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ABSTRACT 

A formula for the variance of gene identity (homozygosity) was derived for 
the case of neutral mutations using diffusion approximations for the changes of 
gene frequencies in a subdivided population. It is shown that when gene flow 
is extremely small, the variance of gene identity for the entire population at 
equilibrium is smaller than that of the panmictic population with the same 
mean gene identity. On the other hand, although a large amount of gene flow 
makes a subdivided population equivalent to a panmictic population, there is 
an intermediate range of gene flow in which population subdivision can increase 
the variance. This increase results from the increased variance between colonies. 
In such a case, each colony has a predominant allele, but the predominant type 
may differ from colony to colony. The formula for obtaining the variance allows 
us to study such statistics as the coefficient of gene differentiation and the 
correlation of heterozygosity. Computer simulations were conducted to study 
the distribution of gene identity as well as to check the validity of the analytical 
formulas. Effects of selection were also studied by simulations. 

ATURAL populations are generally subdivided into a number of subpopu- N lations or demes, and there is often significant genetic differentiation 
among subpopulations. To measure the degree of genetic differentiation of 
structured populations, WRIGHT (1943) introduced a statistic called the fixation 
index. NEI (1973) extended it to the case of multiple alleles, proposing an index 
called the coefficient of gene differentiation. He also proposed a quantity 
appropritate to measure the genetic distance between two related populations 
(NEI 1972). For measuring genetic differentiation, there are many other quanti- 
ties, and the reader may refer to FELSENSTEIN (1976) for them. Although they are 
diverse, one quantity common to them is gene identity, i.e., the probability of 
identity of two randomly chosen alleles, which has been intensively studied in 
relation to geographic distance (WRIGHT 1943, 1946, 1951; MALECOT 1951, 1955; 
KIMURA and WEISS 1964; WEISS and KIMURA 1965; MARUYAMA l969,197Oa,b,c; 
and others). However, the theoretical study of gene identity is generally re- 
stricted to the mean value, except for (1) only two populations (NEI and FELDMAN 
1972; LI and NEI 1975, 1977), (2) a finite number of populations that are com- 
pletely isolated (NEI and CHAKRAVARTI 1977), or (3) diallelic systems without 
mutation (NEI, CHAKRAVARTI and TATENO 1977). 
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In this paper I derive a formula for the variance of gene identity for a finite 
number of incompletely isolated populations and study the variance of the 
coefficient of gene differentiation and the correlation of heterozygosity. These 
formulas are derived for neutral mutations at a single locus with K possible 
allelic states (KIMURA 1968a). Computer simulations have been conducted to 
check the validity of the formulas and examine the distribution of gene identity. 
Simulations were also extended to the case of multiallelic mutations with 
selection. 

GENE IDENTITY IN THE ISLAND MODEL 

We consider the finite island model in which the entire population is subdi- 
vided into L colonies, each with effective size N ,  and each colony exchanges 
individuals at the rate m with equal likelihood with the remaining colonies. 
Suppose that the organism is diploid and migration is independent of genotype. 
Let K be a fixed number of potential alleles at a locus and v/(K - 1) be the 
mutation rate from one to any of the other K - 1 alleles, the total rate being v. 
We denote by Ak(i) the kth allele in the ith colony and by x k ( i )  the frequency 
of Ak(i). 

We make use of the diffusion approximation method for describing stochastic 
changes of gene frequencies (KIMURA 1964). Hence, the formulas and results 
obtained are valid so long as the higher order terms of m, v and N-’ can be 
ignored. The mean M [ & x k ( i ) ]  and covariance V[6xk(i)6xk,( j)] of the change of 
gene frequencies per generation are given by 

L 

M[Sxk(i)] = v* - (Lm* + Kv*)xk(i) + m* C x k (  j )  (1) 
j = l  

and 

(2 )  
1 

2N V[Sxt(i)6xk,( j ) ]  = - xk(i)[& - x d  j ) l& 

where Zfzl xdi) = 1, v* = v/(K - 1) and m *  = m/(L - 1). 
In (2), 6, stands for the Kronecker’s delta function, and it is assumed that 
random sampling of gametes takes place independently in each colony. The 
diffusion operator, B, for the Kolmogorov backward equation is 

and the expectation, E {  f } ,  of any function of xk(i)’s satisfies 

-- dECf’  - E { B f )  
dt (4) 

in which time, t, is measured in generations. 
For simplicity, we will restrict our study to the case in which the equilibrium 

is reached or in which the initial condition of f is independent of the geography 
of colonies when we want to study nonequilibrium solution of (4); otherwise, 
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we must formulate an intractable number of moment equations. Twelve mo- 
ments are required to obtain the variance of gene identity at equilibrium. We 
define the gene identities within and between colonies, jo and jl, 

K I L  K 

jl = < xk(il)xk(i~) > for i l #  iz 
k - 1  

and define the gene identity for the entire population 
K 

jT= y;, yk=<xk(i)> 
k - 1  

Thus, jT 

tation taken over the appropriate set of colonies. 

jl and in (5) and (6) a symbol e > denotes the expec- 

The mean values of jo and jl, denoted by Jo and J1, respectively, satisfies 

where the time scale has been changed to a unit of 2N generations (T = t/ZN) 
and the dot over JO and J1 indicates the differentiation with respect to T .  The 
parameters in (7) are 

M *  = M/(L - 1) = Nm/(L - l), 
e* = O/(K - 1) = Nv/(K - l), 
a1 = 1 + 4K8* + 4M, 
a2 = 4K8* + 4M *. 

Equations in (7) are equivalent to those studied by MAYNARD SMITH (1970) for 
small values of m and v (see also MARUYAMA 1970a; LATTER 1973; NEI 1975). 

The third moments concern identity probabilities for which we choose three 
genes randomly from one, two and three different colonies, 

K 

k - 1  
K 

Ti = E{x%i)}> 

T2 = < E{~H(id~k(id}> (9) 
k - 1  

and 

where the subscripts of i indicate different colonies. For the fourth moments we 
must know the quantities concerning identity probabilities when we sample 
four genes randomly from one, two, three and four different colonies, 
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in which the sum is taken over all kl and kz. Substitution of (9) and (10) into (4) 
gives the moment equations. The third moment equations are 

6M 0 (3 + 68*)Jo (;:) = (;:* -b2 4(L - 2)M *) (i:) + (28*Jo + (1 + 48*)Ji 
i; 0 12M* -b3 68*J1 

where bl = 3(1 + 2K8* + ZM), bl = 1 + 2(3K8* + (2L - 3)M*) and b3 = 6(K8* 
+ 2M *). The column vector F = (F1, Fz, . . , , F7)t of the fourth moments satisfies 

F = C F + d  (12) 

in which C is the 7 x 7 matrix given in APPENDIX, and d is the column vector 
whose elements di (i = 1, 2, . . . , 7) are 

di = (2 + 88")Jo + 4T1 

dz = 48*Jo + (1 + 48*)J1 + 2T2 

d3 = 88*J1 + 2Tz 

d5 = 48*J0 + (1 + 48*)J1 

d6 = 88*Jo + T3 

d7 = 88*J1. 

When the population consists of only two colonies, (11) and (12) should be read 
for the first two Ts and four Fs. The remaining variables cannot be defined in 
this case and are not required to obtain the variance of gene identities as will be 
seen. The same note applies to the population with three colonies, in which 
case F7 is ignored. Also, we note that the maximum eigenvalue of the matrix in 
(7) is not greater than -4K8* and those in (11) and (12) are at most -6KB* and 
-8K8*, respectively. Thus, the rate at which the equilibrium state is reached 
does not exceed 4K8* = 4NvK/(K - 1) in unit of 2N generations. This fact 
provides us with a rough estimate of the number of generations required to 
study nonequilibrium properties by using the previous formulas. On the other 
hand, the equilibrium solutions of (7), (11) and (12) can be directly obtained by 
equating the left-hand sides to 0 and solving these equations in a standard way. 
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Actual calculation of such equations except for (7) is, however, often tedious so 
that it was done numerically. 

In the following, we define several quantities related to gene identity and 
express them in terms of Ji, Ti and Fi. The variance of gene identity within a 
subpopulation, V,, is 

V ,  = <E{ jg(i)}> - E{ io}' = F1- J g  (14) 
and the variance between subpopulations, v b ,  is 

v b  = E{j?} - E{jd2 
1 (15) 

(2F3 + 4(L - 2)Fs + (L  - 2)(L - 3)F7} - Ji2. - - 
L(L - 1) 

Likewise, the variance of jT, denoted by VT,  is 

VT = E{ j$> - E{ jT}2 

where 
1 
L cov( jo, j l )  = - (2Fz + ( L  - 2)F5} - JoJI. 

NEI (1973) extended WRIGHT'S F,, statistic to the case of multiple alleles and 
called it the G, statistic. In the present notation, it is given by 

In addition, to study the coefficient of gene differentiation for a large number 
of loci, NEI'S group considered the mean and variance of 

gSt = ( j o  - jT)/( l  - jT) ,  

which henceforth are denoted by GZ and V,,, respectively. Exact analysis of 
G,*t and VgSt is difficult, so that truncated Taylor expansions are used to examine 
the behavior of these variables. Using this approach NEI and CHAKRAVARTI 
(1977) found that 

1 - JO + cov( jo, jT) (1 - Jo)VT G $ = I - -  - 

vgs' 

(17) 1 - JT (1 - J T ) ~  (1 - J T ) ~  

VT - 2cov( jo, jT) 
(I - (I - J T ) ~  (1 - J o ) ( l  - JT) 

vw + 

In (17), JT denotes the mean of j T ,  i.e., 
1 

J T = - J o +  L (I-;) Ji 
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and 
1 

L2 cov( jo,  jT) = - {FI + (L - 1)(2Fz + F4 + (L - 2)Fci)) - JoJT.  

It is obvious that (17) is a poor approximation when the amount of polymor- 
phism in the entire population is low, i.e., for a large value of JT and, thus, (17) 
should not be used in such a case. As will be discussed later, a more accurate 
formula particularly for V,, is needed that includes higher moments of jo and 

Finally, we define the correlation of heterozygosity between colonies, R, as 
jT. 

R = (F4 - J t ) / v w .  (19) 

This is equivalent to the correlation of heterozygosities from two randomly 
chosen colonies among different loci when the mutation rate is the same for all 
loci. Based on the infinite allele model, LI and NEI (1975) showed that in 
completely isolated populations R decreases exponentially as time increases 
and eventually becomes 0. In a subdivided population with gene flow, however, 
the equilibrium value does not equal 0 even for K = co and takes a value 
depending heavily on levels of gene flow. Thus, R may be a useful statistic to 
measure the degree of genetic differentiation of subpopulations. 

Before going to the next section, I would like to give some results concerning 
the equilibrium solution of (7). In particular, when K = CO (KIMURA and CROW 
1964) the solution is simple (MAYNARD SMITH 1970; MARUYAMA 1970a; CROW 
and MARUYAMA 1971; LATTER 1973; NEI 1975). The mean genetic identity for the 
entire population JT and G ,  are then given by 

and 

where, and subsequently, a symbol indicating the equilibrium state is sup- 
pressed. Formulas in (20) are equivalent to those given in MAYNARD SMITH (1970) 
and LATTER (1973), provided m, v and N-' are all small. Note that JT = [L(1 + 
#)I-' and G, = for m = 0 so that the population is very 

polymorphic regardless of the value of e(JT < l/L), and that for small 8 the value 
of GSt is close to 1 because of random genetic drift. On the other hand, when m 

1 f- - [ LYl] - l  

>> v, JT = [l + 4LBI-l and GSt = [l + 4aM]-', where a = (L - f: l)z. Namely, the 
\ 

population can be regarded as panmictic in the sense that JT is equivalent to the 
mean genetic identity in a panmictic population with effective size NL. Even 
under the situation, however, Gst is different from 0 if Nm is small and the 
finiteness of L affects GSt through a. The formula of WRIGHT (1943), Fst = 1/(1 
+ 4Nm), corresponds to G,, with L = 00. 
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COMPUTER SIMULATION 

To check the validity of my formula, I conducted computer simulation keeping 
K finite (K = 4), examining the distribution of gene identity, as well as the mean 
and variance of gSt. I also examined the effect of selection on these parameters, 
considering two selection schemes. Both schemes assume that there exists a 
normal type allele in each colony and that the other alleles are all selectively 
disadvantageous. One model assumes that the normal type allele varied ran- 
domly from colony to colony, whereas the other model assumes that the same 
allele is favored in all colonies. Let 1 - sk(i) be the relative fitness of the kth 
allele in the ith colony and assume that fitness is multiplicative and that 
fitnesses do not vary with time. 

The mean change of xk(i) per generation due to mutation and migration is 
given by the right-hand side of (l), and the change due to selection is 

Axk(i) = {w(i) - sk(i)}xk(i)/(l - w(i)) (21) 
where w(i) = CL1 st(i)xl(i). In (21), sk(i) 0 for some k depending on the model 
used and is a positive constant for all other alleles. For preassigned values of 
sl(i)’s, v and m, the mean changes of gene frequencies were calculated using (1) 
and (21), followed by random sampling of gametes using multinomial pseudo- 
random variables (as described by KIMURA and TAKAHATA 1983). 

To establish the equilibrium state, the first v-l generations for each set of 
parameter values were discarded and, thereafter, 5000 observations were made 
at every 100 generations. Choosing v as in the simulations, the total of 5 x 
lo5 generations in each run was used to study the equilibrium properties. Table 
1 gives such simulation results for K = 4 and L = 10. Comparison of these results 
with the theoretical values shows that the formulas except that for V,, provide 
good approximations. As pointed out by NEI and CHAKRAVARTI (1977), the 
formula of V,, omits the second- and higher-order terms of jo and jT in the 
Taylor expansion. Although these terms could not be evaluated analytically, 
the approximation (17) seems so poor that we cannot use it, particularly for the 
case of large Nm and small Nv. 

MEAN AND VARIANCE OF GENE IDENTITY 

Many statistical analyses have been proposed to test the neutrality of poly- 
morphic genes (KIMURA 1968b), among which methods using the relationship 
between the mean and variance of heterozygosity (STEWART 1976; LI AND NEI 
1975) have received much attention (NEI, CHAKRABORTY and FUERST 1976a,b; 
FUERST, CHAKRABORTY and NEI 1977; YAMAZAKI 1976; GOJOBORI 1982). However, 
the theoretical relationships used in these tests are obtained based on the 
assumption of random mating, so that it is interesting to examine them in the 
case of a subdivided population. In the following, I will consider only the 
equilibrium relationships. We keep in mind that the rate at which the equilib- 
rium state is reached is given approximately by mutation rate when gene flow 
among colonies seldom occurs. 

First, we note from (20) that the total genetic diversity, HT = 1 - J T ,  increases 
as m/v decreases, and that the range of HT becomes [l - (W), 11 if m/v is less 
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TABLE 1 

Simulation results for K = 4 and L = 10 

Nm 0.01 0.1 I 10 

l o  exp 
obs 

JI ~ X P  
obs 

IT exp 
obs 

Gst exp 
obs 

GSt* exp 
obs 

l o  exp 
obs 

JI ~ X P  
obs 

JT ~ X P  
obs 

GSt exp 
obs 

Gst* exp 
obs 

0.727 (0.0432) 
0.726 (0.0434) 

0.254 (0.0766) i 0.263 (0.0776) 

0.301 (0.0017) r. 0.309 (0.0020) 

{::E 
0.609 (0.0882) i 0.606 (0.0086) 

0.938 (0.0180) 1 0.935 (0.0179) 

0.303 (0.1775) i 0.321 (0.1799) 

0.366 (0.0081) i 0.381 (0.0079) 

0.902 
i0.894 

0.901 (0.0448) 
0.899 (0.0052) 

Nv = 0.1 

0.644 (0.0403) 
0.640 (0.0409) 

0.280 (0.0561) 
0.277 (0.0549) 

0.317 (0.0034) 
0.313 (0.0026) 

0.479 
0.476 

0.478 (0.0856) 
0.476 (0.0083) 

Nv = 0.01 

0.840 (0.0361) 
0.813 (0.0397) 

0.518 (0.1444) 
0.434 (0.1386) 

0.550 (0.0360) 
0.472 (0.0280) 

0.644 
0.645 

0.635 (0.1623) 
0.622 (0.0250) 

0.452 (0.0190) 
0.448 (0.0177) 

0.342 (0.0192) 
0.339 (0.0162) 

0.353 (0.0087) 
0.349 (0.0061) 

0.153 
0.151 

0.151 (0.0337) 
0.150 (0.0018) 

0.756 (0.0476) 
0.718 (0.0514) 

0.702 (0.0636) 
0.657 (0.0669) 

0.707 (0.0491) 
0.663 (0.0516) 

0.167 
0.163 

0.156 (0.1753) 
0.136 (0.0056) 

0.379 (0.0123) 
0.377 (0.0092) 

0.365 (0.0122) 
0.366 (0.0087) 

0.366 (0.0112) 
0.367 (0.0079) 

0.196 
0.164 

0.0193 (0.0044) 
0.0164 (0.00002) 

0.741 (0.0496) 
0.736 (0.0433) 

0.735 (0.0509) 
0.731 (0.0439) 

0.736 (0.0496) 
0.732 (0.0429) 

0.0198 
0.0162 

0.183 (0.0312) 
0.0148 (6 X 

The value of the variance for each quantity is presented in parentheses: exp = theoretical value, 
obs = observed value in simulation. 

than about 0.1. This means that in a small subdivided population with extremely 
limited migration, different alleles are quasifixed in different colonies, and the 
total amount of genetic variability can be quite high. Such a situation is 
theoretically conceivable but does not agree with the observation of 0 5 H T  5 
0.3 for most species studied so far (FUERST, CHAKRABORTY and NEI 1977). There 
are many assumptions that may be responsible for the discrepancy between 
observed and theoretical values of HT, among which the assumed value of 
m/v may be important. For the lowest value of HT to be close to 0, say E ,  the 
ratio m/v has to be as large as L / E .  This indicates that gene flow between 
colonies should be very high compared with the mutation rate, e.g., if we take 
E = 0.01, L = 100 and v = the migration rate required is 1% per generation. 
There is, however, an interesting analysis that reveals low levels of gene flow 
among colonies. Using the conditional average frequency (the average frequency 



GENE DIVERSITY 505 

of an allele conditioned on the number of colonies it appears in), SLATKIN (1981, 
1982) estimated the level of gene flow in a subdivided population and showed 
that some species such as salamanders apparently have low levels of gene flow. 

STEWART’S formula for the variance of heterozygosity allows us to calculate 
a theoretical variance, V,, when the population with a given H T  is assumed to 
be panmictic. When K is sufficiently large, we have that 

It is important to note that at equilibrium and for sufficiently large K, all 
variables J i ,  Ti and Fi (except 10, TI,  Fl and F4) are negligibly small when m is 
much smaller than v and N-’. This indicates that the genetic constitution differs 
from colony to colony and that v b  and cov( io, jl) are greatly reduced. Actually 
we can show that for m = 0 and K = m, v b  = 0, cov( jo,  jl) = 0 and 

2(1/L - 1 + H T ) ( ~  - H T ) ~  
(1/L + 1 - HT)(I/L + 2 - ~ H T )  

VT = 

for the range of 1 - 1/L I HT I 1. Clearly, V, > VT for L 2 2 and the value of 
VT decreases at the rate of 1/L2 as L increases. It is interesting to examine 
whether the whole population of the salamander mentioned before has lower 
than expected variance of gene diversity. 

On the other hand, if m is sufficiently large, population subdivision should 
not affect the relationship of (22). Therefore, STEWART’S formula (22)  is expected 
to hold for large m. However, there are intermediate values of m for which 
population subdivision results in a variance larger than expected from that in 
the panmictic case. 

Figure 1 shows the result of comparison between V, in (22)  and VT for the 
entire population. The shaded regions indicate that the inequality V, > VT 
holds, i.e., population subdivision reduces the variance of gene diversity. It 

1ci3 I@ 10’ i io  io2 io1 id id 
FIGURE 1.-Parameter region where the variance of gene identity in the entire population is 

smaller than that expected in a panmictic population with the same mean gene identity. The 
ordinate represents the local population size, and the abscissa represents the ratio of migration rate 
to mutation rate. The infinite allele model is used. The number of colonies in a whole population is 
10 (a) and 100 (b). v = 



506 

. 0 7 ~  V, 

N. TAKAHATA 

a 

0 .1 .2 . 3  .4 .5 .6 .7 .8 .9  1.0 

*071- vT 
b 

0 .1 . 2  . 3  .4 .5 .6 .7 .8 .9 1.0 

FIGURE 2.-Relationship between the mean (HT) and variance (VT) of gene identity in the entire 
population. The infinite allele model is used. The number beside each curve represents the ratio of 
migration rate to mutation rate which is kept constant in drawing each curve. a, Corresponds to the 
case of L = 2; b, corresponds to the case of L = 10. The case of L = 1oD is not presented here since 
the relationship does not differ significantly from that for a panmictic population (dashed lines). v 
= 

should be noted that the region depends not only on the ratio m/v but also on 
the number of colonies L. For the theoretical value of HT to be within the 
observed range, gene flow must be frequent as mentioned before. Under this 
condition, population subdivision increases the variance of gene diversity (Fig- 
ure 2). The large variance of VT as is found in the case of intermediate gene 
flow and small values of Nv results from a large value of V,. The situation is 
most remarkable when the number of colonies is small. Under intermediate 
gene flow and small Nv and L, either similar or dissimilar allele can be 
quasifixed in different colonies from time to time so that R and J1 tend to be 0.5. 
In other words, the probability density of jl is U-shaped. This is shown in the 
case of m/v = 1, Nv = and L = 2 in Table 2. As L increases, the probability 
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TABLE 2 

Mean and variance (in parentheses) of gene identity; K = m 

m/v N~ = N~ = Nv = lo-' Nv = lo-' 
L = 2 0.1 jo 1.00 (0.Oool) 0.996 (0.0014) 0.958 (0.0129) 0.696 (0.0504) 

i l  0.091 (0.0825)* 0.091 (0.0816)* 0.087 (0.0730)* 0.063 (0.0293)* 
jT 0.545 (0.0207) 0.543 (0.0206) 0.523 (0.0200) 0.380 (0.0144) 

1 io 0.999 (0.0002) 0.994 (0.0020) 0.943 (0.0169) 0.625 (0.0486) 
i l  0.500 (0.2496)* 0.497 (0.2460)* 0.472 (0.2144)' 0.313 (0.0768)* 
jT 0.750 (0.0625)* 0.746 (0.0622)* 0.708 (0.0599)* 0.469 (0.0373) 

10 jo 0.m (0.0003) 0.992 (0.0025) 0.929 (0.0211)* 0.567 (0.0477)* 
i l  0.908 (0.0825)* 0.902 (0.0812)* 0.845 (0.0753)* 0.515 (0.0524)' 
jT 0.954 (0.0208)* 0.947 (0.0222)* 0.887 (0.0340)* 0.541 (0.0455)* 

L = 10 10 jo 0.998 (0.0008) 0.978 (0.0072) 0.813 (0.0410) 0.304 (0.0164) 
i l  0.525 (0.0634)' 0.515 (0.0619)* 0.428 (0.0487)* 0.160 (0.0076)* 
jT 0.572 (0.0514)* 0.561 (0.0506)* 0.467 (0.0419)* 0.174 (0.0074)* 

lo2 jo 0.996 (0.0012) 0.964 (0.0115) 0.730 (0.0540)* 0.213 (0.0112)* 
i l  0.914 (0.0300)* 0.885 (0.0369)* 0.670 (0.0596)* 0.195 (0.0105)* 
jT 0.922 (0.0245)* 0.893 (0.318)* 0.676 (0.0572)* 0.197 (0.0104)* 

I@ jo 0.996 (0.0014) 0.962 (0.0132) 0.716 (0.0569)* 0.201 (0.0109)* 
il 0.987 (0.0049)* 0.953 (0.0160)* 0.710 (0.0574)* 0.199 (0.0108)* 
jT 0.988 (0.0043)* 0.954 (0.0154)* 0.710 (0.0571)* 0.200 (0.0108)* 

The variance is greater than that expected from STEWART'S formula for a given mean value of 
gene identity. 

that two randomly chosen colonies are genetically identical decreases, reducing 
the variance of jl but still V, > Va. Thus, large variances of Vb and VT are 
expected under intermediate gene flow between a small number of colonies. 
For a subdivided population consisting of a large number of colonies such as L 
= 100, we cannot expect a large variance of gene identities. This is because 
under the situation, the probability density of jl tends to be J-shaped, i.e., it is 
more likely that any pair of colonies is genetically dissimilar. 

COEFFICIENT OF GENE DIFFERENTIATION AND CORRELATION OF HETEROZYGOSITY 

Table 3 shows some numerical results of the coefficient of gene differentiation 
GSt (or G2) and the correlation of heterozygosity, R. These two inversely 
correlated quantities measure the degree of genetic differentiation or similarity 
between colonies. It is obvious from the table and (20) that large values of m/v 
and Nv increase the genetic similarity and prevent colonies from local differ- 
entiation. Although the larger the number of colonies the larger the gene flow 
required for panmixia of the entire population, it is interesting to examine the 
L dependence of these statistics keeping m/v constant. 

G ,  is rather insensitive to the change of the number of L and becomes Gst =: 
1/(1 + 4N(m + v)) for large K and L. Actually, the value for L = 10 does not 
differ much from that for L = CO. On the other hand, the value of R depends 
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TABLE 3 

Coefficient of gene differentiation and correlation of heterozygosity; K = m 

m/v NV = Nv = IO-” Nv = Nv = IO-’ 

0.998 
0.997 
0.0002 

0.977 
0.969 
0.002 

0.807 
0770 
0.018 

0.294 
0.288 
0.103 

0.984 
0.929 
0.005 

0.856 
0.513 
0.049 

0.373 
0.163 
0.309 

0.056 
0.054 
0.694 

0.862 

0.055 
t 

0.383 

0.353 
t 

0.059 
0.031 
0.806 

0.006 
0.006 
0.957 

L =  10 10 Gst 
Gst* 
R 

0.995 
0.994 
0.001 

0.949 
0.947 
0.012 

0.650 
0.644 
0.086 

0.157 
0.156 
0.249 

10’ G,  
Gst* 
R 

0.953 
0.935 
0.035 

0.667 
0.604 
0.251 

0.167 
0.158 
0.688 

0.020 
0.020 
0.870 

lo3 GSt 
Gst* 
R 

0.669 

0.285 
i 

0.168 

0.766 
t 

0.020 
0.019 
0.956 

0.002 
0.002 
0.986 

L = 100 10’ G,  
G*** 
R 

0.960 
0.960 
0.010 

0.708 
0.708 
0.071 

0.195 
0.195 
0.185 

0.024 
0.024 
0.255 

lo3 G ,  
Gst* 
R 

0.710 
0.705 
0.234 

0.197 
0.196 
0.634 

0.024 
0.024 
0.808 

0.002 
0.002 
0.863 

lo4 Gat 
G,t* 
R 

0.197 
0.191 
0.725 

0.024 
0.024 
0.940 

0.002 
0.002 
0.977 

0.0002 
0.0002 
0.985 

Approximation of (17) is invalid. 

markedly on L. For instance, when Nv = 0.01 and Nm = 1, R = 0.688 for L = 10 
and equals 0.185 for L = 100. This L dependence of R is caused by a significant 
change of F4, which in turn depends heavily on L. However, when we want to 
estimate the degree of local differentiation from observations without knowl- 
edge of L, a statistic sensitive to L may not give a correct estimate. 

DISTRIBUTION OF GENE IDENTITY AND EFFECTS OF SELECTION 

The distribution of gene identity and the effect of selection were studied by 
computer simulation for the case of K = 4 and L = 10. The probability density 
of jT subject to intermediate gene flow is shown in Figure 3. Let us first examine 
the case of neutral mutations. When migration occurs rather frequently (Nm = 
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FIGURE 3.-Distribution of gene identity in the entire population in the case of K = 4, Nv = 0.01, 

Ns = 10 and L = 10. The number of migrants per generation between colonies is 10 (a) and 1 (b). 
Three curves are plotted in each figure, corresponding to the neutral, random selection and constant 
selection models. The abscissa is gene identity for the entire population and the ordinate is the 
corresponding probability density. v = See the text for details. 

lo), the pattern of the distribution is qualitatively the same as that for a 
panmictic population with the same parameters (see STEWART 1976). As Nm 
decreases, however, the spikes of the distribution at j T  = % and ?h become 
moderate (Figure 3b) and eventually disappear. Instead, a new peak emerges 
around the mean value of jl due to the similarity between colonies. Note, 
however, that this does not necessarily mean that the distribution of gene 
identity between colonies has a peak near its mean value. Actually, when Nm 
= 0.1 and Nv = 0.01, this distribution is U-shaped with the mean and variance 
being 0.434 and 0.139, respectively. Under these circumstances, two different 
colonies can take both genetically similar and dissimilar states to each other as 
time goes on (because of intermediate gene flow and small K relative to L). The 
proportion of genetically similar colonies to the total colonies at any given time 
and it's time average determine the position of a new peak. Thus, in contrast to 
the distribution of jl, the jT distribution can be unimodal in the intermediate 
range of jT even though NLv is smaller than 1. This pattern forms a contrast to 
that in a panmictic population. 

The effect of selection on the distribution of jT for the case if K = 4 is 
conspicuous in both selection models. The random selection model is where the 
normal type allele in each colony is determined at random, and the constant 
selection model is where the normal type allele is the same in all colonies. The 
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distribution in either model has a single sharp peak; the position, however, 
depends on the selection model used. In the constant selection model, the 
position is always near 1 because of the high frequency of the common 
advantageous allele in any colony. On the other hand, in the random selection 
model, there is the possibility that only a few colonies have a common advan- 
tageous allele. In the present simulation, the number of combinations of a pair 
of colonies which have a cdmmon advantageous allele was 10. As the number 
of all different combinations of two colonies out of L = 10 is 45, the proportion 
of the combinations was 2/9. And this proportion in turn mainly determines 
the position of a peak of the distribution. Thus, the position shifts toward 0 as 
K/L increases. Another interesting feature is the width of the distribution which 
depends not only on the magnitude of Ns (where s is selection coefficient) but 
also on Nm. As shown by SLATKIN (1973), a population cannot respond to local 
selection when gene flow is large relative to the strength of selection (see also 
SLATKIN and MARUYAMA 1975; FELSENSTEIN 1975; WALSH 1983). In such a case, 
the distribution will be broad. 

We can confirm a well-known effect of random selection on the maintenance 
of polymorphism (LEVENE 1953 and see pages 258-262 in FELSENSTEIN 1976); in 
our simulation JT reduces to 0.399 and 0.297 from 0.732 and 0.663, respectively 
(Figure 3). In fact, the random selection model is an efficient mechanism for 
maintaining genetic polymorphism. At the same time the variance of jT is greatly 
decreased, On the other hand, the inbreeding coefficient or the coefficient of 
gene differentiation G,*t is increased, although the variance V,, is decreased 
compared with the case of neutral mutations. Our simulation result is that G,*t 
= 0.812 for Nm = 1 and is 0.117 for Nm = 10 which are 6 and 10 times larger 
than those for neutral mutations. The increased mean value, GS, comes entirely 
from the occurrence of genetically similar colonies in a population. 

SLATKIN (1977) and MARUYAMA and KIMURA (1980) studied the effect of local 
extinction and recolonization of colonies on genetic variation and showed that 
the effective population size is greatly reduced compared with the case of the 
absence of this effect. As this effect reduces between-colony differentiation, GSt 
is also reduced. In other words, extinction and subsequent recolonization of 
colonies is a mechanism equivalent to that of mass migration, counterbalancing 
the reduction of the effective size. In terms of the variance of gene identity, this 
process makes not only jl but also j T  approach STEWART'S relationship. 

I thank BRUCE WALSH, YOSHIO TATENO, MASATOSHI NEI and an anonymous reviewer for their 
suggestions and comments which greatly improved the manuscript. I am also grateful to MONTGOM- 
ERY SLATKIN for his critical reading of the manuscript and CURTIS STROBECK for his interest and 
unpublished paper with G. B. GOLDING. 
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APPEND I X 

The matrix C in (12) giving the fourth moments is given by 

8M 0 0 0 0 

- cz 4M* 2M* 2(L - 2)M* 4(L - 2)M* 

8M * - c3 0 0 8(L - 2)M * 
8M * 0 -cq 8(L - 2)M* 0 

4M * 0 4M * -c5 8M * 

0 8M* 4M" 0 4M* -c6 

0 0 0 8M * 16M * 

C =  

4(L - 3)M* 

4(L - 3)M* 

-c7 
where CI = 6 + 8K8* + 8M, cz = 3 + 8KB* + (6L - 4)M*, cg = c4 = 2 + 8KB* + 8M, c5 = c6 = 1 + 8K8* 
+ 4(L + l )M * and c7 = 8KB* + 24M *. 


