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ABSTRACT 

The long-term population genetics of multigene families is influenced by 
several biased and unbiased mechanisms of nonreciprocal exchanges (gene con- 
version, unequal exchanges, transposition) between member genes, often dis- 
tributed on several chromosomes. These mechanisms cause fluctuations in the 
copy number of variant genes in an individual and lead to a gradual replace- 
ment of an original family of n genes (A) in N number of individuals by a 
variant gene (a) .  The process for spreading a variant gene through a family 
and through a population is called molecular drive. Consideration of the known 
slow rates of nonreciprocal exchanges predicts that the population variance in 
the copy number of gene a per individual is small at any given generation 
during molecular drive. Genotypes at a given generation are expected only to 
range over a small section of all possible genotypes from one extreme ( n  
number of A )  to the other ( n  number of a) .  A theory is developed for esti- 
mating the size of the population variance by using the concept of identity 
coefficients. In particular, the variance in the course of spreading of a single 
mutant gene of a multigene family was investigated in detail, and the theory 
of identity coefficients at the state of steady decay of genetic variability proved 
to be useful. Monte Carlo simulations and numerical analysis based on realistic 
rates of exchange in families of known size reveal the correctness of the the- 
oretical prediction and also assess the effect of bias in turnover. The population 
dynamics of molecular drive in gradually increasing the mean copy number of 
a variant gene without the generation of a large variance (population cohesion) 
is of significance regarding potential interactions between natural selection and 
molecular drive. 

A N Y  important aspects of phenotype of eukaryote species are known to M be influenced by the products of genes that are in multiple copies in the 
genome (for reviews see DOVER 1982; OHTA 198313; HOOD, CAMPBELL and 
ELGIN 1975; KEDES 1 9 7 9 ;  LONG and DAWID 1980; FEDOROFF 1979; JONES and 
KAFATOS 1982; HUNKAPILLER et al. 1 9 8 2 ;  JEFFREYS 1982; ARNHEIM 1983). 
The genetics of such multigene families is different from the Mendelian ge- 
netics of most single-copy genes and polygenic systems in that the members of 
a family are not wholly independent units of mutation, segregation and evo- 
lution (OHTA 1 9 8 0 ;  DOVER 1982). The genetics are circumscribed by the 
activities of three mechanisms of irregular DNA exchanges (gene conversion, 
unequal exchange and transposition) that cause nonreciprocal transfers of ge- 
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netic information between member genes, often irrespective of their chromo- 
some distribution. The three mechanisms cause continual fluctuations in the 
frequencies of variant members of a family during the lifetime of an individual 
and, hence, can promote the gradual spread of one or another variant gene 
throughout a family (homogenization) and eventually throughout a population 
(fixation). The evolutionary process by which the genetic composition of a 
population is transformed as a consequence of irregular exchanges in its mul- 
tigene and nongenic families has been called molecular drive (DOVER 1982; 
DOVER et al. 1982). Continuous cycles of family replacement by new variant 
genes are supported by the widespread observation that in all true families, 
irrespective of their size, chromosomal distribution and function, there is a 
much smaller within-species variation than between-species variation [see 
DOVER (1 982), OHTA (1983b) and ARNHEIM (1 983) for references]. This gen- 
eral observation is called concerted evolution. Molecular drive is a population 
genetics process, based on nonreciprocal exchanges between chromosomes, 
which attempts to explain how concerted evolution is achieved across all rele- 
vant chromosome lineages for any one family. The degree of within-species 
homogeneity and between-species heterogeneity varies widely between families, 
presumably as a consequence of variation in the rates of mutation, nonreci- 
procal exchanges, sexual recombination and selection. 

To understand the important interactions between the internal forces of 
molecular drive and the external forces of Darwinian selection, it is necessary 
to quantify the differences in phenotype among individuals during the spread 
of a variant member gene in any particular family. The known slow rates of 
mutation ( per gene per generation) and mechanisms of nonreciprocal 
exchange - lo-* per generation) lead to a specific prediction that at any 
given generation during molecular drive there will be a large genetic similarity 
between individuals with respect to the proportion of a family that has been 
replaced by a new variant gene (DOVER 1982). For example, it is to be ex- 
pected that only a few extra copies of a variant gene would arise in the lifetime 
of an individual. The sexual process would then ensure that the chromosomes 
on which such copies were produced are distributed at random among indi- 
viduals of the next generation. Hence, it would take many generations, de- 
pending on family and population sizes (OHTA and DOVER 1983), to replace 
effectively all preexisting copies of a family in all individuals. During this time 
no large differences in the copy number of the variant gene would exist be- 
tween individuals at any generation. This pattern of change in the composition 
of a population with respect to a multigene family, by the internal forces of 
molecular drive, is analogous to the effect of external selection on a polygenic 
trait: a gradual change in the population mean while maintaining a small 
variance over many generations. The phenotypic cohesion of a population is 
expected to be maintained throughout a period of gradual biological transfor- 
mation. 

In  the following sections, a theory is developed to estimate the population 
variance of the copy number of a mutant gene per individual during the 
process of spreading into the population. The theory of identity coefficients is 
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applied with special reference to the state of steady decay. The treatment 
follows the theory and notation of previous analysis of the population genetics 
of multigene families located on either one or two pairs of chromosomes 
(OHTA 1980, 198313; OHTA and DOVER 1983). 

VARIANCE UNDER GENE CONVERSION WITHOUT BIAS 

In the following analysis we monitor the effects on variance of only one of 
the three mechanisms of turnover, namely, gene conversion. Gene conversion 
is a phenomenon by which two originally dissimilar domains of DNA end up 
with the sequence of one of them (FOGEL, MORTIMER and LUSNAK 1981). This 
is considered to take effect through mismatch correction of a heteroduplex 
formed by the invasion and displacement of a single strand in one helix by a 
single strand from the other (HOLLIDAY 1964; MESELSON and RADDING 1975; 
although see SZOSTAK et al.  1983 for alternative model). If only one hetero- 
duplex is formed between two helices, then the conversion is asymmetric and 
a repair of the mismatch in either direction leads to conversion without bias 
[i .e. ,  prob (Aa gives A gamete) = prob (Aa gives a gamete)]. In this section we 
use the simplest model of asymmetric gene conversion without bias. In the 
next section we consider conversion with bias, which is a persistent discrimi- 
nation during repair in favor of either A or a. 

Let us assume initially that there are n genes that are either dispersed or 
tandemly arranged on each of a pair of homologous chromosomes. We assume 
that there are nX conversions per chromosome per generation, where X is the 
rate of intrachromosome conversion. The model may also be expressed as 
follows. Assume one interaction event happens with probability p per individ- 
ual. Then, the chance that a particular gene is converted is X = ~ / 4 n  (see 
NAGYLAKI 1984a for details). Under these assumptions, each gene is converted 
at the rate X by any one of the remaining (n - 1) genes on the same chro- 
mosome (OHTA 1982, 1983a, 1984a). 

In addition to intrachromosome conversion we assume regular meiotic re- 
combination between the pair of homologous chromosomes involving members 
of the family. Let be the rate between adjacent members per generation so 
that recombination totals (n - 1) P per family. In our  study, conversion be- 
tween homologous chromosomes (interchromosomal conversion) is not consid- 
ered. Its effects are expected to increase gene identity and to exchange genes 
between chromosomes just as those of unequal interchromosomal crossing over 
(OHTA 1979). For a theoretical study of the cases in which gene homogeni- 
zation is exclusively due to interchromosomal gene conversion, see NAGYLAKI 
(1 984b). 

In the following section, a method is developed to predict the population 
variation of the number of a new mutant member of a multigene family in a 
finite population with effective size N so that there are 2Nn genes in total. 
The method monitors accidental fluctuations both in the frequencies of the 
new mutant member (due to fluctuations in the directions of unbiased conver- 
sion) and in the frequencies of chromosomes in the population (genetic drift). 
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T h e  method utilizes the theory of identity coefficients (OHTA 1982, 1983a,b): 
a coefficient defined as the probability of two randomly chosen genes of a 
family being identical. Strictly speaking, this refers to the probabilities of iden- 
tity of any two conversion domains. T h e  domain of conversion can be either 
shorter or longer than the gene itself. When it is shorter it is possible to evolve 
highly variable genes that are mosaics of different domains. This is observed 
in immunoglobulin (MIYATA et al. 1980; BALTIMORE 1981; OLLO and ROU- 
GEON 1983) and other gene families (DOVER 1982; MUNZ et al. 1982). How- 
ever, any one conversion domain will tend toward homogeneity between gene 
members. In our  analysis w e  consider the domain to be the length of the gene 
(or the gene and its spacer in some tandemly arrayed families (COEN, STRA- 
CHAN and DOVER 1982; COEN and DOVER 1982) and that conversion takes 
place between any pair of genes chosen at  random from the same chromosome. 

T h e  assumption that gene conversion occurs between random pairs of genes 
may be unrealistic in some families, for it may occur more frequently between 
closely linked genes than between distant ones. This may also be true when 
unequal crossing over is the mechanism of homogenization. Under such cir- 
cumstances, identity coefficients become functions of chromosomal distance 
between genes (KIMURA and OHTA 1979; OHTA 1981). In the present analyses, 
the simple conversion model is considered in order to approximate the highly 
complicated process of spreading a mutant member gene throughout all of the 
family and throughout the population. T h e  precise validity of the assumption 
can be left to future elaborations. Previous studies indicate that our  assumption 
is valid for multigene families, o r  their individual subfamilies, having relatively 
uniform members such as those of rRNA, tRNA and histones, because the 
discrepancies between predictions of the conversion and unequal crossing over 
models disappear (OHTA 1983b), and gene rearrangements on the chromosome 
are  more or less random in some families (FEDOROFF 1979; COEN and DOVER 
1983). Thus,  our  study is mainly directed toward understanding the mutant 
dynamics of multigene families with uniform members or  uniformly honioge- 
nized subfamilies within a family. 

Assume that a mutation appeared in one copy of the population of 2Nn 
genes that are initially identical. In a previous report we have considered the 
time it would take for the mutant copy to spread by chance on the chromosome 
and into the population (OHTA 1983a; OHTA and DOVER 1983). We will con- 
sider the variance in the number of mutant copies per chromosome in the 
course of spreading. Here, the theory of identity coefficients is used with 
special reference to the state of steady decay. When the conversion rate is high 
and gene members are relatively uniform, it is expected that, starting from 
any condition, the state of steady decay is attained fairly rapidly, and once the 
state is reached, various quantities including the relative variance in copy nuni- 
her remain unaltered in their expectations (for the theory of steady decay in 
classical population genetics problems, see CROW and KIMURA 1970). In a later 
section, the adequacy of the theory will be examined through Monte Carlo 
simulations, by introducing a single mutant into the population and by calcu- 
lating the variance in copy number in the course of spreading. This theory is 
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applicable to the cases even when the mutant will eventually disappear from 
the population, in so far as the mutant has stayed long enough in the popu- 
lation and the state of steady decay has been reached. 

Let f be the average probability of identity between genes at the same locus 
(alleles), C1 the average identity probability of genes at different loci on the 
same chromosome and C2 that of two genes taken from different loci of two 
homologous chromosomes. To formulate the variance in terms of these iden- 
tity coefficients, let xi be the frequency of the mutant in the ith chromosome 
of the population of 2 N  homologous chromosomes. In other words, if mi is 
the number of mutants on the ith chromosome, xi = mi/n. The average xi of 
the population is 

2N 

- i=l  x = -  
2" 

and its expectation may be expressed 

where E denotes expectation. Next, we shall formulate the variance of xi, 

Its expectation is 

a,' = E @ ) .  (4) 

This variance can be defined in terms of identity coefficients from the follow- 
ing relationships between x, and identity coefficients. 

1 
-{(n - l)C1 + I )  = ~ { x ?  + ( 1  - 
n 

= E(2 x' - 2 1 xi + 2 N ) / ( 2 N )  
i i 

and 

1 
-{(n - 1)C2 + f )  = E {xixj  + (1 - xi)( l  - x i ) )  
n i#j 

= E[2  CC xixj - 2(2N - 1) xi 
i#j i 

+ 2N(2N - 1)]/[2N(2N - I)] 

By subtracting (6) from ( 5 ) ,  a,' becomes 

( 5 )  
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A more convenient measure would be the variance of the number of a mutant 
gene per chromosome (m, for the ith chromosome). 

uf = E(m,2) - p i  = n2a:. (8) 
T h e  size of the variance depends on the mean number of m which is changing 
during fixation. Hence, we need to concentrate on the ratio of the variance 
to the mean, af/pm. Let us call this ratio the relative variance, RV. 

By using the theory of identity coefficients w e  can calculate RV approxi- 
mately. When a single mutant gene appears, it will be lost in the majority of 
cases and will spread and eventually replace the previous gene only in a very 
small minority of cases. T h e  theory of identity coefficients gives the average 
values of gene identity for all cases. Now, let H be the vector of nonidentity 
coefficients (OHTA and DOVER 1983), 

H = (1 - J  1 - C1, 1 - C,). (9) 

Without further mutation, H decreases each generation, and the state of steady 
decay is eventually reached. At this state, H decreases with a constant rate 
which is obtained by the maximum eigenvalue of the transition matrix of H 
(see OHTA 1983a). T h e  eigenvector corresponding to the largest eigenvalue 
gives the relative values of “nonidentity” coefficients at  the state of steady 
decay. These values were obtained numerically and used to calculate the rel- 
ative variance, RV = a:/pm. T h e  variance, af, can be estimated from equations 
(7) and (8). It is difficult, however, to estimate the expected value of the 
relative variance, in the course of spreading, and so we use the following 
approximation formula which has been obtained empirically. This has been 
achieved by taking the ratio of uf to a h e a r  combination of the nonidentity 
coefficients, which may be called either “heterozygosity” (NEI 1975) or “virtual 
heterozygosity” (KIMURA 1983). If we calculate uf/pm by the following formula, 
the prediction fits remarkably well to the observed value obtained by Monte 
Carlo simulation experiments. 

( n  - 1)(C1 - C2) + (1 -f) 
21 1 - f / n  - ( n  - l)C,/n] . RV = 

T h e  numerator comes from equations (7) and (8), and the denominator is 
twice the heterozygosity. Note that we concentrate on the average value of 
relative variance in the course of spreading. It varies considerably from time 
to time and also decreases slightly as the frequency of the mutant increases. 

Monte Carlo simulations show that this formula provides good predictions 
of the relative variance. T h e  method of simulation is as by OHTA (1 983a), i . e . ,  
a single mutant is introduced into the population of 2 N  chromosomes and its 
fate is traced until it is either lost from the population or it is fixed in all loci 
of the family on all chromosomes, i . e . ,  the total number is 2Nn. T h e  relative 
variance, &/pm is calculated at  each generation, and the average value in the 
course of spreading is recorded if the mutant gene becomes fixed. T h e  data 
are  discarded if the mutant gene is lost. 

Table 1 shows the comparison of the observed (from Monte Carlo) and the 
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TABLE 1 

Comparison of observed (by Monte Carlo experiments) and theoretical 
(by equaton 10) relative variances 

Relative variance (a:/pl) 

(n - I)@ Monte Carlo Theoretical 

0 3.203 f 1.163 4.210 
0.1 1.871 f 0.266 1.798 
0.2 1.352 f 0.369 1.309 
0.3 0.899 f 0.181 1.083 
0.4 0.826 It 0.157 0.952 
0.5 0.886 f 0.124 0.866 

Parameters are X = 0.1, n = 20, N = 20 and average k stand- 
ard deviation of five sample paths. 

theoretical (from equation 10) relative variances. The observed value is the 
average with standard deviation of five sample paths, i.e., five cases in which 
fixation occurs. The agreement between the observed and the expected values 
is good. 

T o  assess the effect of regular recombination between homologous chro- 
niosomes (p), a numerical analysis was performed. One of the best understood 
examples is the (28s + 18s) ribosomal RNA gene family of Drosophila species 
(see COEN, STRACHAN and DOVER 1982 and COEN and DOVER 1982 for ref- 
erences), and the parameters of the analysis are chosen to be relevant to this 
and similar families (see ARNHEIM 1983). Figure 1 represents the results. The 
parameters are n = 200 and N = 500 with X and p as shown in the figure. It 
is important to note that the products NX and NP are realistic and that the 
results are applicable to a wide range of cases from N = 5000 and X = 0.01/ 
20 to N = 50,000 and X = 0.01/200. As can be seen from the figure, regular 
recombination is quite effective in reducing the relative variance. The value 
of X may look too high. However, note that we are approximating the joint 
effects of conversion and unequal crossing over by the simple conversion 
model. Therefore, these values are appropriate especially for considering the 
turnover process of multigene families with uniform gene members. 

I t  has to be pointed out, however, that this treatment of p may result in 
overestimation of the effect of interchromosomal recombination. This is be- 
cause, in the previous formulation of the transition equations of identity coef- 
ficients (OHTA 1982, 1983a,b), the average recombination value between ran- 
domly chosen pairs of loci is equated to (n + 1) p / 3  (the arithmetic mean), 
under the assumption of no genetic correlation between gene identity and 
chromosomal distance. This assumption may overestimate the recombination 
value. For more exact analyses, the method of KIMURA and OHTA (1979), in 
which genetic correlation is formulated as a function of chromosomal distance, 
is required (see also OHTA 1981). I t  is possible that the harmonic mean of 
recombination frequency is more appropriate than the arithmetic mean as in 
the ordinary population genetic models of multilocus systems (LANDE 1976). 
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FIGURE 1 .-Results of  numerical calculations for the relative variance, RV = u,,,'/pm, obtained 

by equation ( I O ) ,  showing the effect of  interchromosomal recombination rate (n - 1)P. 

T h e  problem is complex and, in the present paper, the previous simple equa- 
tions of identity coefficients are used. T h e  more detailed and exact analyses 
are left for future investigation. In a previous paper (OHTA 1983a), the nu- 
merical analysis contained an error,  and the value of p needs to be multiplied 
by a factor, (n - l ) / (n  + l),  i.e., the values of p for expected time until 
fixation in Tables 1 and 2, and in Figures 1 through 3 have to be multiplied 
by (n - l ) / ( n  + 1). T h e  amount of error is negligible when n is large but may 
be substantial when n is small (-5). 

T h e  effect of conversion rate on the relative variance is also examined, again 
with parameter values applicable to the ribosomal DNA family. Figure 2 shows 
the results. Numbers beside each curve are (n - 1) p. It is interesting to find 
that the relative variance increases almost linearly with the increase of conver- 
sion rate (A). 
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FIGURE 2.-Results of numerical calculations for the RP, showing the effect of conversion rate 
A. Numbers beside each curve represent ( n  - 1)p. Other parameters are n = 200 and N = 500 
for Figures 1 and 2. 

Also examined is the effect of population size on RV. It is expected that RV 
gets larger as population size increases, because more kinds of chromosomes 
may survive in larger populations. Figure 3 shows such relationships. When 
p = 0, RV increases almost linearly, but not so for p > 0. 

VARIANCE UNDER CONVERSION WITH BIAS 

Biased conversion is invoked in molecular drive to explain the relatively fast 
homogenization of new variants throughout large DNA families in all individ- 
uals, during the short time of separation between many species (DOVER 1982). 
Some theoretical consequences of biased conversion in the single-locus case 
have been studied (LAMB and HELMI 1982; NACYLAKI 1983; WALSH 1983). 
We performed Monte Carlo simulation experiments in order to describe the 
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FIGURE 3.-Results of nuiiierical c:ilculations for the RV, showing the effect of population 
N .  Nuinbers beside each curve are (n - 1)o. Other paranieters are 11 = 200 and X = 0.005. 

size 

effect of biased conversion on the dynamics of mutant genes in multigene 
families. T h e  rnethod of the experiments was the same as before except that 
disparity in the direction of conversion is introduced. Gene conversion is car- 
ried out for each chromosome with probability nX, by randomly choosing two  
genes. I f  the two chosen genes are  mutant and nonmutant, then the probability 
that the mutant gene converts the other is set to 0.5 + c. I n  other words, c is 
the proportion of gametes carrying a mutant gene that is in excess of one-half 
among the products of conversion between the mutant and nonmutant genes. 
T h e  asymmetry coefficient as defined by NAGYLAKI and FETES ( I  982) becomes 
(0.5 - c)/(0.5 + c ) .  T h e  coefficient of conversional advantage of the mutant 
in one generation may be expressed as follows, by letting s be the conversional 
advantage. 

s 2X{(0.5 + C) - (0.5 - c)} 4Xc. (1 1) 
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With and without bias in conversion, the relative variance (RV = a i / p n )  and 
the time until fixation of a mutant were examined. Table 2 gives the results. 
Three cases examined are X = 0.1 and n = 100, X = 0.02 and n = 100 and, 
X = 0.1 and n = 20 with and without interchromosomal recombination (P = 
0 or ( n  - 1)p = 0.5). The conversional bias is changed from c = 0 to c = 
0.25. When c = 0, the theoretical relative variance is obtained by equation 
(10) and is given in parentheses. From the table, it can be seen that the 
conversional advantage has a relatively small effect on the relative variance, 
although in some cases it appears that the variance is slightly increased by 
biased conversion. 

On the other hand, the bias has a large effect on the time until fixation and 
o n  the probability of spreading of a mutant as suggested by NACYLAKI and 
PETES (1982), NACYLAKI (1983) and WALSH (1983) and as the present exper- 
iment clearly shows. Table 2 also gives the results for the time until fixation 
of the same Monte Carlo experiments. The theoretical values for the case of 
c = 0 is obtained by using the theory of OHTA (1983a). As can be seen from 
the table, biased conversion is quite effective for reducing the time. Let us 
examine the process of fixing a mutant gene in some detail. In terms of 
conversional advantage, s, the time until fixation within a single chromosome 
may be obtained. For our purpose, the fixation time is obtained deterministi- 
cally, by regarding the gene family on a chromosome as a population, although, 
for an exact value, the method of NAGYLAKI and PETES (1982) is needed. 
Time until fixation ( t l )  is, by noting that the rate of change of gene frequency 
is dx/dt  = sx(1 - x)  (LAMB and HELMI 1982), 

Note that t l  is the time concerning a single chromosome. Hence, in consider- 
ation of the population dynamics, it is appropriate in those cases when intra- 
genomic fixation time [equation (1 2)] is larger than that at the population level 
(4N generations for a neutral mutant, see KIMURA and OHTA 1969), and when 
the rate of interchromosomal recombination is negligibly low (see OHTA 
1983a). For example, when P = 0, c = 0.25, X = 0.02 and n = 100, equation 
(1 2) gives t ,  = 460, and the observed value in Table 2 is 506. Despite a limited 
applicability of this formula, it may be useful for considering large gene fam- 
ilies that are clustered on a single pair of chromosomes. From Table 2, it can 
be seen also that the effect of interchromosomal recombination for increasing 
the time until fixation becomes less as the bias gets larger. 

VARIANCE FOR GENE FAMILIES SUBDIVIDED INTO TWO PAIRS OF CHROMOSOMES 

In this section, “cohesiveness” is examined for the cases in which a gene 
family is subdivided into two pairs of chromosomes Z and ZZ (Figure 4). Un- 
biased conversion is analyzed. Let us assume that n genes are tandemly ar- 
ranged on a single chromosome so that a haploid set contains 2n genes be- 
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c h r 0 " e  I chromosomell 
FIGURE 4.-Diagram showing the conversion model and the meaning of seven identity coeffi- 

cients for a family dispersed into two chromosomes I and 11. 

longing to the family and 4Nn genes in the total population. Let hk be the 
rate per generation that a gene is converted by a gene on nonhomologous 
chromosomes (Figure 4). The rate of regular recombination is 0 as before. 

We suppose that a mutation appears initially in a gene on one chromosome 
Z in the population, and we consider the population dynamics of spread of the 
mutant gene. We define the following set of identity coefficients: f1, C1,l and 
C2,] are the coefficients for chromosome I ;  f2, C1.2 and C2,2 are those for 
chromosome ZZ and Ch is that between genes on chromosomes Z and ZZ (Figure 
4). The theory of transforming these identity coefficients from one generation 
to the next has been developed and some transient properties have been ex- 
amined (OHTA and DOVER 1983). For convenience, let us define the non- 
identity coefficients as follows and call them heterozygosity as before. 

and 

H2,2 = 1 - C2,2. 

Previously, we have studied the rapidity with which the ratio H2,2/H2,1, ap- 
proaches unity under various values of relative to A. At the state of steady 
decay, the heterozygosity coefficients for chromosomes Z and ZZ become the 
same, i .e.,  gl = g2, H1.1 = H1,2 and H2,I = Hz,~ ,  and the transient property of 
this ratio reveals how rapidly the heterozygosity approaches the state of steady 
decay. 

Here, we investigate the properties of heterozygosity coefficients at the state 
of steady decay and relate them to the mean square of the difference of the 
number of mutant genes between chromosomes Z and ZZ. Let xi be the fre- 
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quency of the mutant of the ith chromosome Z and yj be that of the j t h  
chromosome ZZ in the population. We have, by noting that Ck is the identity 
coefficient between genes on chromosomes Z and ZZ, 

= E(2 ~ i y j  - 2 N  1 ~j - 2N 1 yj  + 4N2)/(4N2). 
ij i i 

O n  the other hand, the mean square of the difference of average frequency 
of mutant between chromosomes Z and ZZ may be expressed as follows. We 
denote the expectation of the mean square, u:2, and from equations (6 )  and 

At the state of steady decay, by letting C2 = = (22.2, and f =fi =f2, 
1 
n u:2 = - ( ( n  - 1)C2 + f] - Ch. 

In terms of heterozygosity coefficients, by letting g = gl = g2, 

u:2 is divided by twice the heterozygosity to estimate relative value. It is further 
multiplied by n to have the value for the number of mutants per chromosome, 
i.e., the relative mean square difference of average number of mutants between 
chromosomes Z and ZZ. 

nHk - ( n  - 1)H2 - g 
21 1 - f/n - ( n  - l )&/n}*  

RV12 = 

This formula may not be entirely appropriate as the expectation of the ratio 
when is very small. This is because the mutant may be completely lost from 
the chromosome Z (or ZZ) population while persisting in the chromosome ZZ (or 
Z) population. Nevertheless, it is a good measure for the purpose of comparing 
it with the RV among either of the pairs of homologous chromosomes (I or 

Another measure of interest is the ratio, Hk/H2, i.e., heterozygosity measured 
between chromosomes I and ZZ relative to that measured for genes on homol- 
ogous chromosomes. T h e  ratio represents relative amounts of heterozygosities 
a t  the state of steady decay. Relative values of heterozygosity coefficients at  
the state of steady decay were obtained by the eigenvector of the transition 
matrix corresponding to the maximum eigenvalue as in the previous section. 
Table 3 gives some examples of these quantities numerically obtained for 
various values of A/&. T h e  relative variance of the number of mutants among 
the homologous chromosomes [equation ( 1  O)] is also shown for comparison. 

I I )  . 
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TABLE 3 

Results of numerical calculation f o r  the RV, the ratio of heterozygosity measured 
between chromosomes 1 and 11 relative to that measured between homologous 

chromosomes ( H L / H ~ )  and the relative mean square of the difference of the number of 
mutants per chromosome between chromosomes I and I1 (RV,p) 
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4 1.417 1.013 0.378 1.282 1.006 0.344 1.092 1.003 0.296 
8 1.747 1.034 0.912 1.511 1.015 0.786 1.216 1.006 0.634 

16 2.022 1.083 2.128 1.685 1.034 1.739 1.299 1.013 1.334 
32 2.210 1.191 4.832 1.796 1.074 3.747 1.349 1.027 2.760 
64 2.320 1.436 10.970 1.860 1.159 8.017 1.376 1.056 5.682 

128 2.375 2.013 25.418 1.894 1.347 17.420 1.390 1.117 11.766 
256 2.397 3.359 59.148 1.910 1.782 39.187 1.397 1.248 24.855 

Other parameters: X = 0.02, p = 0.0002 and N = 100. 

From the table, it can be seen that, as the conversion rate between genes 
on nonhomologous chromosomes, A h ,  becomes small, Hh/H2 and RV12 become 
large. RV12 increases remarkably, indicating large differences in the numbers 
of the mutant gene between chromosomes Z and ZZ. O n  the contrary, RV is 
relatively insensitive to hk. In other words, the population variation is not much 
influenced by Ak. This prediction of population cohesion holds also for the 
sum of the numbers of the mutant gene on chromosomes Z and ZZ (n(xi + y,) 
for the ith gamete). This is because the two pairs of chromosomes segregate 
independently a t  meiosis, and the RV in the number of mutant genes is ex- 
pected to be the same whether it is derived from the homologous chromosomes 
(either nx, or nyt) or  from among the sum of two chromosomes (n(x,  + yi)) in 
the population. 

INTERACTION WITH NATURAL SELECTION 

If natural selection favors a mutant gene of a multigene family, the variance 
of the number of mutants per genome is a critical factor for determining its 
effectiveness just as in ordinary quantitative genetics (MATHER and JINKS 197 1) .  
Let us consider a simple model of natural selection. Assume that selection acts 
in such a way that the fitness of the chromosomes with mi mutants is 

w, = 1 + tmi 

where t is a selection coefficient that may be positive or negative. Let p,, be 
the frequency of the chromosome in the population with mi mutants. Then,  
the change of p,, by selection in one generation is 
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where p,& is the frequency after selection, and W is the mean fitness of the 
population. Thus, the change of p m  by selection becomes, 

tu; = -  - 
W 

This formula 
such that the 
and mi copies 

applies to the diploid selection model, if selection is additive, 
fitness of a zygote with mi copies of mutant on one haploid set 
on the other set is given by W+ = 1 + t(mi + mj). Equation (21) 

implies that the increase of the average number of mutants is tu;/G in one 
generation. T h e  result is analogous to the so-called fundamental theorem of 
natural selection by FISHER (1 930) and the secondary fundamental theorem by 
A. ROBERTSON (see FALCONER 1981). In this regard, it is interesting to note 
that the theory of quantitative genetics based on genotypic and phenotypic 
variances (e.g., see BULMER 1980) remains unaltered, even if the underlying 
genetic mechanisms for spreading a mutant allele differ between the present 
multigene family model and the classical one (see next section). 

Combining the prediction on the variance with our  previous results, it can 
be said that the selection response becomes larger with either higher rates of 
conversion or with lower rates of regular recombination, if other parameters 
remain the same. This is because both rates affect the population variance for 
the number of mutant genes per individual. This model could apply to the 
elimination of deleterious mutations from the multigene family ( t  < 0). Some 
multigene families contain pseudogenes that are the results of accumulation of 
defective mutations. If the proportion of pseudogenes becomes too large, they 
could have deleterious effects on organisms, and the present model is a rea- 
sonable approximation of such effects for multigene families with uniform 
members. When selection is directional, the variance would not be much in- 
fluenced by selection, and the present model would apply. For a complete 
quantitative assessment of the effectiveness of natural selection, however, fur- 
ther investigation is needed. 

Our  model treats the simple case in which fitness is a linear function of the 
number of the mutant gene in a family [equation (19)]. It is comparable to 
the model of natural selection which considers fitness as a function of identity 
coefficients and in which the identity probability may increase or decrease by 
selection (OHTA 1980). For gene families with diverse functions, such as those 
for the immunoglobulins and histocompatibility antigens, natural selection 
could be operating to lower identity coefficients, whereas for families coding 
for uniform products such as histones or rRNAs, identity coefficients may be 
strengthened by natural selection. 

I t  is interesting to compare our  results with those for transposable elements. 
CHARLESWORTH and CHARLESWORTH (1 983) have shown that, with respect to 
the copy number per individual, the Poisson distribution is a sufficiently good 
approximation for transposons, with variance equal to the mean (RV = 1 in 
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our notation). This is because linkage is loose for any transposon family in 
diploid species, and linkage disequilibrium becomes negligible. The situation is 
comparable to the present case with sufficiently large recombination rate. It 
should be noted, however, that, from the numerical examples of Tables 1 and 
2, and Figures 1 through 3, the variance may become less than the mean 
(RV < 1 )  when X is relatively small and P is sufficiently large. 

EVOLUTIONARY PERSPECTIVES 

Our analysis reveals that the genotypic variance in the number of mutant 
genes that have spread in a multigene family consisting of relatively uniform 
members in each individual is expected to be small under realistic conditions 
of the rates of nonreciprocal exchanges between member genes. This means 
that the population mean of the ratio of wild-type to mutant genes per indi- 
vidual can be moved from an initial condition of n number of A genes to a 
final condition of n number of U genes per individual without the generation 
of a large variance at any given generation. The situation is analogous to a 
long-term shift in the population mean of a polygenic trait under natural 
selection. The analysis shows that the RV is the same, or less than, that ex- 
pected of a Poisson distribution, under realistic rates of intrachromosome con- 
version and regular recombination. Under conditions in which there is no 
homologous recombination (or interchromosome conversion) coupled to high 
rates of intrachromosome conversion, the RV is higher than Poisson because 
the conditions are optimal for the maximum genetic differentiation between 
homologous chromosomes. For the case of gene families that are spread on 
two or more pairs of chromosomes, see the work by OHTA and DOVER (1983). 
Our models deal only with gene conversion; however, broadly similar dynamics 
of population change are expected from other mechanisms of nonreciprocal 
exchanges in multigene families such as unequal exchange and transposition. 
All three mechanisms operate within and between chromosomes (see DOVER 
1982 for references) at rates that are considerably slower than the fast rate at 
which chromosomes are randomly distributed between individuals at each gen- 
eration by the sexual process. Hence, there will be small differences between 
individuals with respect to the total number of a new mutant gene whether 
we consider a process of genetic replacement in a preexisting family or a 
gradual amplification of a family, de nova, such as the P element family involved 
with hybrid dysgenesis in D. melanoguster (BREGLIANO and KIDWELL 1983; 
ENCELS 1983). 

The low population variance in the copy number of a mutant gene at any 
given generation during molecular drive is of consequence to natural selection. 
The situation is analogous to the ways in which natural selection interacts with 
continuous traits under polygenic control (MATHER and JINKS 197 1). There is, 
however, an important distinction between the two systems. In the absence of 
selection, each individual locus of a polygenic system evolves independently 
and either reaches genetic equilibrium for a number of alternative alleles or 
becomes fixed for one or another allele, by genetic drift. The loci of a true 
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multigene family are not evolving independently, in that a unique variant allele 
can become fixed eventually in all loci distributed around the karyotype. 
Hence, in contrast to polygenic systems, a multigene family can evolve as a 
whole and change in composition from one extreme of n number of A genes 
per individual to the other extreme of n number of a genes per individual, at 
all loci without the aid of selection. The significance of a small phenotypic 
variance during this gradual process of genetic transformation of a population 
is that selection might tolerate the small concurrent changes that have taken 
place in the biology of the individuals at any given moment (DOVER 1982). 
Tolerance would be reinforced especially were the population to seek out more 
appropriate ecological niches during the period of change. Hence, small dif- 
ferences between individuals of any one population at any given generation, 
with respect to the degree of change in a family, may be of little consequence 
to fitness differentials, even though at the end of the process, when a mutant 
gene has completely spread through a population, selection might recognize a 
large fitness difference between such transformed individuals and those of 
another population. Hence, molecular drive, as an independent process for 
changing the genetic composition of a population, could contribute to the 
biological differentiation of populations. 

One interesting example of a possible interaction between natural selection 
and molecular drive has recently come to light. This concerns the need for 
the products of single-copy genes, which bind to specific regions in a multigene 
family, to keep u p  with the continually changing composition of the sequences 
in such regions. For example, the known species specificities of RNA polym- 
erase I complexes could have arisen as a consequence of selection for different 
and more efficient polymerases, or cofactors, needed to recognize the changing 
nature of the rDNA family promoters and other relevant sequences, as two 
populations differentiate in this respect. A gradual replacement of multiple 
rDNA promoters with a new sequence, in the cohesive manner effected by 
niolecular drive, should allow sufficient time for selection to increase the fre- 
quency of new specific allele of Pol1 or its cofactors. Experimental evidence in 
favor of this direction of coevolution between promoters and polymerases, 
rather than the converse, is becoming available in the rDNA of diverse genera 
(COEN and DOVER 1982, 1983; ARNHEIM 1983; R. MIESFELD and N. ARNHEIM, 
personal conimunication; ONISHI, BERCLAND and REEDER 1984). This model 
of an interaction between selection and molecular drive might be generally 
applicable to other types of specific molecular interactions between single-copy 
gene products (RNA or protein) and multigene families, for example in the 
immunoglobulin family. This would imply a more widespread effect of DNA 
flux by nonreciprocal exchange mechanisms than simply the gene families in 
which it occurs. 

The size of the variance in copy number of a variant gene as it spreads, and 
the extent to which selection tolerates such differences in a population, is 
expected to vary widely between families and species (DOVER 1982; Dover et 
al. 1982; FLAVELL 1982). Our models describe a small relative variance in 
families from 50 to 200 members under realistic rates of gene conversion and 
recombination. Sequence analysis of variation within two large noncoding fam- 
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ilies (>10,000 members) in Drosophila species reveals all of the expected stages 
of transition during replacement at individual nucleotide positions and con- 
firms the continual homogenizing effects of the turnover mechanisms in these 
families in each of the species (T. STRACHAN, D. A. WEBB and G. A. DOVER, 
unpublished data). A quantification of these data and the extent to which they 
are predicted by our models is under investigation. The genetics of very small 
families (<lo members), distributed on one chromosome, might approach, 
however, the Mendelian genetics associated with single-copy genes, especially 
in cases such as the globin gene “family” in which the majority of genes (ex- 
cluding the pairs of a’s and 7’s) no longer experience significant genetic ex- 
changes among themselves. Such families are more akin to clusters (BODMER 
1981) in which each gene seemingly evolves as an independent unit. In a 
similar vein, the genetics of very large families such as silk moth chorion genes 
(JONES and KAFATOS 1982), sea urchin histone genes (KEDES 1979; HENTSCHEL 
and BIRNSTIEL 1981), amphibian 5s rRNA genes (FORD and BROWN 1976) 
and n~amnlalian immunoglobulin genes (HOOD, CAMPBELL and ELGIN 1975; 
HUNKAPILLER et al. 1983), which are divided into distinct subfamilies that 
affect the phenotype in different ways, is expected to be more elaborate (see 
OHTA 1984b for an improved model). 

The evolutionary genetics of molecular drive, like that of Mendelian popu- 
lations under selection and drift, can be modeled only in general terms. The 
specifics of the system and their ensuing interactions with selection and drift 
need to be examined case by case. 
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