - Zp  - i)Qu + Q S z z  
1 

C p ; 2 = 2 Q 2 f i 1 2 +  

1 1 
= 2Pr"@12 + 1 - - - 2p - 2Pr" a 2 2  + - ( 2NQ ) 2NQ 

where f = r/W. These approximate equations are obtained by neglecting terms 

and less in equations (5) and using the relationships given in (I), (Z), 

(3) and (4). Note that W enters into the recursion equations in only the form of 
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r" = r/W. Therefore, the intensity of selection maintaining the frequencies of C1 
and CZ affects only the frequency of recombination in the population. The 
frequency of recombination in the population increases as the intensity of 
selection increases (W decreases) since the proportion of heterozygous ClCz 
individuals in the population after selection increases. 

The equilibrium values for these approximate equations are 

6 1 1  = (2p + r")(l + Q e  + PQR)/Z 

d = r"(1 + 2PQ0 + PQR)/Z 

dzz = ( z p  + q(i + pe + PQR)/Z 

(7) 

where 

Z = 2p(1 + P 8  + PQR)(l + Q e  + PQR) + Pr"(1 + Q e  + PQR)(1 + PO) 

+ Qr"(1 + PO + PQR)(l + Q e )  

and where 8 = 4Np and R = 4NL If P = Q = lh then the equilibrium values 
reduce to 

ze + R dll = 6 2 ,  = 
2 8  + R + e2 + OR 

R d -  
12-ze+ R +  e2+ e R '  

It can be shown from the theory of perturbed matrices that these equilibrium 
values of the approximate equations (6) are the approximate equilibrium values 
of the exact equations (5). In fact, the absolute values of the differences between 
the exact and approximate equilibrium values are of order I/@ or less (theorem 
5.9, NOBLE and DANIEL 1977). 

The expected squared linkage disequilibrium and squared standard linkage 
disequilibrium can be obtained from these equilibrium values by a simple 
transformation. Let x, (y,) be the conditional frequency of the ith allele of the A 
locus, A,, given that it is associated with CI (CZ). Therefore, the frequency of 
CIAL (CZA,) is Px, (QyI) and the frequency of A, in the population is 

p, = Px, + a y , .  

The linkage disequilibrium of the ith allele with C1 is defined by 

D, = Px, - Pp, = Px, - P(Px, + Qy,) = PQ(x, - Y,). 

[D, can also be defined by the relationship with CZ, D, = -(Qyl - Qp,).] 
If N >> 1, then 
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= 1 - (P2Qi1 + ZPQQ12 + Q2&) 

From (7) 

= 4P2Q2p(1 + 2Np + Nr")/Z 

and the expected squared standard linkage disequilibrium is 

(lob) 
- PQ(1+ 2Np + N i )  
- 

PQ(l + ZNp + Nr")(l + 8 + R) + (1 - 4PQ)(2Np + N?) 

[This definition of expected squared standard linkage disequilibrium is equiv- 
alent to that given by HILL and ROBERTSON (1968) if there are only two alleles at 
the A locus.] The expected squared standard linkage disequilibrium is shown in 
Figure 1 for 4Np = 1 and 4Nr = 0, 0.5, 2 and 8. If P = Q = %, then 

and 
1 

1 + 8 + R  
d= 

After considerable manipulation it can be shown that 

and, therefore, both are strictly decreasing functions of r". Since r" = r/W is an 
increasing function of the selection intensity maintaining the chromosomal 
arrangements at equilibrium, the expected squared linkage disequilibrium is a 
strictly decreasing function of the selection intensity. 

The transient behavior of E(Z of) can also be studied using the approximate 
recursion equations for the coefficients of identity (6). These equations can be 
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- 4 N 7 = 0.0 - 

4 N 7 = 8.0 

0.0 0.2 0.4 0.6 0.8 1.0 

P 
FIGURE 1.-The expected standard squared linkage disequilibrium, 4, for 9 = 4Np = 1.0 and 

R = 4Ni = 0, 0.5, 2 and 8. 

written as 

Cg' = JCg + b 

where 
1 ) (13) 

I--- Z p - Z Q f  2Qf 0 
J = ( 2NP pf 1 - 2 y - r "  1 Qf 

2Pf I--- 2y - 2Pr" 
ZNQ 

0 

T 

and Q, = (all, Q,m Q , Z ) ~  and b = ( - 2kp, 0, &) are column vectors. At time t 

Q t =  JtQ0+(J"-'+ J t - ' +  ... + J + I ) b  

where Cg, and Cg, are the column vectors of the coefficients of identity at time t 
and 0, respectively. 

The asymptotic rate of approach to the equilibrium values (7) is given by the 
largest eigenvalue of J. The eigenvalues of J are 

x i = l - - -  1 2y + - X i  
2 N  2N 

where the Xi ( i  = 1 - 3) are the roots of the equation 
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1 
2 N  The largest eigenvalue of J is always greater than 1 -- - 2p, i.e., (14) has a 

positive root since if X = 0 the lefthand side of (14) is less than zero, 
If P = Q = %, i.e., s = t ,  then the eigenvalues of J are 

1 + 4Np + 2 N f -  
2N 

A I =  1-  

1 + 4Np + 2 N f +  
2N 

A z =  1- 

1 
N AJ = 1 - - - 2p - f. 

The largest eigenvalue is Al. The right eigenvectors are 

1 + m  

2Nr" 9 

5 1  = (1. 

1 - m, l)T 
5 2  = (1. ZNf 

5 3  = (1, 0, -qT 
and the left eigenvectors are 

TJ1=  ( vi, l+F I .),Kl 

where 

and 

KI= 2 ( 1 +  l + F )  

are constants chosen so that vi& = 1. 
The solution of the recursion equations is 
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where 

ci = vi& 
and 

ei = qib 

The vector of equilibrium values is 
1 6 = eaii- 

j 1 - A,' 

From (9), the expected squared linkage disequilibrium at time t is 

c1 - el- ( .) 1 

( [ Z N i - I - J 1 + 4 " 1 [  
Et C D i  = G  Nf 1 - A1 i 

Therefore, asymptotic rate to the equilibrium value of E(C, D:) is also Al. 
1 

If f = 0 - but N is small enough so that U <<-, then the equilibrium value 

of E(C, Dp) is 0. However, the transient behavior in this case is still of interest 
and can be studied by setting p = 0. If 

(3 N 

a% = (@Il(O), @12(0), @ 2 2 ( 0 ) )  

then after considerable manipulation 

where 

1 
(1 - @12(0)) + z (1 - @22(0)) 

B1 = - 1 (1 - Qll(0)) + (1 +zF) 
2 

1 
2 2 

(1 - @12(0)) + - (1 - @22(0)) 
Bz = - 1 (1 - @ll(O)) + (1 -2F) 

and since p = 0 

(1 + 2 N f -  V G T W  
2N A 1 =  1 -  

(1 + 2N:+ 
2N h2= 1- 
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NEI and LI (1980) derived (17) using diffusion theory. (They assumed that there 
were only two alleles at the A locus, and they calculated 

Et(d2) = 16Et(D2) = 8Et 0," ( i 1.) 
It should be remembered that (17) is appropriate only to describe the behavior 

of E(Xi D?) if p << - and is valid only if the time span is such that no new 
1 
N 

1 
variation arises by mutation. If ?>>- then the equilibrium value of E ( Z  D?) is 

0 and its transient behavior is essentially deterministic. 
N 

DISCUSSION 

At equilibrium, the expected squared standard linkage disequilibrium is 
significant only if the rate of recombination is of the same order of magnitude 
as the mutation rate or less (see equation (10). The recombination rates between 
inversions and loci within the inversions due to double crossovers has been 
reviewed by ISHII and CHARLESWORTH (1977), and a rate of IOp4 per generation 
was assigned as typical. However, CHOVNICK (1973) examined recombination 
between alleles of the rosy locus in a paracentric inversion heterozygote in 
Drosophila melanogaster. He found a gene conversion rate of approximately 

and the frequency of double crossovers to be much less. Moreover, for 
genes located near the breakpoints of an inversion, the frequency of double 
crossovers and gene conversions would be much lower due to lack of pairing. 
Therefore, depending on location of the gene within an inversion and the size 
of the inversion, the observed linkage disequilibrium could be accounted for by 
random drift. 

In the ring-forming species, Oenothera biennis (LEVY and WINTERNHEIMER 
1977) and 0. laciniata (ELLSTRAND and LEVIN 1980) strong linkage disequilibria 
between translocation complexes and gene loci have also been observed. Ring- 
forming species of Oenothera can either be cross pollinated or partially selfed, 
and permanent heterozygosity is maintained by a system of balanced lethals 
(i.e., P = Q = ?h). It has been assumed throughout this paper that there was 
random mating. However, the equilibrium values for Qll, Q12 and QZ2 in a 
partially selfing population are given by (8) if 1 - S >> 1/N where S is the rate 
of selfing (STROBECK 1980). The observed outcrossing rates in partially selfed 
ring-forming species of Oenothera varies from 0.006 to 0.20 (CLELAND 1972). 
Therefore, the expected squared standard linkage disequilibrium for these 
species of Oenothera is given by (11) if the population size is much larger than 
-200 (assuming an outcrossing rate of 0.005). Since in the ring forming of 
Oenothera recombination occurs only at the tips of the chromosomes and not 
in the central differentiated segments, random drift can account for the strong 
linkage disequilibria observed in those species between genes located within 
these central segments and the translocation complex. 

This work was supported by NSERC grant Aa5a2 to C. STROBECK 
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