
Copyright 0 1983 by the Genetics Society of America 

ESTIMATION OF T H E  COANCESTRY COEFFICIENT: 
BASIS FOR A SHORT-TERM GENETIC DISTANCE 

JOHN REYNOLDS,’ B. S. WEIR AND C. CLARK COCKERHAM 

Department of Statistics, North Carolina State University, Raleigh, North Carolina 27650 

Manuscript received April 4, 1983 
Revised copy accepted July 28, 1983 

ABSTRACT 

A distance measure for populations diverging by drift only is based on the 
coancestry coefficient 0, and three estimators of the distance Si@= -h( l  - 0) 
are constructed for multiallelic, multilocus data. Simulations of a monoecious 
population mating at random showed that a weighted ratio of single-locus 
estimators performed better than an unweighted average or a least squares 
estimator. Jackknifing over loci provided satisfactory variance estimates of dis- 
tance values. In the drift situation, in which mutation is excluded, the weighted 
estimator of gappears  to be a better measure of distance than others that 
have appeared in the literature. 

N this paper, the coancestry coefficient is used as the basis for a measure of I genetic distance for short-term evolution, when the divergence between 
populations with a common ancestral population may be regarded as being 
due solely to drift. The coancestry coefficient has been previously suggested 
in distance studies by CAVALLI-SFORZA and BODMER (1971) and by LATTER 
(1973a), and the suggestion is, to varying degrees, latent in the work of MA- 
L ~ C O T  (1948, 1969), WRIGHT (1951, 1965), and COCKERHAM (1969). 

The discussion will include comparisons to the distance measures of BALAK- 
RISHNAN and SANGHVI (1968) and NEI (1973), with the expectations of the 
various measures under the pure drift model being given. Particular emphasis, 
however, will be given on approaches to estimating the coancestry distance 
from multilocus, multiallele data. A set of simulation data allows a comparison 
of the various approaches to estimation, as well as a comparison of the various 
distance measures. 

MODEL AND NOTATION 

The model upon which the sampling theory in this paper is based is the 
“drift” model, whereby drift is the only force operating. Mutation and all other 
forces affecting gene frequencies are excluded. The reference population is 
noninbred, essentially infinite, in Hardy-Weinberg equilibrium at each locus 
and in linkage equilibrium at every pair of loci. Replicate populations begin as 
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independent random samples, of size N ,  from the reference population at time 
zero. Generations are discrete, and replicate populations are assumed to remain 
isolated, constant in size and maintained by random mating. The samples at 
known generation t are from the offspring arrays generated by the replicate 
populations in generation t - 1. 

For such isolated, finite, random mating, monoecious populations, the coan- 
cestry coefficient, denoted by 8, is the probability that a random pair of genes 
at the same locus within a randomly chosen population are identical by descent. 
As pointed out by CAVALLI-SFORZA and BODMER (1971), 8 provides a natural 
measure of genetic distance. That 8 is a monotonically increasing function of 
divergence time, 

is well known and means that an estimate of divergence time can be recovered 
from an estimate of 8. For short-term evolution, i.e., t /N  small, 8 bears an 
approximate linear relationship to time 

8 = t / 2N,  
but a better approximation is 

53= -In(l - 8) t / 2N.  
In fact, 2NBdiffers from the exact t by about one generation for t = 4N and 
less for smaller t .  

Before discussing other distance measures, we take up the problem of esti- 
mating 8 or 

ESTIMATORS OF THE COANCESTRY COEFFICIENT 

For estimation, COCKERHAM’S (1 973) weighed analysis of variance is utilized, 
pooling the within-individual and between-individual-within-population mean 
squares, as is appropriate for monoecious populations when the inbreeding and 
coancestry coefficients are the same (COCKERHAM 1969). The results are fur- 
ther summed over alleles. For a sample of n, individuals from the ith replicate 
population (i = 1, 2 ,  . . . , r), let f i l l t ,  designate the frequency for the uth allele 
(U = 1, 2 ,  . . . , vi)  at the Ith locus (1 = 1, 2, . . . , m). The expectation of this 
random variable over the three stages of sampling (replicate populations, 
progeny individuals within replicate populations, and gametes within individ- 
uals) is simply 

where pll, is the frequency of the allele in the reference or common ancestral 
population. 

gfih = p/w 

When the following notation is used, 
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the estimates of the components of variance of interest for the Ith locus are 
within populations: 

I 

b, = 2 njiij,/r(25 - l), 
i= 1 

and between populations: 

With equal sized samples from each population, li = n, = n, and there is some 
simplification of the components. The expectations of the components in either 
case are 

where 
“I 

a/ = 1 - r, f E I .  
11-1 

When there are just two populations, r = 2, the usual genetic distance 
situation obtains, and the most convenient computing formulas for the variance 
components are 

which, for equal sample sizes nl = n2, reduces to 

For the Ith locus, an estimator of 8 is supplied by 
- a/ 

a, + b, ’ e, = - 

which, to the extent that the expectation of a ratio can be taken to be the 
ratio of expectations, is unbiased for B. 

Single-locus estimators can be combined over loci in at least two ways. One 
estimator is the unweighted average of single-locus ratio estimators, namely, 
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while a second estimator is a weighted average of single-locus ratio estimators, 
namely, 

This estimator just sums the denominators and numerators separately for the 
one-locus estimators. Once again, if the expectations of the two estimators 
and 8,. are approximated by ratios of expectations, then 0 is obtained. 

Another approach to the estimation of 0 is to fit the expected components 
of variance to the observed components by ordinary least squares, i .e . ,  find 6 
and ai's that minimize 

,,I I,, 

R = 1 (U/  - + [b ,  - ~ ( 1  - o)]? 
/= 1 I =  1 

The resulting estimator of 6 is a solution to a quadratic equation and the 
closed form for this estimator is, 

- 2x + y - z Az J(z - $2 + 4 x 2  

2(Y - 4 
eL = 

where 
I,, 111 ,,I 

z = a:, x = 2 a/bl and y = 2 b:. 

To check which of the two solutions for t?L provides the minimum, the residual 
sum of squares, R, should be calculated for each and the corresponding &’s, 
where 

/ = I  I= 1 /= 1 

The solution that provides the smaller residual sum of squares should be used. 
Algebraically, this sum of squares is 

(2x + y + z)i2 - 2(. + z)& + z 
1 - 28L + 28: R =  

As an example, consider samples of size 100 from two populations which yield, 
at two loci, for an allele at each locus (U index dropped) 

611 = 0.85, 61, = 0.80 

and 

f i , ,  = 0.5,  f i 2 2  = 1.0. 

In cases such as this in which only one allele is specified, all other alleles may 
be regarded as being amalgamated into a single class and a two-allele analysis 
performed. The formulas can all be specified in terms of only the specified 
alleles, however, and for the equal sample size case, nl = n2 = n ,  for example, 
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For the present example, the two solutions are 1.4426 and 0.2348, with re- 
spective residual sums of squares 0.18575 and 0.00011, so the estimate 8~ is 
0.2348. This is also the only valid solution, because the other solution lies 
outside the range [0, 13. As an aside, 8, = 0.2186 and e”, = 0.2283. 

= -In( 1 - I )  is used 
to estimate g. 

For any estimate 8 of 0, the corresponding function 

OTHER DISTANCE MEASURES 

The literature on genetic distance measures is extremely rich, and reference 
is made to just a few alternative approaches here. In each case, what appears 
to be the most appropriate, rather than the earliest, reference is given. 

From a geometric consideration of multinomial proportions, several distances 
have been proposed. The quantity 

has been discussed by BALAKRISHNAN and SANGHVI (1 968). Taking expecta- 
tions for each allele, and summing over all alleles, in the implied case of equal 
sample sizes n gives 

1 2 n - 1  
2n 2n 8, S G 2 = - + -  

so that - h ( l  - G2) might be expected to be close to Qfor large n. Alternative 
expressions may be given in special cases, however, such as that of two alleles 
per locus. The quantity G 2  is bounded below by zero, for populations with the 
same genetic constitution, and above by 2/)=/ (U/  - 1)  for populations with 
no alleles in common. 

CAVALLI-SFORZA and BODMER (1 97 1)  also used geometric arguments in es- 
timating coancestry and gave 

for the equal sample size case. Although we cannot give a formula for the 
expectation off, CAVALLI-SFORZA and BODMER treat it as an estimator of 8, so 
that their distance measure may be taken to be -In(l - f ) .  The quantity f is 
bounded below by zero, for populations that are fixed for the same alleles, 
and above by E, 4 /z /  (VI - 1)  for populations with no alleles in common. 

An approach more similar to the present one was given by LATTER (1981). 
He worked with functions that could be regarded as heterozygosities 
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for m loci. His statistic 

$* = 1 - RZ,>/Bb 
has expectation 

and we could take -En(l - c$*)  as a distance measure. Although O* and 5~ 
have the same expectation for large n, they are different functions unless equal 
sized samples from two populations are taken. In that case, they differ only in 
c$* not having the term 

in the numerator. 

genetic distance (NEI 1973), corrected for sampling bias (NEI 1978), is 
The most widely used genetic distances are those of NEI. His minimum 

which has expectation 
1 
m /=I  

= ea, a = - E ~ 1 1 ~  

for equal sample sizes from two populations. 

inclusion of the bias correction (NEI 1978), 
NEI'S standard genetic distance (NEI 1973) is D = -ln(Z), where, with the 

I), ", 
/ = I  u = I  

(2n - 1) c c p 1 / t 9 2 / 1 r  

I =  {a[% / = I  , ,=I  5 &, - l]}1'2{i /= 1 [ Z n  Zi=l i p;,,, - 1 ] y 2  

Approximating the expectation of the ratio I by the ratio of expectations leads 
to 
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1 - 6  
.!&I = 

1 - (1 - e)&’ 
and, also approximately, 

.!&D = +.!&I = In 1 + 0 - ( A)* 
The disadvantage of quantities such as D,M, I or D as measures of genetic 

distance or similarity for short-term evolution is their dependence on the un- 
known, but estimable, function, a, of allele frequencies in the initial common 
ancestral population. For the drift/mutation model assumed by NEI,  in which 
the ancestral population is assumed to be in equilibrium and a value can be 
given to Cy, this is not a problem. For the pure drift model, however, NEJ’S 
distances appear to be inappropriate. The  dependence on gene frequencies is 
also a problem with the geometric distance proposed by ROGERS (1972): 

JACKKNIFE ESTIMATORS 

It is desirable to be able to provide estimates of the variances of distance 
estimators, using just the information from a single pair of populations. NEI 
and ROYCHOUDHURY (1974) used the ”delta method” to give a variance formula 
for D .  A numerical approach is provided by the jackknife procedure (MILLER 
1974), making use of variation among loci. The  procedure consists of calcu- 
lating the estimates by omitting each of the m loci in turn and then forming 
the variance of these m new estimates. A less biased estimator may also be 
recovered from these new estimates. If g i s  an estimate based on all m loci, 
and 9 is the estimate obtained by omitting locus i, then the variance of &is 
estimated as 

and the jackknife estimator g* is 

SIMULATION STUDY 

Properties of the three estimators 8;”, 8;w, 8, are now compared on the basis 
of some simulations of pairs of populations. The comparisons will be made on 
the distances = - h ( l  - 6) rather than on the coancestries 8. The other 
genetic distances discussed will also be compared with 

A reference population was established by specifying allelic frequencies at 
each of m = 100 loci. Two extreme types of allelic distribution were used, 
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although the same allelic arrays were used for every locus. One extreme used 
two alleles, either with equal frequencies = p r / 2  = 0.5, a/ = 0.500 for all 
i, I )  or with quite different frequencies = 0.8, p,& = 0.2, a/ = 0.340 for 
all i, 1). The other extreme used 200 equally frequent alleles = 0.005 for 
U = 1, 2, . . . , 200, a[ = 0.995 for all i, I). Loci were either unlinked [linkage 
parameter X = 0.0, recombination fraction = (1 - 9/21 or arranged on ten 
chromosomes of ten loci each, with each pair of adjacent loci on a chromosome 
linked to the same extent (A = 0.9). Studies of natural populations do not 
employ as many as 100 loci, but this large number has been used here to put 
statistics close to their expected values. Qualitatively, similar results were ob- 
tained for two loci. The two numbers of alleles used will bracket the numbers 
found in natural populations. 

Population size was set at N = 100, and each replicate population was initi- 
ated (t = 0) independently with 200 gametes carrying alleles drawn randomly 
according to the reference population frequencies. These gametes were paired 
to form 100 parents which were mated in a monoecious fashion to produce 
the first offspring generation, t = 1, with proper regard being paid to linkage. 
The process was continued for 100 generations. In the two-allele case, there 
were 50 replicate pairs of populations, and for the 200-allele case, there were 
48 replicates for the calculation of distances. 

For each replicate pair of populations, the quantities &c, &v, !&, -1n(l - 
G 2 ) ,  -1n(l - f) and D were calculated according to the formulas presented. If 
the Ith locus was fixed for the same allele in both populations of a pair, giving 
6 = O / O ,  that locus was not used in the calculation of gc. Such loci were used 
in the calculation of D, however, and are self-eliminating for 3 5 ,  and &L. 

These loci contain no information about the duration of the drift process. 
Estimates for generations 10, 50 and 100 are presented in Table 1, where 

it is seen that coancestry-based distance, 3 are unaffected by linkage or by 
initial allelic frequencies. Among the three estimators, &+I has the least bias. 
The quality of distances based on G 2  or f diminishes as a increases, but again 
linkage has little effect. NEI’S distance, D, is also unaffected by linkage but is 
greatly affected by initial allelic frequencies. Jackknife estimates differed by no 
more than 1% from the direct estimates for any distance. 

Sample variances for all estimators, shown in Table 2, do show a small 
dependence on linkage, as might be expected. For two alleles, D has the 
smallest variance overall, but it has a substantially greater variance than any 
of the other measures for 200 alleles. Among the g ’ s ,  gc has the smallest 
variance, but the difference in variance between and av is not enough to 
compensate for the larger bias in Bir, and the weighted ratio estimator, &, 
appears to be the distance measure of choice for the drift situation. This is 
confirmed by the smaller mean square errors for a!,. For two  alleles, the 
distances based on G 2  or f have greater variances than do &statistics, with the 
variances decreasing with a. For 200 alleles, however, G 2  gives much lower 
variances than any other measure, whereas f is comparable to 

The jackknife-estimated variances of 3 averaged over replicate pairs of 
populations, are shown in Table 2 and are seen to provide very good estimates 
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TABLE 1 

Estimates of genetic distance simulations of monoecious population of size N = 100 with 
m = 100 loci 

VI = 2 alleles V I  = 2,V alleles 

a, = 0.500 0.340 a[,= 0.995 

x = 0.0 x = 0.9 A = 0.0 = 0.9 x = 0.0 

t = 10 (9 = 0.050) 
3,, 
B w  
A 
-h(1 -f) 
-h( l  - G2) 

D 

t = 50 (9= 0.250) 
9" 
3w  
BL 
-h( l  - G2) 
-In(l - f )  
D 

t = 100 (9= 0.501) 
9" 
3 w  
3 L  

-h( l  - f )  
-h( l  - G2) 

D 

0.045 
0.048 
0.045 
0.054 
0.056 
0.046 

0.212 
0.254 
0.236 
0.287 
0.354 
0.202 

0.369 
0.496 
0.612 
0.589 
1.078 
0.325 

0.047 
0.049 
0.047 
0.055 
0.057 
0.047 

0.207 
D.247 
0.228 
0.278 
0.341 
0.198 

0.371 
0.498 
0.615 
0.595 
1.073 
0.330 

0.045 
0.049 
0.047 
0.054 
0.058 
0.022 

0.187 
0.255 
0.260 
0.242 
0.375 
0.101 

0.331 
0.507 
0.672 
0.495 
0.983 
0.170 

0.045 
0.049 
0.048 
0.054 
0.058 
0.022 

0.183 
0.246 
0.251 
0.235 
0.361 
0.097 

0.333 
0.506 
0.661 
0.498 
0.996 
0.173 

0.050 
0.050 
0.050 
0.034 
0.067 
2.381 

0.252 
0.252 
0.249 
0.148 
0.321 
3.890 

0.505 
0.507 
0.500 
0.319 
0.786 
4.558 

of the variances (over replicates) of the .&s and of D. In the two-allele cases, 
the jackknife variances of D differed from those obtained from the formula of 
NEI and ROYCHOUDHURY (1974) by less than 1% of their values. In the 200- 
allele case, however, the formula gives variances (X104) of 57.582, 894.268 
and 2663.054 in generations 10, 50, and 100, respectively. 

DISCUSSION 

Distances based on the coancestry coefficient are designed to measure the 
divergence between populations that is caused by drift. For this reason, .9is 
considered here to be an appropriate distance for short-term evolution when 
mutation can be neglected, and for this reason also, !9is expected to be better 
in smaller populations. 

It is essential to realize that 8 is defined for genes within populations (and, 
with a, gives the covariance between genes within populations) but can only 
be estimated from data on more than one population (since, with a, it gives the 
component of variance between populations). The use of 53 as a distance 
measure is, therefore, dependent on the drift model, just as NEI'S D is de- 
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TABLE 2 

Observed (and jackknije estimates) variances X IO4 of genetic distance simulations o/ 
monoecious population of size N = 100 with m = I O 0  loci 

VI  = 2 alleles v, = 2N alleles 

a, = 0.500 ai = 0.340 ai = 0.995 

x = 0.0 A = 0.9 x = 0.0 x = 0.9 x = 0.0 

t - 1 0  
9" 0.520 

(0.471) 
0.746 

(0.444) 
0.361 

(0.420) 
0.496 

(0.41 1) 
0.022 

(0.007) 

0.644 
(0.566) 

0.520 
(0.47 7) 

0.870 
(0.520) 

0.744 
(0.449) 

0.508 
(0.593) 

0.555 
(0.61 1) 

0.676 
(0.570) 

0.684 
(0.596) 

0.022 
(0.007) 

0.022 
(0.007) 

-In(] - C2) 0.7 15 
(0.627) 

0.797 
(0.691) 

0.971 
(0.580) 

1.058 
(0.634) 

0.461 
(0.544) 

0.629 
(0.755) 

0.112 
(0.131) 

0.641 
(0.529) 

0.851 
(0.7 19) 

0.157 
(0.130) 

0.004 
(0.000) 

-h(l - f )  0.016 
(0.004) 

75.118 
(58.2 17) 

D 0.695 
(0.5 18) 

0.800 
(0.474) 

t = 50 
3" 7.204 

(6.290) 

11.372 
( 1 0.7 94) 

6.463 
(6.040) 

2.699 
(4.952) 

6.314 
(4.603) 

0.761 
(0.485) 

B w  9.810 
(1 0.004) 

10.360 
(10.876) 

6.885 
(1 2.2 13) 

11.150 
(20.308) 

17.046 
( 10.87 5) 

25.997 
(1 7.676) 

0.761 
(0.482) 

0.686 
(0.441) 

BL 12.643 
(1 2.145) 

-In(I - C2)  18.171 
(1 6.54 1) 

38.925 
(36.296) 

15.818 
(15.256) 

35.924 
(31.799) 

5.763 
( 10.230) 

19.103 
(32.830) 

14.322 
(9.340) 

52.022 
(30.155) 

0.110 
(0.064) 

- h ( l  - f )  0.623 
(0.366) 

956.056 
(1044.249) 

D 7.996 
(7.512) 

7.286 
(7.065) 

1.795 
(2.707) 

3.239 
(2.4 2 4) 

t =  100 
BU 

B w  

19.966 
(1 6.2 18) 

37.712 
(33.146) 

14.730 
(1 6.529) 

28.705 
(33.264) 

12.644 
(20.712) 

14.511 
(20.309) 

2.932 
(3.13 1) 

31.007 
(41.971) 

43.950 
(40.305) 

3.007 
(3.079) 

2.967 
(3.063) 

153.281 
(148.1 11) 

132.027 
(1 53.3 14) 

149.603 
(207.781) 

184.229 
(189.759) 
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TABLE 2-Continued 

V I  = 2 alleles VI  = 2N alleles 

ai = 0.500 a, = 0.340 al = 0.995 

A = 0.0 x = 0.9 A = 0.0 A = 0.9 A = 0.0 

-h( l  - G2) 86.474 68.883 46.367 56.033 0.857 
(75.169) (76.345) (55.132) (54.726) (0.707) 

-h(l -f) 759.133 500.244 342.132 473.322 8.735 
(753.122) (624.520) (445.382) (463.697) (7.271) 

D 19.356 19.562 9.460 9.345 4903.369 
(18.561) (18.945) (8.398) (8.394) (4516.063) 

pendent on the mutation model assuming mutation drift equilibrium. The 
distances of BALAKRISHNAN and SANGHVI, CAVALLI-SFORZA and BODMER, and 
LATTER are also appropriate for the drift model since they serve as estimates 
of 0. The expectation of 9 is proportional to time since divergence of the 
replicate populations being studied, athough under the drift-only model, the 
expectation of D is confounded by the function at of initial gene frequencies 
[at = 1 - J(0) in the notation of NEI (1978)l. This unknown function is, by 
design, removed from the coancestry distance measure; if it were known, as 
required for use of D, then better estimates of time could be obtained from 
each population separately. In the mutation model, the expectation of D de- 
pends only on time and mutation rate if values of ti are assumed. It should be 
stressed that allelic frqeuencies in the ancestral population are neither esti- 
mated nor assigned a value for the coancestry distance. 

Although CW is eliminated, bias in some of the estimates is not eliminated. 
For any single locus and two alleles, the components a/ and b, are correlated 
random variables, and bias is introduced by regarding the expectation of a// 
(a/ + br) as the ratio of the expectations of a/ and (a/ + b , ) .  Consequently, &, 
is much two small (Table 1). When loci are combined in a weighted way, 
however, (a/ + h)  each become very good estimators of mat0 and 
mti, respectively, since elements are much less correlated between loci. Table 
1 shows that % does indeed perform very satisfactorily. 

Weighted averages over alleles have also been used. Each allele, U, could be 
used separately to estimate pl,(l - p/,)8 and p/,,(l - PI,) (COCKERHAM 1973). 
For two alleles, the frequencies of the alleles are perfectly correlated, but the 
correlations reduce as the number of alleles increases, being -1/199 for any 
pair of 200 equally frequent alleles. The same improvement from weighted 
averages noted for loci holds for alleles, as can be seen in the marked improve- 
ment of Qu and some improvement in the other L@s for the 200 alleles in 
Table 1. 

The quantity -Zn(l - G2) is seen to provide a reasonable estimate of 8 in 
the two-allele case, with some improvement for initial gene frequencies away 
from 0.5. Note that LATTER (1973b) increases G 2  by a factor of two, which 
increases the bias. In the 200-allele case, -In(l - G 2 )  seriously underestimates 

a/ and 
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B. For such cases, pairs of populations can be expected to share few, if any, 
alleles and G 2  will tend to be near its bound of 

MUELLER’S (1979) application of the jackknife to D involved random sam- 
pling of loci, with replacement, from published data sets. Bias and variance 
were evaluated with reference to values for the data sets. The jackknife esti- 
mate D* and the original estimate D were very similar in our  simulations, and 
the jackknife cannot reduce the dependence of D on initial gene frequencies. 

The one-stage sampling of loci employed by MUELLER (1979) dealt only with 
multinomial sampling variance. A significant finding in this study is that jack- 
knifing over loci provides a satisfactory estimate of the variance for populations 
that have diverged for many generations. Although the simulations showed 
little difference between original and jackknifed estimates of 9, there is an 
expected improvement from jackknifing which becomes more important as the 
number of loci becomes smaller. 

Estimators and measures were compared for simulated, rather than actual, 
data to ensure that the comparisons were being based on the drift situation. 
LATTER has used coancestry for data from populations of humans, Drosophila 
and prawns (LATTER 1973b, 1981; MULLEY and LATTER 1981). 

Only one mating system has been used in this paper, namely, monoecy with 
random selfing, although a more general machinery has been established (REY- 
NOLDS 1981). In practice, however, this system should provide a good approx- 
imation to all randomly mating systems (such as dioecy) with substitution of 
the appropriate effective population size for N in the recover of time of di- 
vergence. A more general discussion, allowing for differences between inbreed- 
ing and coancestry, is given by B. S. WEIR and C. C. COCKERHAM (unpublished 
results). 

Finally, it should be stressed that this discussion began with the identification 
of a parameter, 0, of interest. This parameter is unaffected by factors such as 
the numbers of replicate populations, loci or alleles. With 0 identified, the 
properties of data functions that serve as estimators of B were investigated. This 
is quite a different philosophical approach to one that starts with data func- 
tions, such as the other distances described here, and investigates their de- 
pendence on the above, or other, factors. 

This is paper no. 8312 of the Journal Series of the North Carolina Agricultural Research 
Service, Raleigh, North Carolina. This investigation was supported in part by National Institutes 
of Health Research grant GM 11 546 from the National Institute of General Medical Sciences of 
the USA. 
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