CHARACTERIZATION OF AN Spm-CONTROLLED BRONZE-MUTABLE ALLELE IN MAIZE

OLIVER E. NELSON AND ANITA S. KLEIN

Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706

Manuscript received June 29, 1983 Revised copy accepted December 20, 1983

ABSTRACT

The association of a receptor (Rs) of the Spm system with a Bz-1 allele has created a two-element Spm-controlled bz-mutable allele (bz-m13) of maize (Zea mays L.). In the absence of Spm, one copy of bz-m13 (bz/bz/bz-m13) conditions full anthocyanin production in the aleurone layer of the seed. In the presence of this Spm, bz-m13 produces a unique, coarsely variegated seed phenotype and has a high rate (50-83%) of gametic change to stable bz' or Bz' derivatives. Even one copy of a Bz' derivative allele conditions full anthocyanin production in the aleurone, but the enzyme (UFGT) level of the progenitor Bz-1 allele is not restored in most Bz' derivatives.

MOBILE genetic elements were first identified and investigated in maize (MCCLINTOCK 1950, 1951), and although such elements have been found in a number of prokaryotic and eukaryotic organisms (SHAPIRO 1983), a number of laboratories are still investigating maize controlling element systems because of the number of different systems identified and the extensive genetic information concerning them. Interest has been heightened still further by the demonstrations that the controlling elements can be investigated at the molecular level (BURR and BURR 1981; DÖRING, GEISER and STARLINGER 1981) and the definite possibility that clones of controlling elements can be used to identify genomic clones of any gene in which a particular controlling element has been inserted.

To interpret fully nucleotide sequence data in relation to the manifold effects of a controlling element insertion on extent, timing and tissue specificity of gene function, it is necessary also to be able to specify the biochemical effects of the insertion. With the objective of elucidating the possible array of effects on gene function, this laboratory started several years ago an investigation of the *Ds*-controlled bronze-1 (*bz1*) mutable alleles of maize. The nonmutant allele(s) at this locus is the structural gene for uridine diphosphate glucose:flavonoid glucosyl transferase (UFGT; EC 2.4.1.91) which catalyzes the last step in anthocyanin biosynthesis (LARSON and COE 1977; DOONER and NELSON 1977a).

In this paper we review the characteristics of *Ds*-controlled bronze-1 mutable alleles since this will aid in distinguishing more fully the novel features of the newly identified bronze-1 mutable allele that is under the control of a different

Genetics 106: 769-779 April, 1984.

system (Spm). The results of earlier investigations (DOONER and NELSON 1977b; DOONER 1980) have shown that different independent insertions of Dissociation (Ds) at the bronze locus may affect gene function in different ways as revealed in assays of enzyme activity of mature seeds of these stocks not carrying Activator (Ac). Enzyme activity in mature, dried Bz/Bz/Bz seeds is as high at maturity as at any time during development.

The bronze mutables, bz-m1, bz-m2 (DI) and bz-m2 (DII) alleles have no detectable UFGT activity and produce no protein that reacts with anti-UFGT antibodies (DOONER and NELSON 1977a). Bronze-weak mutable (Bz-wm) endosperms produce about 60% of the anthocyanin content present in Bz/Bz/Bz aleurones but have little or no UFGT activity in mature seeds. Low enzymatic activity can be detected in developing Bz-wm/Bz-wm/Bz-wm seeds 22 through 36 days postpollination if the activity is assayed immediately after harvest. Freezing, which does not affect the activity of the enzyme coded by Bz, destroys the activity of the Bz-wm enzyme. This enzyme is considerably more heat labile (half-life at 55°, 0.7 min) than the enzyme encoded by its progenitor Bz allele (half-life at 55°, 4.5 min). The processes accompanying seed maturation, which do not affect enzymatic activity in Bz/Bz/Bz endosperms, apparently also destroy the Bz-wm enzyme. It is clear that the Bz-wm-encoded enzyme differs qualitatively from that encoded by the Bz allele, although the exact nature of the difference cannot yet be specified.

The change induced by the Ds insertion producing the bz-m4 allele is the most interesting since the enzyme produced cannot be shown to be different from that produced by its progenitor Bz allele. The early stage at which maximum enzyme activity is observed and the fact that the greatest enzyme activity is found in the endosperm tissue where no anthocyanins are synthesized rather than in the aleurone layer where virtually all UFGT activity in Bz/Bz/Bz seeds is found indicates that it is the regulation of gene activity that is perturbed in this mutable rather than the sequence coding for a protein product. Gerats *et al.* (1983) have suggested as an alternative explanation that deletion of the structural gene at the shrunken-1 locus has placed bz-m4 under the control of a regulatory sequence for shrunken-1.

Since the phenotypes conditioned by the bz alleles are easy to score and since the enzymatic activity of any bz-mutable allele can be monitored and ultimately related to the type and position of the insertion sequence, the bronze-1 locus is a useful model with which to investigate controlling element effects. We were desirous of extending our investigations of the locus to include Spmcontrolled bz mutables. The Spm system together with the Ac, Ds system has been intensively investigated from a genetic viewpoint. McCLINTOCK (1965), FINCHAM and SASTRY (1974), PETERSON (1980) and FEDOROFF (1983) have reviewed both Ac, Ds and Spm as regulators of gene action. As is the case with Ac, Ds, Spm-controlled mutable genes may be either autonomous, in which case Spm is inserted in or close to the gene in question, or a two-element system in which the receptor of the system is present at the affected locus and responds to the presence of Spm anywhere on the genome. Since the receptors of the Spm system have not previously been given a symbol, we suggest that Rs (Receptor of Spm) would be appropriate and will so refer to it in this paper. Insertions of an Spm receptor (Rs) at a locus may produce mutable alleles conditioning a range of stable phenotypes from fully mutant through those approaching a nonmutant phenotype to others with a wholly nonmutant phenotype in the absence of Spm (MCCLINTOCK 1965). Although we use the MCCLINTOCK terminology for the Spm system, it should be noted that PETER-SON (1953) independently isolated a homologous system in which the components were referred to as I and En (PETERSON 1965).

When Spm is present in the genome, the Suppressor (Sp) component inhibits completely gene function in those mutable alleles producing nonmutant or partially nonmutant phenotypes. The mutator (m) component of Spm then conditions a restoration of gene function in some cells (possibly by an excision of Rs), thus giving rise to clones of apparently fully functional cells distributed across a background of mutant cells. In sporogenous tissue, a certain proportion of the gametes produced can be shown to have changed either to stable nonmutant or to stable fully recessive alleles. It should be noted that BURR and BURR (1982) have reported that a nonmutant derivative of a Ds-controlled shrunken mutable has retained a 21- to 22-kb insert in the same position as in the shrunken mutable but that there has been extensive rearrangement within the insert.

The Spm system of controlling elements is clearly different from and more complex than the Ac, Ds system about which we have considerable information concerning its array of effects on gene function (DOONER and NELSON 1977b, 1979; DOONER 1980). We report here the isolation of a two-element Spm-controlled mutable bronze allele (Rs in a Bronze allele) with an interesting phenotype (coarse variegation rather than the more usual dotting pattern) and a very high rate of gametic change (bz-m13 to bz' and Bz' derivatives) in the presence of Spm. The biochemical effects of this Rs insertion are reported separately (KLEIN and NELSON 1983).

MATERIALS AND METHODS

The starting point for our endeavor to isolate an Spm or Rs-controlled bronze-1 mutable was a stock originally furnished by BARBARA MCCLINTOCK. This stock was A1, A2, C2, R, Spm c1-m5 Sh Bz wx-m8 and had been crossed and backcrossed once to W22 (A1, A2, Bz1, C1, C2, R). The A1, A2, C2 and R alleles are the functional alleles at complementary loci required for anthoxyanin production in the aleurone layer of the seed. A functional allele at C1 is also required. The mutable c1-m5 was derived from the insertion of Spm in or adjacent to a functional allele at the c locus (McCLINTOCK 1965), and we indicate it here as $\overline{Spm \ cl \cdot m5}$. It is thus an autonomous mutable (carrying the information required for its transposition away from the locus). Its phenotype is a colorless seed on which numerous clones of colored cells can be observed. The Sh allele is the structural gene for sucrose synthetase (CHOUREY and NELSON 1976), and seeds with sh/sh/sh endosperms have a characteristic shrunken appearance. The Bz allele is the structural gene for UFGT, and bz/bz/bz seeds (in the presence of functional alleles at all other loci required for aleurone anthocyanin production) have a distinctive bronze color. The waxy alleles result in production by the endosperm of starch that is entirely amylopectin instead of a mixture of amylose and amylopectin. The mutable allele wx-m8 resulted from the insertion of an Rs in a Wx allele (MCCLINTOCK 1965). Thus, the Bz target was flanked proximally and distally by mutable genes of the Spm system maximizing the probability that a controlling element sequence excised from one

of the flanking mutables, $\overline{Spm\ cl\ m5}$ or wx-m8, would be inserted at Bz. The tester stock, which was used both as a male and female parent in crosses with the $\overline{Spm\ cl\ m5}$ Sh Bz wx-m8 stock was W22 A1, A2, C2, R, C sh bz Wx or wx.

The assays of UFGT activity in endosperms of dry, mature seeds were made by the method of DOONER and NELSON (1977b) as modified by KLEIN and NELSON (1983).

RESULTS

In 1978, plants of the Spm c1-m5 Sh Bz wx-m8/Spm c1-m5 Sh Bz wx-m8 stocks were used as both male and female parents in crosses with the C sh bz Wx tester stock. With the Spm-containing stock as a female parent, 466 crosses were made with an estimated 122,200 kernels. Although 11 kernels with color variegation suggesting that they were bronze mutables were identified, none of these kernels produced a plant carrying a bz-mutable allele. With several plants of the Spm-containing stock as male parents, 23 crosses were made with a total of 4582 kernels, and seven possible bz-mutable kernels were identified. In 1979, plants from two of these kernels proved to be carrying a bz mutable as demonstrated by the production of variegated kernels (clones of cells with full anthocyanin pigment scattered about on a bronze background) when crossed by a C sh bz wx tester stock and were ultimately shown to be under Spm control. These bronze-mutable alleles were designated as bz-m11 and bzm13. We will refer to the phenotype of seeds with bz-m13 and Spm as bronze(bz) variegated. It is clear that there was a significant difference in the frequency of transposition of either Rs or Spm to Bz when the $\overline{Spm \ c1-m5}$ Sh Bz wx-m8 stock was used as a male parent in crosses to the C sh bz Wx tester as compared to its use as a female parent. This disparity has not been investigated further.

Crosses in 1979 onto a I Ds tester established that the bz-m11/bz and bzm13/bz plants did not carry Ac since they were incapable of inducing chromosome breakage at D_s with a concomitant loss of I (a dominant inhibitor of aleurone pigmentation). In 1980, by crosses onto a C sh bz wx-m8 tester, both the bz-m11 and the bz-m13 stocks were shown to be carrying Spm by virtue of their ability to induce Wx sectors in wx-m8. Additional test crosses to a C sh bz Wx tester also were in agreement with the tentative conclusion from the 1979 crosses of Sh bz-m11 wx/sh bz Wx and Sh bz-m13 "wx"/sh bz Wx by the C sh bz wx tester that bz-m11 was an autonomous mutable and that bz-m13 was a twoelement mutable. In the *bz-m11* crosses, the great majority of the nonshrunken kernels were bronze with nonbronze spots, whereas in the bz-m13 crosses the nonshrunken kernels might or might not be bronze variegated. The data for *bz-m11* do not exclude the possibility that the regulatory element might be closely linked to bz rather than at the locus. Since our objective has been to determine, on a biochemical level, the consequences of an R_s insertion within or close to a Bz allele, and this can be done only with a two-element system in the absence of Spm, our attention has been concentrated on the *bz-m13* allele. Investigations of this allele alone will be reported in this paper.

The chromosome derived from the $\overline{Spm\ c-m5}$ Sh Bz wx-m8 stock which carried bz-m13 had the constitution c Sh bz-m13 "wx". The "wx" symbol indicates an

intermediate wx allele distinguishable from wx by staining more deeply with a KI-I₂ solution. It is no longer responsive to Spm, but in the presence of Spm, there is an infrequent appearance of a wx-mutable allele which responds to Spm by producing sectors of Wx tissue in the endosperm. Although there had been changes at both c-m5 (to c) and wx-m8 (to "wx") on the bz-m13 chromosome, one cannot conclude that these changes occurred simultaneously with the insertion of Rs in the Bz allele. Since the Spm-containing stock was Spm c-m5 Sh Bz wx-m8/Spm c-m5 Sh Bz wx-m8 and the seeds for planting in 1978 were selected to ensure that they displayed both $c \rightarrow C$ and $wx \rightarrow Wx$ variegation, a change from c-m5 to c or wx-m8 to "wx" could have occurred in the previous generation or at any time in the development of the plant from which pollen was taken without being detectable.

The types of seeds produced when the original plant carrying bz-m13 (C sh bz Wx/c Sh bz-m13 "wx") was used as a female parent in a cross with a C sh bz wx or C sh bz Wx tester are given in Table 1. It is not possible to ascertain from these data what the phenotype of bz-m13 in the absence of Spm is, although the data are compatible with the hypothesis that bz-m13 has a bronze phenotype in the absence of Spm, that there is one copy of Spm present that is unlinked to the bz locus and that bz-m13 in the presence of Spm mutates frequently to a stable Bz' allele but not to bz.

That this is not the case was shown by growing plants from Sh bz kernels and from Sh Bz kernels and crossing them onto a C sh bz wx; Spm tester stock. The crosses involving plants from Sh bz kernels gave only bronze kernels, whereas crosses of some of the plants from Sh Bz kernels produced bronze variegated (bz-m13) kernels and crosses from other plants gave nonvariegated Bz kernels. It was then apparent that the bz-m13 allele in the absence of Spm conditions fully colored (nonmutant) kernels and that these colored, nonshrunken kernels in the cross of 21172A2 (c Sh bz-m13; Spm/C sh bz; no Spm) $\times C$ sh bz might be of two different sorts—those in which the color is due to bzm13 in the absence of Spm and those in which the color is conditioned by a derivative of bz-m13 from which Rs has transposed away or an internal rearrangement permitting gene function has taken place. As has been shown by MCCLINTOCK (1965), there are numerous instances in which the insertion of a receptor of the Spm system in or near a functional allele allows sufficient gene function in the absence of Spm that a nonmutant phenotype results.

TABLE 1

Seed phenotypes produced in 1979 when plant 21172A2 (c sh bz Wx/c Sh bz-m13 "wx") was crossed as a female by a C sh bz wx tester

	Progeny phenotypes						
Cross	sh bz	Sh bz	sh Bz	sh bz-var	Sh Bz	Sh bz-var	Total
21172A2	229	130	2	2	87	60	510
C sh bz wx							

These derivatives of bz-m13 do not respond to the presence of Spm. We shall refer to such a derivative allele as a Bz' as has been done for colored derivatives of the Ds-controlled bz mutable, bz-m2 [Derivative I (DI)], in a previous paper (DOONER and NELSON 1979). These derivative Bz' alleles are designated as Bz1'-1, Bz1'-2, Bz1'-3, etc.

The phenotype of kernels with bz/bz/bz-m13; Spm endosperms is a coarsely variegated pattern with large clones of colored cells distributed on a bronze background in contrast to the dotted pattern characteristic of most mutable genes affecting anthocyanin production. This pattern results from the interaction of bz-m13 with an Spm that is producing early, but infrequent, events during endosperm development. When the genotype of the endosperm tissue is bz-m13/bz-m13/bz-m13; Spm, the aleurone is extensively pigmented. In some seeds, it may appear that the aleurone is self-colored (Figure 1).

Coarse variegation of the type shown by bz-m13 in the presence of Spm is not unprecedented for two-element Spm system mutables. MCCLINTOCK (1971) has reported such a pattern for the original state of a2-m1 in response to an Spm with an early-acting mutator component, and Peterson (1963) has reported examples of coarse variegation also.

Since bz-m13 in the absence of Spm conditions a colored seed phenotype, it is necessary to account for the large excess of phenotypically Sh bz kernels in the crosses in Table 1 over those expected to result from recombination between the sh and bz loci which are 2 map units apart. The kernels of the complementary crossover class (sh Bz' and sh bz-variegated) are present in approximately the expected numbers. The Sh bz/sh bz plants from these seeds do not respond when crossed by a sh bz; Spm stock by producing variegated seeds; therefore, it is clear that the vast majority of the Sh bz seeds are also derivatives of bz-m13, but in these instances, the transposition or rearrangement of Rs has resulted in the production of nonfunctional alleles.

From the large number of Sh bz seeds in the cross reported in Table 1, one can conclude that there is a high rate of change in bz-m13 in the presence of Spm. To estimate accurately the frequency of germinal changes at bz-m13 for

FIGURE 1.—The phenotypes of seeds which are (left to right) bz/bz/bz-m13, no Spm; bz/bz/bz-m13, Spm and bz-m13/bz-m13/bz-m13, Spm.

any plant, however, it is necessary to know what proportion of the Sh Bz kernels are stable Bz' derivatives. This datum for any plant can be obtained by crossing the plants grown from Sh Bz kernels with a tester stock which is C sh bz wx; Spm. The plants from Sh Bz' seeds produce self-colored kernels from this cross, whereas those from Sh bz-m13; no Spm seeds produce kernels that are variegated in color.

When colored, nonshrunken kernels resulting from crossing the original plant, 21172A2, carrying bz-m13 (C sh bz Wx/c Sh bz-m13 "wx") by a C sh bz wx/C sh bz wx tester were planted and the plants crossed by a C sh bz wx; Spm tester stock, 18 plants carried stable Bz' derivatives of bz-m13, whereas seven carried bz-m13. Assuming this to be a valid estimate of the proportions of Bz'and bz-m13 (no Spm) alleles among the fully colored seeds, we can apportion 28% of the Sh Bz kernels into the Sh bz-m13 (no Spm) category. Furthermore, since the number of Sh bz kernels far exceeds the number expected on the basis of two% recombination between sh and bz while the reciprocal crossover class (sh Bz and sh bz-m13) is close to an expected frequency, it is reasonable to assume that the excess of Sh bz kernels over expectation is attributable to germinal changes producing stable bz' derivatives from bz-m13. On this assumption, and using the datum as to the proportion of nonshrunken, colored kernels that are colored derivatives (Bz') of bz-m13, it is possible to adjust the data in Table 1 to reflect the germinal changes (bz-m13 to Bz' or bz') that occurred in plant 21172A2.

These adjusted data are given in Table 2 for plant 21172A2 and for its progeny plants that were similarly tested. Since all of these data were derived from crosses of bz-m13/bz(+Spm) plants as females by a C sh bz tester, premeiotic changes giving rise to large sectors of Bz' or bz' kernels would have been noted. Such sectoring was not observed. We assume, therefore, that the changes of bz-m13 to bz' and Bz' derivatives on the female side are postmeiotic. It can be noted that the rate of gametic change from bz-m13 to stable bz' or stable Bz' is very high for the original plant carrying bz-m13 (21172A2) and the majority of its tested progeny and that changes to bz' derivatives are more common than changes to Bz' derivatives. The high germinal change rate is not characteristic of all of the progeny of 21172A2, however, as evidenced by the value for 23367-11. Although the gametic change rate has diminished dramatically for this plant, as compared with sib plants, the pattern of variegation on the aleurone layer has not been altered. It appears that the rates of germinal and somatic change may not be closely coupled.

It should be noted that our data concerning the diminution in rates of gametic change in one progeny plant of 21172A2 do not distinguish between the possibilities of alteration in the structure of Rs or its relation to the Bz allele and that of a change in Spm that lessens its mutator activity. A decision as to which component of this two-element system has been affected can be made only after replacing the Spm present with an Spm from the original stock to ascertain whether the gametic change rate then returns to the high rate characteristic of most descendents of 21172A2.

TABLE 2

<u></u>			Genoty	pes prod	uced					
		Sh bz'				Sh b	z-m13	-	%	% Germinal
Plant	sh bz	Sh bz ^b	sh Bz'	sn bz -m13	Sh Bz'	+Spm	-Spm	Total	change	to bz'
21172A2	229	130 (5)	2	2	63	60	24	510	76	66
23367-1	126	40 (2)	1	0	17	38	21	243	59	69
23367-4	74	54 (2)	0	1	9	30	17	185	68	85
23367-5	275	39 (6)	0	7	12	89	154	576	34	73
23367-7	245	113 (5)	1	2	25	49	76	511	73	81
23367-8	310	143 (6)	1	4	72	42	57	629	83	66
23367-9	179	73 (4)	1	1	31	31	66	382	76	69
23367-10	194	79 (4)	1	2	20	83	32	411	53	79
23367-11	156	7 (3)	0	4	0	69	76	312	5	100
23367-12	235	106 (5)	0	0	33	96	29	499	58	75
23367-13	125	44 (3)	1	1	18	27	43	259	69	69

Kernel types produced when 21172A2 and a sample of its progeny grown from nonshrunken bronze-variegated seeds (c Sh bz-m13 "wx"/C sh bz Wx/wx; + Spm) were pollinated by C sh bz/C sh bz tester stocks

^aThe phenotypes of kernels produced by these crosses are as given except that the number of Sh Bz (nonshrunken, fully colored) kernels is found by adding the Sh Bz' and Sh bz-m13, no Spm classes. The proportion of nonshrunken, fully colored kernels that were Sh bz-m13, no Spm was ascertained for each progeny as described in the RESULTS.

^bThe numbers in the parentheses are estimates of the numbers of Sh bz kernels expected on the assumption of 2% recombination between sh and bz. The estimate for most plants agrees well with numbers observed for the complementary crossover class (sh Bz' plus sh bz-m13).

with numbers observed for the complementary crossover class (*sh* Bz' plus *sh* bz-*m13*). 'The percentage of germinal change for bz-m13 in the presence of Spm is calculated as 100 × the sum of (1) excess of Sh bz kernels over the expectation from recombination between sh and bz and (2) the number of Sh Bz' kernels divided by the sum of (1) and (2) plus the number of Sh bz*m13* + Spm kernels. The sh kernels are not considered in this calculation.

As might be expected of Sh bz-m13/sh bz; + Spm plants that show a high rate of change to bz' and Bz' derivatives, there were frequent apparent changes of state altering the phenotype produced when bz-m13 responds to the presence of Spm in the genome. MCCLINTOCK (1965) has discussed the changes of state derived from mutable alleles. Although it remains to be rigorously demonstrated that these alterations are not due to changes in Spm, we suspect that the majority stem from changes in Rs or its relation to Bz. If so, an analysis of nucleotide sequences in these mutable alleles will be illuminating when considered in relation to the expression of pigment by these mutables with apparent changes of state.

Seven stable Bz' derivatives of bz-m13 have been investigated with regard to enzyme activity in mature seeds. The results of these assays are presented in Table 3 with the activities of the derivatives compared to bz-m13-R5, the mutable allele from which they were derived, and to Bz-Mc, the Bz allele which was the progenitor of bz-m13. Reference to Table 3 shows that, with the exception of Bz'-3, the enzyme activity of the derivatives is markedly lower than Bz-Mc, but all are considerably higher than bz-m13-R5. It appears then that whatever event(s)—transposition or rearrangement—converted bz-m13into stable Bz' derivatives, the original organization of the progenitor Bz-Mc

TABLE 3

Genotype	Activity			
Bz-Mc ^b	$846 \pm 53; 692 \pm 37$			
bz-m13R5 ^b	22 ± 0.8 ; 13 ± 0.3			
Bz'-1	213 ± 9.8			
Bz'-2	$317 \pm 12; 394 \pm 22$			
Bz'-3	$585 \pm 32; 743 \pm 29$			
Bz'-4	374 ± 14			
Bz'-6	301 ± 13			
Bz'-7	134 ± 47			

UFGT activity in mature endosperms of stable Bz' derivatives of bz-m13

Endosperms were homozygous for the specified allele.

^aActivity in milliunits per endosperm, where 1 mu equals 1 nmol isoquercetrin formed per hour. The amount of UFGT activity was calculated from the initial rate of incorporation of ¹⁴Cglucose into product. This rate was determined from the linear regression of product formed on time of incubation. There were duplicate assay tubes at each of three time points. The error terms are the sample standard deviations of the regression coefficients (SNEDECOR and COCHRAN 1967). Where two values are given for a genotype, different ears were sampled.

^bBz-Mc is the progenitor Bz allele from which bz-m13 was derived. All Bz' derivatives (1 through 7) arose as independent events from bz-m13-R5 which was one of bz-m13/bz; + Spm plants from 21172A2 × a C sh bz tester.

allele was rarely restored. Although the number of derivatives is small, the results appear to contrast with the stable Bz' derivatives of bz-m2 (DI), a Dscontrolled bronze-mutable allele, where DOONER and NELSON (1979) found that five of 15 Bz' derivatives were indistinguishable from their Bz-Mc progenitor with regard to enzyme activity, electrophoretic mobility and thermal stability. Nine of the other ten Bz' derivatives had less than 4% of the enzyme activity of the Bz-Mc allele. That also contrasts with our observations on Bz'derivatives of bz-m13 in which enzyme activity is considerably higher. It is not clear, however, whether the differences in types of Bz' derivatives from bz-m2(DI) and bz-m13 are typical of Ds-controlled and Rs-controlled mutable alleles or whether each type of mutable system could generate a spectrum of Bz'derivatives depending on the location of the insertion within the Bz allele.

DISCUSSION

The outstanding attribute of bz-m13 is the high rate of germinal change in the presence of Spm compared to most mutable genes. The observed gametic change rate of greater than 70% for the original bz/bz-m13 plant (21172A2) and 50 to 83% in most of its progeny is very high. The only comparably high rates of gametic change for a mutable allele in maize are those reported by PETERSON (1970) for a1-m(pa-pu), an autonomous mutable with En (Spm) inserted in an A1 allele. We note also in Drosophila the high rate of transpositions of P elements into M-derived X chromosomes from P-derived autosomes in dysgenic males (BINGHAM, KIDWELL and RUBIN 1982; ENGELS 1983). The figure of 0.82 transpositions/chromosome arm/generation is not directly comparable to our estimates of gametic change per bz-m13 allele since it measures transpositions into a chromosome arm from an unknown but large number of P elements. We are measuring transposition from and rearrangements in a single site.

If the gametic changes from bz-m13 to bz' and Bz' derivatives usually involve a transposition of Rs away from the bz locus, then bz-m13; + Spm stocks should be favorable genotypes in which to attempt placing a target locus under control of the Spm system as a preliminary step to identifying genomic clones of the locus using Rs clones as a probe.

The frequent changes of state that result in phenotypic changes at the bz locus could also produce useful experimental material. If most of these changes involve alterations in Rs or its relation to the locus as we believe to be the case, these state changes, together with their stable functional or nonfunctional derivatives in conjunction with nucleotide sequences, could be an informative method of dissecting a structural gene and contiguous regulatory sequences. Furthermore, TUSCHALL and HANNAH (1982), who examined five derivative alleles from sh2-m1 (a Ds-controlled mutable allele of a structural gene for ADPglucose pyrophosphorylase) that condition nonmutant phenotypes, found one derivative allele producing 140% of the enzymatic activity of the progenitor Sh2 allele. Another derivative coded for an enzyme that was markedly less inhibited by inorganic phosphate. As they note, a transposable element insertion in a gene constitutes an efficient locus-specific mutagen capable of generating not only null mutants but interesting variations on a preexisting enzyme.

We are indebted to BARBARA MCCLINTOCK for the $\overline{Spm \ c-m5}$ Sh Bz wx-m8 stock as well as the C sh bz wx; Spm and C sh bz wx-m8 tester stocks, to RUSSELL HUSETH for assistance with our field work and to AMY SMITH for assays of enzyme activity in Bz' derivatives of bz-m13.

Research supported by the College of Agriculture and Life Sciences, University of Wisconsin-Madison, National Science Foundation grant PCM-8207987 and by National Institutes of Health grant 5 T32 GMO 7131-06A1. This is paper 2663 from the Laboratory of Genetics, University of Wisconsin-Madison.

LITERATURE CITED

- BINGHAM, P. M., M. G. KIDWELL and G. M. RUBIN, 1982 The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P strain-specific transposon family. Cell 29: 995-1004.
- BURR, B. and F. A. BURR, 1981 Controlling element events at the shrunken locus in maize. Genetics 98: 143-156.
- BURR, B. and F. A. BURR, 1982 Ds controlling elements at the shrunken locus are large and dissimilar insertions. Cell 29: 977-986.
- CHOUREY, P. S. and O. E. NELSON, 1976 The enzymatic deficiency conditioned by the shrunken-I mutations in maize. Biochem. Genet. 14: 1041-1055.
- DOONER, H. K., 1980 Regulation of the enzyme UFGT by the controlling element Ds in bz-m4, an unstable mutant in maize. Cold Spring Harbor Symp. Quant. Biol. 45: 457-462.
- DOONER, H. K. and O. E. NELSON, 1977a Genetic control of UDP glucose:flavonol 3-0-glucosyltransferase in the endosperm of maize. Biochem. Genet. 15: 509-519.
- DOONER, H. K. and O. E. NELSON, 1977b Controlling element-induced alterations in UDP glucose:flavonoid glucosyltransferase, the enzyme specified by the *bronze* locus in maize. Proc. Natl. Acad. Sci. USA **74**: 5623-5627.

- DOONER, H. K. and O. E. NELSON, 1979 Heterogeneous flavonoid glucosyltransferases in purple derivatives from a controlling element-suppressed *bronze* mutant in maize. Proc. Natl. Acad. Sci. USA **76**: 2369–2371.
- DÖRING, H. P., M. GEISER and P. STARLINGER, 1981 Transposable element Ds at the shrunken locus in Zea mays. Mol. Gen. Genet. 184: 377-380.
- ENGELS, W. R., 1983 The P family of transposable elements in Drosophila. Annu. Rev. Genet. 17: 315-344.
- FEDOROFF, N. V., 1983 Controlling elements in maize. pp. 1–63. In: Mobile Genetic Elements, Edited by J. A. SHAPIRO. Academic Press, New York.
- FINCHAM, J. R. S. and G. R. K. SASTRY, 1974 Controlling elements in maize. Annu. Rev. Genet. 8: 15-50.
- GERATS, A. G. M., S. P. C. GROOT, P. A. PETERSON and A. W. SCHRAM, 1983 Regulation of UFGT activity in the *bz-m4* allele of *Zea mays*: a possible case of gene fusion. Mol. Gen. Genet. **190:** 1-4.
- KLEIN, A. S. and O. E. NELSON, 1983 Biochemical consequences of the insertion of a suppressor mutator (Spm) receptor at the bronze-1 locus in maize. Proc. Natl. Acad. Sci. USA 80: 7591– 7595.
- LARSON, R. L. and E. H. COE, JR., 1977 Gene-dependent flavonoid glucosyltransferase in maize. Biochem. Genet. 15: 153-156.
- MCCLINTOCK, B., 1950 The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 36: 344–355.
- MCCLINTOCK, B., 1951 Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16: 13-47.
- MCCLINTOCK, B., 1965 The control of gene action in maize. Brookhaven Symp. Biol. 18: 162–184.
- McCLINTOCK, B., 1971 The contribution of one component of a control system to versatility of gene expression. Carnegie Inst. Year Book 70: 5-17.
- PETERSON, P. A., 1953 A mutable pale green locus in maize. Genetics 3: 682-683.
- PETERSON, P. A., 1963 Influence of mutable genes on induction of instability in maize. J. Iowa Acad. Sci. 70: 129-134.
- PETERSON, P. A., 1965 A relationship between the Spm and En control systems in maize. Am. Nat. 99: 391-398.
- PETERSON, P. A., 1970 The *En* mutable system in maize. III. Transposition associated with mutational events. Theor. Appl. Genet. **40**: 367–377.
- PETERSON, P. A., 1980 Instability among the components of a regulatory element transposon in maize. Cold Spring Harbor Symp. Quant. Biol. 45: 447-455.
- SHAPIRO, J. A. (Editor), 1983 Mobile Genetic Elements. Academic Press, New York.
- SNEDECOR, G. W. and W. G. COCHRAN, 1967 Statistical Methods, pp. 135-171. Iowa State University Press, Ames, Iowa.
- TUSCHALL, D. M. and L. C. HANNAH, 1982 Altered maize endosperm ADP-glucose pyrophosphorylases from revertants of a shrunken-2-Dissociation allele. Genetics 100: 105-111.

Corresponding editor: W. F. SHERIDAN