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ABSTRACT 

Self-fertilization and crossing were combined to produce a large number of 
levels of inbreeding and of degrees of kinship. The inbreeding effect increases 
with the complexity of the character and with its supposed relationship with 
fitness. A certain amount of heterozygosity appears to be necessary for the 
expression of variability. With crossing of unrelated noninbred plants, genetic 
variance is mainly additive, but with inbreeding its major part is nonadditive. 
High additivity in crossing, therefore, coexists with strong inbreeding depres- 
sion. However, even in inbreeding the genetic coefficient of covariation among 
relatives appears to be strongly and linearly related to the classical coefficient 
of kinship. This means that deviations from the additive model with inbreeding 
could be partly due to an effect of inbreeding on variances through an effect 
on means. An attempt to analyze genetic effects from a theoretical model, 
based upon the identity by descent relationship at the level of means and of 
covariances between relatives, tends to show that allelic interactions are more 
important and nonallelic interactions are less important for a character closely 
related to fitness. For a complex character, these results lead to the conception 
of a genome organized in polygenic complementary blocks integrating epistasis 
and dominance. Some consequences for plant breeding are also discussed. 

H E T E R O S I S ,  or its corollary of inbreeding depression, plays as important 
a role in natural selection as it does in artificial selection. In spite of 

molecular genetic advances, however, the explanation of heterosis at the whole 
organism level has not progressed much since the first studies (SHULL 1914). 
The study of heterosis has relevance for population and quantitative genetics 
and for biochemical, physiological and ecological genetics. In this paper I use 
a biometrical approach for studying the phenomenon at the level of a single 
population, and I examine the influence of mating system (inbreeding followed 
by the crossing of unrelated individuals) on the means and variances of several 
quantitative characters. I hope that such studies will lead to testable hypotheses 
regarding the organization of the genome caused by natural selection, with 
concomitant implications for plant breeding. 

Although the effects of heterosis or inbreeding are often studied for means, 
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it is known that variances are also affected and must be considered in studies 
of natural or artificial selection. The partitioning of variances into components, 
for inbred populations, and the expression of covariances for inbred relatives, 
rests on the parameters developed by GILLOIS (1964) and HARRIS (1964). This 
theory has been extended to include autotetraploids by J. BOUFFETTE (1966), 
A. BOUFFETTE (1 966) and GALLAIS (1 967, 1974). 

Although the autotetraploid plant, Medicago sativa L. is treated in this paper, 
the conclusions are general. Only mean results will be given, since details have 
appeared previously (GALLAIS 1976b, 1977b). 

MATERIALS AND METHODS 

I~zbreeding phase material dmelopment: The aim was to develop many levels of inbreeding and 
kinship for the naturally cross-fertilized autotetraploid plant M. sativa L., variety Du Puits. Figure 
1 shows how the inbreeding phase was developed. From the Du Puits population, 84 plants (Sh) 
were divided into four groups of 20-22 and were crossed, with emasculation, to give So families 
with each plant being used once as a male and once as a female. From each SO family, one plant 
was self-fertilized to initiate an S pedigree by single seed descent to S I ,  and two plants were 
crossed, with emasculation, to initiate an S(FS) pedigree. This was also inbred by single-seed descent 
until Ss(FS). Two half sib SO plants, one from each of two consecutive SO families, were crossed to 
give an HS family. Finally, S6 plants were selfed to give the Si family from which Si families were 
derived. 

This procedure led to ten inbreeding levels and 130 degrees of kinship. The Ss(FS) level was 
lost because of high sterility levels, which also caused a reduction in size and number (31 from 
84) of the S d  families. The inbreeding coefficients varied from 0 to 0.52, and quadrigenic identity 
probabilities (GALLAIS 1967) varied from near 0 to 1. Kinship levels (MALECOT 1949) varied from 
0.06 to 0.57. 

Crossing phase inaterial dmelopment: Unrelated plants at the same inbreeding levels (SO, SI ,  S2 or 
Ss) were crossed in the following designs, expressed in the notation of COCKERHAM (1963): 

\ 

FIGURE 1 .-Diagrammatic representation of the development of the material for the inbreeding 
phase (broken lines surround related families that were grouped in the split-plot design for field 
testing). 
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(1). So X So in design A/B (two A plants for each B) and design (A/B) (C/D) (seven sets of two 
A plants for each two B plants, and two C plants for each two D plants). This gives five different 
levels of covariances between relatives. 

(2). SI X SI ,  S2 X S2, Ss X Ss in design A/B (three A plants for each B). This gives 14 different 
covariances: half sibs and full sibs within each level SI, S2, Ss, and eight types of relatives within 
and between levels S, and Sp as shown in Figure 2. 

This crossing phase provides four levels of inbreeding with inbreeding coefficients ranging from 
0 to 0.14 (crossing unrelated plants does not completely remove inbreeding for autotetraploids). 
It also provides 19 types of relatives, with kinship coefficients ranging from 0.15 to 0.28. 

Inbreeding phase field testing (1971-1972): For both inbreeding and crossing phases, seedlings 
were raised in a glass house before transplantation in the spring (mid-April). The two phases were 
tested separately. 

Inbred families were studied in a split plot design with three replicates. The group of related 
families from So and S i  formed the first level, and degree of inbreeding formed the second level. 
There was a systematic classification of families within plots according to inbreeding level in order 
to avoid interference among rows of different inbreeding levels (we verified later that there was 
no such interference). Each main plot was separated by one row of the reference population, 
whereas each subplot consisted of one row of ten plants with 50 cm between plants. 

For dense sward studies, each of the ten inbreeding levels was studied with 10 cm between 
plants, 20 cm between rows in sets of three rows (two guard rows for the central row harvested). 
There were six replications. This was done for a mixture of all families with the same inbreeding 
level, whereas a separate dense sward study used 46 families at the ten inbreeding levels, with one 
row per plot and three replications. 

During the development of the generations, the number of seeds per plot, the weight of seeds 
per pod and the weight of 100 seeds were observed. The heights of seedlings were observed for 
each family before transplantation. Since these characters were observed without a proper exper- 
imental design, environmental effects may be confounded with generation (inbreeding) effects. 

FIGURE P.-Kinships in the crossing phase others besides half sibs and full sibs (related individ- 
uals are surrounded by a small rectangle). 
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For spaced plants in the field, green matter yield was observed for three cuts in the seedling 
year and for the first two cuts of the following year. Plant height was measured for the first two 
cuts of the seedling year. Only its log transformation, total green matter yield and average height 
will be considered here. Only green matter yield was observed in the dense sward conditions. 

Crossing phase field testing (1973-1974): The aim in this phase was to estimate combining ability 
variances for each of the levels SO, S I ,  S p  and SS. A trial was developed in four replications split 
for the level of inbreeding. Each plot had one row of ten plants with 50 cm between plants and 
rows, Plots of the reference Du Puits population were systematically replicated in each trial. 

Green matter yield was observed in the three cuts of the seedling year and in the first two cuts 
of the following year. The total yield, its log transformation and plant height in the first cut of 
the seedling year will be considered. 

In both inbreeding and crossing phases, covariances of relatives within an inbreeding level were 
estimated through analysis of variance, and covariances between inbreeding levels were estimated 
from the covariances between means of related families. 

Genetic interpretation of satnple moments: The general structure of expressions for means and 
covariances will be stated here-theoretical details were given by J. BOUFFETTE (1966) and by 
GALLAIS (1967, 1974, 1976b). 

The mean cc,,, of an inbred population is written as 

Sb = S + 1 P,,.E(X), + en 

where p is the mean of an equilibrium random mating population with the same gene frequencies, 
and i indexes possible interactions among the genes, with E(X) ,  denoting the appropriate expec- 
tation and P#,!, the appropriate coefficient of identity by descent. If i represents a digenic interaction 
for example, P,,,> will be the classical inbreeding coefficient F. The generation is denoted by n ,  
and e,, represents departures from the model. 

Covariances between relatives Z,, and Z,,,,, in generations n and n',  can be written as 

cov(Z,,, Zp) = ,Z \l.,(n, n')E(XtXz), + e,,., 

where E(XIX*), is now the expectation of the product of two types of genetic effects and $,(n, n') 
the corresponding identity coefficient. For example, if X ,  and X2 represent additive effects, E(XIXz)  
will be an additive covariance and $(n, n' )  the usual coefficient of kinship. 

If the number of observations is sufficiently much greater than the number of parameters, then, 
it will be possible to estimate the parameters and test the goodness of fit of the models, including 
a comparison between restricted and more complete models. Unweighted least squares analyses 
have been used (results from weighted least squares, HAYMAN 1960, were very similar), and such 
estimates are not minimum variance since some covariances between mean products involved the 
same branch of a family (CHI, EBERHART and PENNY 1969). Least squares analyses also give high 
correlations between the estimates of some of the coefficients of identity and kinship (GALLAIS 
1976a). For covariances, stepwise regression was also used to study the predictive value of some 
kinship coefficients. 

In the absence of epistasis, the one-locus tetraploid model without restriction on allelic inter- 
actions will be denoted M4; without interactions among groups of four alleles, the model will be 
denoted M3; with interactions only between pairs of alleles, it will be denoted M2. When allelic 
interactions are only between pairs of alleles, and epistasis is only digenic by digenic, the model is 
denoted M 2  X M2. 

, 

RESULTS FOR INBREEDING PHASE 

Means: Inbreeding has a strong effect on overall green matter yield in spaced 
plants: there is a 30% depression in the first generation of selfing and 70% in 
the fourth. There is less effect on plant height and green matter yield in 
competition: about 20% depression in the first generation for each character. 
Among the seed or seedling characters, the number of seeds per pod is strongly 
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affected with 55% depression in the first selfing generation; the weight of 100 
seeds first increases and then decreases, whereas seedling height behaves sim- 
ilarly to adult height. 

Although there is no information on experimental error, the 100-seed 
weight could be accounted for partly by maternal effects, with SI seed sizes 
being determined by So rather than SI genetic parameters. This has been 
demonstrated by DESSUREAUX and GALLAIS (1971) and DATT~E (19'74) but 
cannot explain the increase from So to SI (Table 1). Such a change could result 
from a negative relationship between seed size and numbers of seeds per pod. 
A favorable inbreeding effect due to tiller size and numbers of tillers being 
negatively related, with a strong inbreeding effect on tiller number, has been 
observed in cocksfoot (GALLAIS and GUY 1970). 

Model M4 (no epistasis) explains 99.8% of the variation among inbreeding 
levels for yield and height, but deviations from this model are significant (0.0 1 
< P < 0.05) for yield and for height (P = 0.01). These deviations could be 
due to epistasis which appears greater for height than for yield. This tends to 
be confirmed by a greater reduction of these deviations for height (0.01 < P 
< 0.05) than for yield (0.05 < P < 0.10), by "digenic heterozygous X digenic 
heterozygous" epistasis. 

The reduction in residual sum of squares for model M2 by allowing triallelic 
interactions (model M3) is greater for yield than for height (Table 2). Further 
significant reduction, for both characters, results from allowing quadriallelic 
interactions. This latter effect may be due to digenic by digenic epistasis be- 
cause there is a high correlation between identity coefficients associated with 
quadrigenic effects and those associated with such epistatic effects. 

Seedling height is entirely explained by the digenic model, and other seed- 
ling characters show significant maternal and embryonic effects (Table 3), with 
a greater maternal effect for seed size. 

Variances and covariances: Table 4 shows that, for yield, the variance among 

TABLE 1 

Effect .f inbreeding on means 

Level of 
inbreeding Characters in spaced plantsa 

Weight 
Genera- Yield in of 100 Seeds Seedling 

tion F Yield Height Log yield dense sward seeds per pod height 

so 0 100 f 1.9 100 f 0.9 l o o +  0.2 100 f 5.0 100 100 100 
HS 0.04 92.2 f 3.0 94.3 f 1.6 98.7 f 0.8 
So (FS) 0.08 87.0 f 1.4 92.2 f 0.6 97.5 f 0.3 87.1 f 4.5 105 87.3 95.4 
SI 0.17 68.4 f 1.2 81.2 f 0.6 95.3 f 0.1 81.8 f 6.2 103.5 45.2 91.0 

sz 0.31 40.4 f 1.2 59.4 f 0.7 88.3 f 0.4 57.6 f 5.0 92.3 26.0 76.6 
Si (FS) 0.36 36.5 f 2.0 56.1 f 0.9 85.1 f 0.9 88.6 20.0 68.5 
s3 0.42 24.7 f 1.9 48.3 f 1.0 82.3 f 1.0 84.4 19.7 67.6 
S4 0.52 24.3 f 2.6 47.7 f 1.6 82.3 f 1.3 76.8 15.0 58.5 

SI  (FS) 0.24 56.1 f 1.9 71.9 f 1.0 92.7 f 0.4 63.6 f 3.1 98.5 29.2 83.8 

With 95% confidence interval. 
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TABLE 2 

F values vf the test vf reduction vf deuiativiis frvm digenic model (MZ) by M 3  and M 4  

Weight of 100 Seedling 
Test d.f. Yield Height seeds Seeds/pod height 

Dev 2-M3“ 1 11.3* 3.6(*’ 21.5** 31.9** 1.5 
Dev 2-M3” 1 38** 40** 430** 71.2** 1.9 
Dev 2-M4 3 IS** 35** 185** 26.9** 1.9 
Dev 3-M4 3 8* 33** 60** 4.8‘*’ 2.1 

Dev 2, Dev 3 are deviations from M2 or M3 models. ( I ) ,  Test on Dev 3 with 6 d.f.; (2), test 

“Test on Dev 3 with 6 d.f. 
”Test on Dev 4 with 4 d.f. 
**, *, (*) significant at 0.01, 0.05, 0.10, probability level, respectively. 

on Dev 4 with 4 d.f. 

TABLE 3 

Test vf influence vf invther plant (MP) 

Test 
Weight of Seedling 

Yield Height 100 seeds Seeds/pod height 

** NS 
** NS 

MP after embryo (E)” NS NS ** 
F (FMp after FE)’ NS NS ** 
r with FE 0.982 0.983 0.931 0.914 0.993 
r with FMp 0.9 13 0.930 0.992 0.782 0.975 
r with (FE,  FMP) 0.998 0.985 0.995 0.980 0.996 

~ ~ 

FE, F M p :  coefficient of inbreeding of the embryo and of the mother plant, respectively. r = 

Test F with model M4 for the embryo and first parameter of mother plant introduced by 
coefficient of simple or multiple correlation. 

stepwise regression. 
” Test with model M2 for mother plant and embryo. 
** Significant at the 0.01 probability level. NS = not significant. 

inbred families increases from level So to level SI(FS) and then decreases sig- 
nificantly. There appears to be an optimum level of inbreeding for the expres- 
sion of variance. For height the same tendency is observed; however, the 
optimum appears to be at a higher level of inbreeding. The log transformation 
of yield tends to suppress the observed optimum and reveals a high increase 
in variance from So(FS) to S2(FS), followed by a plateau. Such linearization is 
also observed if we consider the genetic coefficient of variation: it increases 
from level So to level Sq. The behavior of yield with competition, as for means, 
is more similar to that of height than to that of yield: it increases from levels 
so to s*. 

When we consider all covariances between relatives for yield and height, 
only 41 % of their variation is explained by the classical coefficient of kinship 
(#). The log transformation for yield increases this degree of determination to 
69%. Furthermore, if, instead of the covariances, we consider the genetic 
coefficient of covariation (GCC) among relatives, i .e. ,  the square root of the 
covariances, assumed positive, divided by the product of the generation means 
of the two related zygotes, the classical coefficient of kinship # explains 81% 
of the variation. Because the intercept of the regression of GCC on $ is not 
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different from zero, it appears possible to approximate the covariance between 
two inbred relatives ZI,  ZJ with generation means PI and PJ by 

COV(Z,, Zj) = C+;i PIPJ 

(C being a constant). This is a very simple expression of covariances between 
inbred relatives, with a low number of parameters, in contrast to the number 
necessary with the classical formulation (GALLAIS 1976b). For example, five 
components of variance or covariance are necessary with the digenic model 

Without transformation for yield and height, there is also a high correlation 
between the covariances and the coefficient of kinship +( i jk  I i j k ) ,  i .e . ,  the prob- 
ability of three nonidentical alleles in one zygote being identical with three 
alleles drawn in the other zygote. The correlation is higher for yield than for 
height, 0.90 and 0.77, respectively (Table 5) .  

(M2). 

TABLE 4 

Effect of inbreeding on genetir vririances among independent inbred families, gzving the 
value 1 to SO variances 

Yield in sward Log Yield" Height' 
yield 

Level of Vari- Vari- vari- Yield Vari- 
inbreeding $ Ll ance Lu L1 ance Lu ance" GCV" L1 ance Lu 

S O  0.12 0.7 1 1.3 0.7 1 1.4 1.0 1.0 0.6 1 2.2 

SI 0.25 1.2 1.4 1.8 1.3 1.7 2.1 3.8 1.7 0.8 2.1 4.0 
SI (FS) 0.31 1.3 1.7 2.4 1.8 2.4 3.4 8.8 2.3 2.9 4.9 8.7 
SP 0.37 1.0 1.3 1.7 1.7 2.3 2.8 11.5 2.8 3.8 5.9 9.4 

s3 0.48 0.7 1.0 1.5 1.3 1.8 2.5 22.0 4.1 
S4 0.57 0.5 0.8 1.3 0.5 1.0 1.8 23.0 3.6 

So (FS) 0.19 1.1 1.4 1.7 0.9 1.1 1.5 1.8 1.3 0.7 1.2 3.0 

Sp (FS) 0.43 0.8 1.1 1.6 2.0 2.7 3.8 32.0 2.9 

For yield in spaced plants, height and yield in sward, 90% confidence interval LI-Lu is given. 
is the classical coefficient of kinship. 

Characters in spaced plants. 

TABLE 5 

Correlations between covariances and some coeficients of kinship 

Yield in dense 
Coefficient of kinship" Yield Height Log yield sward 

0.64 
0.33 
0.74 
0.35 
0.55 
0.90 
0.32 
0.66 

0.64 
0.25 
0.70 
0.28 
0.53 
0.77 
0.20 
0.40 

0.83 
0.79 
0.85 
0.78 
0.90 
0.62 
0.73 
0.12 

0.89 
0.79 
0.89 
0.73 
0.83 
0.78 
0.69 
0.30 

~ 

a A letter represents a class of identity by descent, and vertical trait separates genes of one 
individual from those of its relative. 
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Covariances in dense sward are highly related to the simple coefficient of 
kinship ( r  = 0.89); however, we must note that there are only 30 covariances 
without level Sq. 

Model M2 explains 86, 84 and 76% of the variation for yield in spaced 
plants, log yield and height of spaced plants, respectively. Reductions of the 
deviations from the additive model by M2 have not been tested, because they 
are obvious for yield and height. Model M3 explains 90, 89 and 78% of the 
variation for yield, log yield and the height, respectively. Reduction of devia- 
tions from M2 is highly significant and at about the same level of significance 
in spaced plants for yield and height. It is not significant for yield in dense 
sward. Model M4 was not tested due to its great number of parameters. 

For model M2 X M2, the reduction of deviation from M2 is more significant 
for height (F = 6.5) than for yield (F = 3.8). This tends to confirm a greater 
effect of digenic by digenic epistasis for height than for yield. The reduction 
is also significant for yield in dense sward (P < 0.01). If we consider this 
character to be clearly related to height in spaced plant (GUY 1970), this also 
supports the presence of epistasis for height. 

Due to the great number of parameters in M3, M4 and M2 X M2 models, 
it is difficult to estimate the variance and covariance components. Another 
difficulty is due to the interdependence among coefficients of kinship (GALLAIS, 
197613) which induces a high variance of the estimators. Hence, the parameters 
were not estimated, and they are less important than the model testing. 

The effect of the log transformation on yield is to decrease inbreeding 
depression and to increase the dependence between second degree statistics 
(variances and covariances) and the classical coefficient of kinship. As expected, 
it increases mainly the weight of interactions between identical alleles (Table 
5). Its main effect can be interpreted as a correction for scaling. Indeed, in 
spite of the fact that residual errors do not increase with level of inbreeding, 
and of the near-normal distribution of phenotype values of families with the 
same level of inbreeding, it is clear that, in absolute value, weak (highly inbred) 
plants cannot vary as much as vigorous (noninbred) plants. It is remarkable 
that the genetic coefficient of covariation (i.e., the correction of covariance for 
differences in means) greatly increases, more than the log transformation, the 
dependence between covariance and coefficient of kinship. The effects of such 
transformations can also reflect the presence of multiplicative effects for yield. 

RESULTS FOR CROSSING PHASE 

When expressed in relative values, the means of the crossing phase (Table 
6) appear on the same curve relating means to the coefficient of inbreeding F 
as those of the inbreeding phase (Table 1). This shows that if there is some 
genotype x year interaction-as crossing phase was disconnected in the time 
of inbreeding phase-it does not affect the relative means. It is verified (GAL- 
LAIS 1967) that the more inbred the parents the weaker the single crosses. 
The difference between So X SO and S3 X S3 is about 25%. 

For variances, the main result is the absence of significance for the specific 
combining ability variance. On the average (Table 7), the covariance between 
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TABLE 6 

Effect of inbreeding 011 the perfrinances of crosses in relative value and with 95% 
conjidence interoals 

Level of inbreeding 

Generation F Yield Height 

so x Sa 0 100 f 2.0 100 f 1 . 1  
SI x s, 0.06 93 f 2.2 94 f 1 . 1  
ss x SP 0.10 85 f 1.8 91 f 1.0 
ss x ss 0.14 73 f 2.7 85 f 1.7 

TABLE 7 

Effect of inbreeding on covariances between half sibs (HS) and full sibs (FS), giving the 
value 1 io covariance between So X So halfsibs 

Level of 
inbreeding Yield Height Log yield 

Genera- 
tion cov HS cov FS cov HS cov FS cov HS cov FS 

So X So 0.06 1.0 f (0.3) 1.5 +. (0.3) 1.0 f (0.5) 2.6 f (0.5) 1.0 f (0.4) 1.4 f (0.4) 
SI X SI 0.09 1.2 f (0.6) 1.9 f (0.7) 2.1 f (8.9) 3.0 f (1.0) 1.7 f (0.8) 2.7 f (0.9) 
S p  X Sp 0.12 0.8 f (0.5) 2.8 f (0.6) 0.4 f (0.4) 1.8 f (0.5) 2.1 f (1 .1)  4.8 f (1.2) 
Ss X Ss 0.14 0.9 f (0.7) 1.3 +- (0.8) 1.3 f (0.9) 2.6 f (1.5) 2.7 f (1.5) 4.9 f (1.8) 

Mean of co- 1 .o 1.9 1.2 2.5 1.9 3.5 
variances 

The standard deviation of the estimate is given in parentheses. 

full sibs is twice the covariance between half sibs, as expected if genetic vari- 
ance is mainly additive. Variation in this relation according to the level of 
inbreeding appears due to a lack of accuracy. Such a lack of accuracy could 
explain why, for yield and height, an increase in the covariances with increasing 
level of inbreeding of the parents is not observed. 

With the assumption of the absence of specific combining ability, estimates 
of the covariance between half sibs (general combining ability variance) are 
more accurate (Table 8). For yield, there is an increase from So X So to S2 X 
S2, followed by a decrease at the S3 X S3 level. A change in variance for height 
also appears if we exclude anomalous values of the SS level. The log transfor- 
mation for yield clearly shows, as for direct estimates, an increase in general 
combining ability variance from So X So to S3 X S3. Such an increase is also 
observed for yield and height if we consider the genetic coefficient of variation 
of the general combining ability. 

The relationship between all of the 19 covariances estimated in the crossing 
phase and the simple coefficient of kinship I) is generally very high (r  = 0.81, 
0.90, 0.78 for yield, log yield and height, respectively). This confirms the 
nonsignificant specific combining ability variances, i .e. ,  a great importance of 
additivity. This is quite different from the result of the inbreeding phase. 
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TABLE 8 

Estinirition of the general cotnbining ability variance 

so x s o  SI x SI s 2  x sz s s  x s s  

Yield 1.0 f (0.3) 1.3 f (0.4) 1.6 f (0.5) 1.0 +. (0.4) 
Log yield 1.0 f (0.3) 1.9 f (0.4) 3.1 f (0.6) 5.2 f (1.0) 

GCV yield 1 .0 1.2 1.5 1.4 
GCV height 1 .0 1 . 1  1 .0 1.3 

Height 1.0 f (0.2) 1 . 1  f (0.2) 0.8 f (0.2) 1.2 f (0.2) 

The assumption is made that specific combining ability variance is zero giving the value 1 to 
So X Sa level. General ability variance is the relative genetic coefficient of variation of GCA. Values 
in parentheses are the standard deviations of the estimates. 

As expected from the effect of log transformation and from the study of 
the genetic coefficient of variation of general combining ability, the GCC 
among relatives is, as in the inbreeding phase, strongly related to the classical 
coefficient of kinship + ( r  = 0.85). However, it appears that the relationship is 
not of the same form. The square of the GCC, i .e . ,  the covariance divided 
by the product of the two generations’ means, is more related to the coefficient 
of kinship J/ ( r  = 0.90), and the intercept of the regression on 1c/ is not different 
from zero, which was not the case with regression of GCC on +. Therefore, 
under crossing, it appears possible to write the covariance between two inbred 
relatives ZI ,  Z, with generation means PI  and P, as 

cov ZIZJ = c+UPIPJ - 
Model M2 explains 8 1, 88 and 8 1 % of the variance among covariances for 

yield, log yield and height, respectively. Reductions of deviations from the 
additive model are significant for the three characters. 

The reduction of deviations of M2 by some parameters of the model M3, 
introduced by stepwise regression, is greater for yield (F = 4.7, 0.01 < P < 
0.05) than for height (F = 2.5, P = 0.10), whereas some parameters of the 
M2 X M 2  model reduce these deviations more for height (F = 4.7, 0.01 < P 
< 0.05) than for yield (F = 3.6, 0.05 < P < 0.10). Then, as in the inbreeding 
phase, epistasis appears more important for height than for yield. 

DISCUSSION 

The effect of inbreeding on means and variances: In studies of inbreeding effects 
in cross-fertilized organisms (LERNER 1954; FALCONER 1961), it is generally 
observed that characters highly correlated with fitness are more affected by 
inbreeding depression. In lucerne, if we accept that yield and seeds per pod 
are more related to fitness than height, this is also verified. The difference 
between yield and height in their relationship with natural selection could also 
explain why, for means, interactions between more than two alleles appear 
more important for yield than for height. Indeed, natural selection can favor 
interactions only between alleles of degree greater than the level of ploidy of 
the gametes. 

Also, for variances, height and yield have a different behavior. For yield, it 



HETEROSIS VS. INBREEDING 133 

appears that there is an optimum level of inbreeding for the expression of the 
variability, but such an optimum is not so clear for height. The presence of 
an optimum level of inbreeding could be interpreted as the result of two 
phenomena with increasing levels of inbreeding: a direct favorable effect due 
to segregation and an unfavorable effect due to a relationship between means 
and variances. As the inbreeding effect is greater for yield, this could explain 
why an optimum is observed for a lower level of inbreeding for yield than for 
height. 

It is remarkable that the ucorrectionn of covariances by the differences in 
means of the two relatives, through the genetic coefficient of covariation, 
allows an explanation of the covariances among inbred relatives with only the 
classical coefficient of kinship. So, after elimination of inbreeding effect on 
means, results of inbreeding, and crossing phases show a high additive variance. 
Without such a transformation the nature of the genetic variance under in- 
breeding and crossing appears quite different, and many parameters are nec- 
essary to describe it under inbreeding (GALLAIS 197613). 

The statistical relationship between the square of the genetic coefficient of 
covariation and the classical coefficient of kinship does not seem the same in 
the two phases: it appears curvilinear for inbreeding and linear for crossing. 
As the two phases were disconnected, it is not possible to have a precise test 
of this difference, and genotype X environment interactions could explain it. 
Furthermore, we have to consider a direct effect of inbreeding on variances 
and covariances, unexplained by the change in means and the classical coeffi- 
cient of kinship. The curvilinearity under inbreeding could be due to a greater 
effect of dominance or epistasis than in crossing. 

T o  generalize our results to face the difficulty of estimating variance com- 
ponents under inbreeding, due to a great number of parameters [see GILLOIS 
(1964) and HARRIS (1964) for diploids], we propose to apply the classical 
decomposition of covariances between noninbred relatives to the square of the 
genetic coefficient of covariation among inbred relatives. We do not know of 
experiments with inbred and noninbred relatives to compare with our results 
and to see the general value of our proposal. However, it is based on a rela- 
tionship between means and variances under inbreeding that can be considered 
as general for species with marked inbreeding effects. Hence, it could be 
efficient for prediction purposes in plant or animal breeding schemes that use 
inbreeding. 

Epistasis and the importance of additivity in crossing: For means or covariances 
in the inbreeding phase, as in the crossing phase, there is a tendency to have 
more epistasis for height than for yield. This is the opposite of what was 
expected on the basis of the complexity of each character. However, such a 
tendency appears quite consistent with what we know now on the theoretical 
effect of natural selection. 

Since the first comments of MATHER (1941) on internal and relational bal- 
ances, several theoretical studies (LEWONTIN 1964, 1974; HEDRICK 1976; MAY- 
NARD-SMITH 1980), have shown that natural selection for an intermediate phe- 
notype, or selection in fluctuating environments, could act to favor the devel- 



134 A. GALLAIS 

opment of complementation (associations of genes in repulsion) between ga- 
metes. Epistasis would affect the development of such complementary struc- 
tures. Combined with selection for the rate of recombination, it could be 
integrated with dominance in balanced units of segregation of greater size than 
a single locus. Such an organization of the genome in large and not strictly 
defined units, called “linkats” by DEMARLY (1972), could give a compromise 
between the preservation of variability for long-term adaptation and short- 
term adaptation. A consequence would be that natural selection increases “ap- 
parent” additivity. With a “wild” cross-fertilized species, it could be possible 
that revealed epistasis and dominance are lower for a character clearly related 
to fitness. This could be the case for yield in our experiment. Such organiza- 
tion would also explain the following point. 

Coexistence of additiuity under crossing with inbreeding depression and nonadditivity 
under inbreeding: A main conclusion from this study is that, for yield, a high 
additive variance in the noninbred population coexists with a strong inbreeding 
depression and with a nonadditive variance under inbreeding. Coexistence of 
additivity and inbreeding depression is theoretically possible with partial or 
complete dominance, with low frequencies of favorable genes (FALCONER 
1961). In such situations, a lack of accuracy in the estimation of the compo- 
nents of the variance under crossing could explain why dominance variance is 
not significant. This lack of accuracy is illustrated in our experiment by the 
fact that specific combining ability variance does not appear significant but 
that the M2 model significantly reduces deviations from an additive model 
when all covariances under crossing are considered. The situation is then not 
as paradoxical as it appears at first sight. However, the major part of the 
variance under crossing appears additive, and such coexistence of additivity 
and strong inbreeding depression can also be deduced from reviews on corn 
by MOLL and STUBER (1974) and in perennial forage grasses by BREESE and 
HAYWARD (1970). Therefore, for a cross-fertilized unselected species, we may 
wonder if the assumption of gene frequencies is always sufficient to explain 
such a phenomenon. 

The previous comment on the effect of natural selection could explain the 
importance of additive variance in the noninbred population. In crossing, there 
would be a systematic complementation between unrelated homologous units 
of segregation. Furthermore, it is quite possible that such complementation is 
developed by some gametic selection favoring the fusion of most unrelated 
gametes (a generalization to the whole genome of the incompatibility systems). 
Unfavorable (deleterious) genes integrated in the unit of segregation will be 
masked. If we assume that such unfavorable genes are present at low frequen- 
cies at a great number of loci, the probability of homozygosity of such genes 
in all individuals will be high. On one hand, a general effect of inbreeding on 
the mean with some “masking” effect explaining a decrease in variance with 
increasing levels of inbreeding could result, whereas, on the other hand, a 
change in the nature of the variability due to a change in the set of the 
expressed genes or in their regulation could be the case. Such an effect of the 
genetic structure (homozygosity, heterozygosity) on the expression of variability 
has been observed by MUKAI, YOWHIKAWA and SANO (1  966) for Drosophila. 
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Another effect of inbreeding could be to deeply disturb the genetic orga- 
nization developed by a great number of cycles of cross-fertilization and natural 
selection. The relative stability of the assumed units of segregation could dis- 
appear. So, again, new variation could be revealed, decreasing the apparent 
weight of additivity, From a more general point of view, inbreeding in nor- 
mally cross-fertilized species can be considered as a system of mating changing 
the environment of genes. With gene X environment interactions (dominance, 
epistasis, nucleocytoplasmic interactions, etc.), when the effect of natural selec- 
tion is taken into account, it is quite conceivable that expression and organi- 
zation of the variability is affected by inbreeding. 

Consequences for the plant breeder: From the strict point of view of autotetra- 
ploid breeding, this experimental study allowed the verification of several the- 
oretical predictions. The most specific for autotetraploids is the decrease in 
expected value of crosses with increasing level of inbreeding of their parents. 
A consequence of this, combined with t b  change in variance, in the population 
studied is that the best “single crosses* vi11 be at the So level. So, in such a 
situation, to exploit hybrid vigor in hybrid varieties if inbreeding is used, it 
will be necessary to develop double-cross hybrids (GALLAIS 1969; GALLAIS and 
GUY 1970). More generally, an optimum level of inbreeding can exist for the 
use of the variance in a given type of variety. 

The other consequences from the experimental results are not strictly related 
to the autotetraploid state. The main result is that the variance among inbred 
families, with increasing levels of inbreeding, does not necessarily increase. 
Such situations can also be observed in diploids. 

Therefore, in the presence of a masking effect due to inbreeding, selection 
on phenotypic values for performance of crosses during inbreeding, mainly 
with high levels of inbreeding, will be inefficient. Indeed, the genetic organi- 
zation discussed previously induces a poor relationship between the value of 
an inbred plant and its value in crossing (i.e., its general combining ability). 
So, if phenotypic selection is envisaged for inbred material, it must be re- 
stricted to a low level of inbreeding. 

With such a situation, it will be difficult to develop lines, because there will 
be a strong elimination of material. It will be better to develop several cycles 
of recurrent selection without inbreeding first, and then to develop lines. Re- 
current selection, even for combining ability, will also increase the value per se 
of the material and then of the lines that could be derived from (GALLAIS 
1977a). 

If the organization in linkats is confirmed by some other studies, it remains 
to determine how to induce recombination within them. Can inbreeding de- 
stroy the stability of such units? Clearly, if it could, self-fertilization might be 
excluded because it will “fix” the genome too quickly. Milder inbreeding could 
be more efficient. 

I am very grateful to B. S. WEIR for his great help in revising the English text. 
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