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ABSTRACT 

A simple numerical method was developed for the mean number and average 
age of alleles in a population that was initiated with no genetic variation following 
a sudden population expansion. The methods are used to examine the question 
of whether allele numbers are elevated compared with values seen in equilibrium 
populations having equivalent gene diversity. Excess allele numbers in expanding 
populations were found to be the rule. This was true whether the population 
began with zero variation or with low levels of variation in either of two initial 
distributions (initially an equilibrium allele frequency distribution or initially with 
loci occurring in only two classes of variation). Although the increase of alleles 
may persist for only a short time, when compared with the time which is required 
for approach to final equilibrium, the increase may be long when measured in 
absolute generation numbers. The pattern of increase in very rare alleles (those 
present only once in a sample) and the persistence of the original allele were also 
investigated. 

HE effects of population size fluctuations upon the genetic variability main- T tained in natural populations has been of interest to geneticists for many 
years (WRIGHT 1938). Especially important is the situation in which a population 
goes through a severe, but temporary, population restriction, termed a popula- 
tion “bottleneck.” The theoretical analysis of bottlenecks is relevant not simply 
because of the light it can shed upon nonequilibrium situations in population 
genetics but because the theory can have a very concrete practical application in 
the study of speciation (CARSON 1968), for the conservation of genetic resources 
in rare or endangered species and in genetic resource conservation of cultivated 
animals and plants. 

In this series of papers we will study various nonequilibrium population genetic 
models that have a bearing upon the bottleneck problem. NEI, MARUYAMA and 
CHAKRABORTY ( 1  975) pioneered the study of bottleneck effects, using a model 
in which a severe size reduction occurred suddenly in a population that was in 
equilibrium between mutation and genetic drift. Large amounts of the genetic 
variability in the population was lost following the bottleneck, and NEI, MARU- 
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YAMA and CHAKRABORTY (1975) were able to derive explicit formulas for the 
amount of gene diversity (genic heterozygosity) maintained in the population as 
a function of several population parameters, including bottleneck size and 
population growth rate. 

Unlike gene diversity, some other statistics of variation, including those directly 
related to the number of alleles in a population, are not easily calculated in the 
extreme nonequilibrium situation. NEI and LI (1976) have obtained the distri- 
bution of the gene frequency spectrum following a sudden change in the 
population size. Their methods illustrate one difficulty that faces those interested 
in the analysis of the nonequilibrium situation. Although natural populations 
fluctuate in size, they do not usually undergo severe reductions, followed im- 
mediately by restoration to the original population size. Rather, there is a gradual 
increase in population size. Such changes are usually modeled by the approach 
of NEI, MARUYAMA and CHAKRABORTY (1975), but their model does not easily 
provide information on allele numbers; other methods may need to be employed. 
Among these is the use of alternative computer simulation models, such as those 
based on Ito’s stochastic integrals (MARUYAMA 1980, 1981, 1982, 1983; MARU- 
YAMA and NEI 1981; NEI, MARUYAMA and WU 1983). This will provide us with 
representative results but not exact solutions to the problems of interest. Such 
simulation methods will be examined in detail in subsequent papers in this series. 

Alternatively, we can study nonequilibrium problems by using methods that 
will provide unique solutions but that do not approximate the natural situation 
as closely as the computer stochastic integral methods permit. By employing 
contrasting models, we may be able to make statements concerning possible 
outcomes in more realistic situations. Two processes define the bottleneck 
situation: population reduction at the bottleneck (which causes the loss of genetic 
variability) and population expansion following the bottleneck (which ultimately 
restores the variation through mutation). The nonequilibrium analysis of change 
of variability can similarly break the problem into (1) the decrease of population 
size from a previously large equilibrium population to a small steady population 
size and (2) the instantaneous increase of the population from a small size to a 
large steady state population. We can also extend this approach by considering 
(3) the combination of the two processes into a cycle of population size changes 
and, finally (4) the relaxation of the assumption of instantaneous change. In this 
paper, and the following series, we will consider these problems and offer some 
solutions to them. 

NEI and LI (1976) studied the allele frequency distribution in this situation 
and obtained formulas for the gene frequency spectrum as an eigenfunction 
expansion of the time-dependent solution, involving hypergeometric functions. 
GRIFFITHS (1 979a,b, 1980) gave a complete mathematical analysis on the distri- 
bution of the allelic frequencies in a sample taken from a transient population. 
GRIFFITHS (1 979b, 1980) gave formulas for the mean number of different alleles 
expected to appear in a finite sample of genes taken from a population evolving 
from an arbitrary initial condition, including totally homoallelic cases. Griffith’s 
formulas are expressed in series expansions by orthogonal polynomials on the 
Dirichlet distribution. Although the analyses are mathematically exact and beau- 
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tiful, actual calculation requires a computer and is fairly complicated. WATTER- 
SON (1983) obtained a slightly simpler formula for the frequency spectrum of 
genes in a transient population. Computation using Watterson’s formula is 
relatively easy, but it requires handling terms of large factorials if the sample size 
is large. 

In this paper, we will present a simple numerical method for calculation of the 
mean number and age of alleles in a sample taken from an evolving population. 
The method enables us to compute the number of different alleles each with a 
given frequency. The initial condition does not need to be entirely homoallelic, 
although most of the cases examined in the paper assume zero variability initially. 
These methods are based upon use of difference equations, which approximate 
a Kolmogorov backward equation representing a classical diffusion process. 

Since gene diversity and allele number are two important measures and have 
become available through electrophoretic studies in natural populations, we 
believe that the methods of this simple analysis will prove useful. When a natural 
population is surveyed for genetic variation, its history is usually unknown. 
Consequently the question of whether or not it could be in equilibrium between 
mutation and genetic drift is unanswerable. Because of this, we will also examine 
the relationship between the number of alleles in nonequilibrium situations and 
the observed population heterozygosity, which is measurable in any natural 
population. This comparison will allow us to determine the relative effects caused 
by bottlenecks that could be observed in actual surveys. 

THE MODEL AND ANALYSIS BASED ON DIFFERENCE EQUATION 

Consider a locus at which infinitely many alleles are possible, with every mutant 
being new to the population. Further assume that every gene, irrespective of its 
allelic state, mutates to a new allele at a rate of v ,  where v is a constant. The 
population size is assumed to be finite, with all alleles being selectively neutral 
and differentiable from one another (ie., the infinite allele model of WRIGHT 
1948 and KIMURA and CROW 1964). The population size, N, is constant, so that 
for a diploid organism the total number of genes in the population is 2N. The 
population is assumed to be homoallelic at each locus under consideration at 
time t = 0. Time can be measured either in absolute number of generations or 
in terms of 2N generations. Since every mutant is new, every existing allele will 
have a unique entry time into the population; at a given observation point, each 
allele has a well-defined time of persistence measured beginning at its time of 
entry. We call the persistence time the “age” of the allele. 

Assuming that the population size is sufficiently large, we can approximate the 
sampling process by diffusion models. This allows us to use the various mathe- 
matical tools available for the analysis of diffusion processes, notably the Kol- 
mogorov backward equation. Results based on the diffusion approximation can 
be compared to those obtained by Watterson’s formula for the discrete Markov 
chain which describes the original dynamics of the evolving population. 

Consider a particular allele, A,  and let $(t, x, y) be the probability density that 
the frequency of A is y at time t, given that it is x at time t = 0. Then 4(t, x, y )  
satisfies 
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where 4 = @(t, x, y). Time in ( 1 )  is measured in units of 2N generations. Following 
EWENS (1 972), let 

where y is the variable defined above and M is the sample size. We can define 

u(t, x) = l1 4@, x, r)f(r)dy. (2) 

Function u(t, x) is the probability that allele A will appear at  least once in the 
sample taken at  time t. 

For the starting frequency of A,  x is 1 if A is the allele in the original homoallelic 
population, and x is zero if A is the allele entering the population at  time t > 0. 
More generally, if allele A has an intermediate frequency at  the beginning of the 
process, x is equal to the value of the frequency of A at time t = 0. This can be 
the case following a bottleneck when a population loses most of its genetic 
variability but retains,alleles at  intermediate frequencies at  a few loci. 

Applying the integration defined by (2) to 4(t, x, y )  in ( l ) ,  we get the following 
Kolmogorov backward equation 

with the initial and boundary conditions 

and 

u(0, x) = 1 - ( 1  - x)". ( 5 )  
We can express the solution of (3) satisfying (4) and ( 5 )  in a series expansion 

by eigenfunctions of the operator on the right side of (3), since it admits Jacobi 
orthogonal polynomials as its eigenfunctions. This approach has been taken by 
KIMURA (1955), CROW and KIMURA (1956) and NEI and LI (1976) for similar 
problems. These authors expressed solutions in a series of hypergeometric 
functions. Such analytic solutions expressed as series of transcendental functions 
have many nice features; particularly useful is the known asymptotic behavior of 
the process. There are, however, problems such as those being considered here 
that require numerical solutions obtained using a computer. Although all infor- 
mation concerning the fate of genes in the population can theoretically be 
obtained from the fundamental solutions of ( 1 )  expressed in series of eigenfunc- 
tions, it is often more straightforward to integrate (3) numerically. 

Our  approach to the problem of allele number and age is, therefore, numerical 
integration of (3) with the boundary conditions given in (4) and (5). T h e  
integration takes place in the two-variable space of t and x, where x ranges 
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between 0 and 1 and t varies from 0 to some finite value. We can denote this 
space by [(0, 00) X (0, l)]. Regarding this space as a two-dimensional lattice in 
which the width between two adjacent points along the time axis is At and that 
between two adjacent points along the frequency axis is Ax, we can consider 
u(t, x) defined on these lattice points and denote its value as uy. If we consider 
(3) as a difference equation rather than a differential equation, we have the 
following approximations 

du(t ,  x) uz+1,J - uy 

du(t, x) UZJ+l - U2,j-l 

N 

at At 

- N  - 
ax 2 Ax 

and 

Substituting these approximations into (3) and rearranging, we have 

(Ax)' J -" L"'" 
where xj is the value of x at the corresponding points on the lattice (MARUYAMA 
1977). For the initial condition we set 

and for the boundary condition 

where 1 corresponds to the largest value o f j  in the lattice or l a x  = 1. Using the 
difference equation (6), u~ can be readily computed for i = 1, 2, 3 . . . . Then, it 
is known from the theory of differential equations that, as At and Ax go to zero, 
uij converges to the particular solution of (3). We need to keep the xj( 1 - xj)At/ 
 AX)') less than Vz to have convergence of uy to the correct solution. 

Among the uy's computed, we are interested in uil and uil representing, 
respectively, the probability that an allele existing in the original population has 
not been lost and the probability that an allele entering the population has not 
been lost at time i(t = i A t ) .  

Examination of ( 3 )  demonstrates that, in the diffusion approximation, the 
population size, N, does not exist as a separate parameter, since N enters the 
equation as a component of Nu. However if we partition the space variable x into 
l ( j  = 0, 1, 2 . . . , 1) in the difference equation (6), uil represents information on 
the fate of a mutant present only once at the time it entered a population of I 
genes. Similarly, uil gives information for the allele originally occupying the 
entire population. 
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In analyzing the number of alleles observed in a sample of size M, we consider 
two sources of information. One is the probability, uil, that the original allele 
persists in the population. The second is the probability of persistence of those 
alleles entering the population between time zero and time t. Since we assume 
that every mutant has a constant rate of mutation, U, there will be on the average 
2Nu new mutants entering each generation, and (2Nu X 2 N )  new mutants in a 
unit time. 

A mutant entering the population at time t; will have the probability 

U t - t;, x = - of persisting at time t .  Therefore, the total number of alleles 

that enter the population between time t; and t; + dt; and remain until time t is 
equal to 

( 2N l )  

~ N ' u u  t - t;, - dt;. ( :" 
Approximating this in terms of U+ we have 

4N'~u,-c,lAt 

where t = yAt ,  with y = 0, 1, 2 ,  . . . and t; = 0, 1 ,  2 ,  . . . , y. Therefore, the total 
number of alleles, n(t, M), which will be found in a sample of M genes taken 
randomly from a large population, will be equal to 

Y 

Despite the simplicity of the computational procedure, formula (8) provides a 
good approximation to the discrete Markov chain model of the Fisher-Wright 
type. A few examples are given in Table 1 where the average numbers of alleles 
expected to be found in a sample taken from an evolving population are 
compared for the two models. 

The average age of an allele can be calculated from uq or u(t, x). Note that 

U t - t;, - is the probability that a mutant arising at time t - t; is retained in 

the population at time t, and that its age at time t is t - t;. Therefore, the average 
age of all extant alleles in the population at time t is equal to 

( :" 

In terms of the solution of the difference equations, the average age, Ag(t),  at 
time t is given by 

1 

€= 1 
u,J + 4N'uAt c 

A&) = 1 

uY,l + 4N'vAt u,-€,I 
E= 1 

(9) 
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TABLE 1 

Comparison of the average number of alleles calculated by formula (8) and by 
WATTERSON’S ( 1  983) formula. 

751 

4Nu (sample size 10) 4Nu (sample size 20) 

Time 1 5 20 0.5 2 10 

1.12 
1.12 

1.56 
1.58 

3.05 
3.1 1 

1.11 
1.11 

1.43 
1.44 

3.04 
3.12 

1.22 
1.22 

2.04 
2.07 

4.53 
4.62 

1.20 
1.20 

1.78 
1.80 

4.57 
4.69 

1.40 
1.41 

2.83 
2.86 

6.40 
6.54 

1.34 
1.35 

2.32 
2.36 

6.70 
6.88 

1.67 
1.67 

3.92 
3.98 

7.79 
7.98 

1.54 
1.55 

3.06 
3.12 

9.08 
9.32 

2.19 
2.23 

5.34 
5.45 

8.05 
8.28 

1.88 
1.91 

4.22 
4.31 

10.90 
11.22 

2.60 
2.66 

5.66 
5.82 

8.05 
8.28 

2.15 
2.20 

4.92 
5.05 

10.99 
11.33 

Time, In units of 2N generations; (8). formula (8); (W), WATTERSON’S (1983) formula. 

Formula (9) yields a good approximation for the average age of alleles simulated 
by using the Markov chain with M genes. It should be remembered that the 
average age in our  analysis is defined with respect to the beginning of the 
mutational process. The original allele in the population will have been carried 
over from some preexisting population, but its age is still calculated only from 
time t = 0. Because of this definition of age, the age of alleles during the early 
phase of the process must be strongly related to the time since the start of the 
population. 

TRANSIENT EXCESS OF ALLELES 

One of the major purposes of the present study was to observe the time- 
dependent dynamics of the number of alleles found in a sample of genes taken 
from a population. In nature, we cannot determine the equilibrium state of a 
population. In practice, we assume that the population being studied is at 
equilibrium and that we can, therefore, use equilibrium expectations to test 
various statistics generated by genetic models (see CHAKRABORTY, FUERST and 
NEI 1978). Studies have shown that the asymptotic rate at which the frequency 
spectrum approaches its steady state distribution will be the same for all regions 
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of the spectrum. This rate of approach is equal to (2v + 1/2N) per generation, 
as shown by EWENS and KIRBY ( 1  975), KARLIN and AVNI ( 1  975) and NEI and LI 
( 1  976). The studies of NEI and LI ( 1  976), and those presented here, deal with 
the transient behavior of the process far from an asymptotic value. Based on the 
pattern of graphs of the transient allele frequency spectrum, NEI and LI argue 
that since the spectrum has a sharp peak at 0 at the beginning of the process rare 
alleles in a transient state will greatly exceed the numbers expected if the 
population was at a steady state condition with an equivalent average heterozy- 
gosity. 

We can directly compare the number of alleles appearing in a sample of M 
genes taken from an evolving population with the expected number based on 
steady state assumptions. If the population starts from zero variability at time t 
= 0, the level of heterozygosity, H,, is given by 

where t measures time in units of 2N generations ( N E I ,  MARUYAMA and CHAK- 
RABORTY 1975). It is easy to show that H ,  = 4Nv/(l + 4Nv), which is the 
equilibrium level of heterozygosity obtained by KIMURA and CROW ( 1  964), and 
that Ho = 0. 

To compare the number of alleles in an evolving population with the number 
expected in a steady state population, we used ( 1  0) to obtain the heterozygosity 
at time t in the evolving population. We can then equate the value of H,  to 
6/( 1 - 6) where 6 denotes the 4Nv value of the assumed steady state population 
with equivalent gene diversity. Then the number of alleles in a sample of M 
genes taken from such a population, denoted by n*(t, M ) ,  is given by 

e + ... . .  + .. e^ ti n*(t, M )  = 1 + - + 1 
8 + 1  8 + 2  B + M -  1 

where 6 = H,/( 1 - H,) (EWENS 1972). 
We have compared the actual number of alleles, n(t, M ) ,  calculated from (8), 

to n*(t, M )  of formula ( 1  1 )  for various values of t and 4Nv. Figure 1 shows the 
number of alleles that will be found in a sample of 200 genes at various times in 
an evolving population. The dashed curves in Figure 1 represent the expected 
number of alleles, based on an assumption that the population was in mutation- 
drift equilibrium. Since each dashed curve is below the corresponding solid 
curve, it is clear that the number of alleles grows faster than the heterozygosity. 
As a consequence there will be an apparent excess of alleles observed in the 
population if it were assumed that the population under study is actually in 
mutation-drift equilibrium. A population starting from zero variability must 
accumulate new mutants, and each new tnutant must begin at low frequency. 
Such mutants can appear in a sample, especially if the sample is large enough, 
but they contribute little to the average heterozygosity. This results in a compar- 
ison in which the steady state expectation predicts many fewer rare alleles than 
are observed. The difference between the two expectations can be large, partic- 
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FIGURE 1 .-Average number of alleles in a sample of 200 genes taken from an evolving population 

(solid curves). Dashed curves, The number of alleles based on the assumption that the population is 
in equilibrium at the observed level of heterozygosity. Time, In units of 2N generations. 

ularly when 4Nv is large. However, the difference persists for a relatively short 
period of time. For instance, if 4Nv = 20, which is a rather large value, the 
maximum difference between the two expected numbers of alleles can be as 
large as 20 alleles or more, but a difference of this magnitude lasts less than 0.2N 
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FIGURE 2.-Excess number of alleles to be seen between the actual number of alleles and that 
based on the equilibrium assumption. Numbers over the curves represent the sample size. a, 4Nv = 
2; b, 4Nv = 5; c, 4Nv = 10; d, 4Nv = 20. 

generations. If 4Nv = 5 ,  a significant difference persists for about 0 .5N genera- 
tions. 

The difference in the number of alleles expected for the two assumptions 
(evolving populations us. steady state) is shown in Figure 2, for various combi- 
nations of 4Nu and sample size. The graphs reveal several features of biological 
importance. The difference between the two expectations becomes larger as the 
sample size increases. For instance, when 4Nv = 10, the maximum difference 
changes from approximately 2.5 alleles, when M = 20 genes, to about 27 alleles 
when M = 1000. This has an important implication for survey design. When an 
excess of the number of alleles is observed, the amount of the excess increases 
as the sample size increases, if  the population being sampled is actually not in 
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4Nv = 20 
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vt  
FIGURE 3.-The excess number of alleles and the 4Nu value. vt, The mutation rate (U) times the 

number of generation ( t ) .  

steady state equilibrium. Studies such as those of OHTA (1976) and CHAKRA- 
BORTY, FUERST and NEI (1978) did not analyze the effect of increasing sample 
size on the excess of alleles observed. Future studies should take this into account. 

Figures 1 and 2 reveal that the difference from steady state expectations 
increases most rapidly soon after the population begins to evolve. This tendency 
is most pronounced when the sample size and the value of 4Nv are both large. 
The peak occurs slightly later (in terms of 2N generations) as 4hrv decreases. 
The excess lasts longer for a large value of M. 

Although a study of Figure 2 suggests that the excess of total alleles will persist 
only for a short time (in terms of 2N generations), this period (in terms of 
absolute generations) may be substantial. In Figure 3 we present an example that 
compares the excesses observed in populations with different values of N when 
we fix the value of the mutation rate. As can be seen in Figure 3, the actual 
duration of an excess will strongly depend upon the size of the ultimate equilib- 
rium population. With a large population this excess may be sustained over a 
long evolutionary time. 

THE NUMBER OF ALLELES EACH PRESENT SINGLY 

Among the statistics that we can test, some of the most interesting deal with 
alleles that appear only rarely, or even only once, in the sample. Each generation 
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2Nv new mutant alleles are introduced into the population. Of course, most of 
these new mutants become extinct within a few generations, before reaching a 
frequency high enough to be included in a small sample. When 2Nv is large, the 
population accumulates mutant genes rather rapidly, and some will appear in 
survey samples. In a previous paper (MARUYAMA and FUERST 1983), we have 
shown that, if 4Nv  is of the order of 0.5 to 5 ,  the first arrival time for a new 
mutant allele to reach an intermediate frequency is not large. This first arrival 
time is approximately equal to a small (0.1-0.3) fraction of N generations. From 
this, we expect that the frequency classes close to zero might attain an equilibrium 
number of alleles more rapidly than regions farther from zero. More alleles may 
be found at low frequencies in an evolving population than in a population that 
is in equilibrium between loss of alleles due to drift and input of alleles due to 
mutation. Consequently, there will be more alleles in samples of genes taken 
from each population. NEI (1 979) investigated this problem for a steady state 
population. Here, we will present a study of this problem for an evolving 
population. 

With the approach based on numerical integration of (3), we set the initial 
condition 

M -  1 

uo, = M (+)( 1 - f )  . 

Using the difference equation (6), the initial condition (1 2 )  and the boundary 
condition (7), we can calculate ug which is the probability that the particular 
allele will be present only once in the sample, given that the frequency of that 
allele is j A x  at time zero. The remainder of the calculations needed for this 
problem are the same as those used for the total number of alleles. Namely, 

1 

U,[ + 4N2vAt  1 uY-j,l 
i= 1 

gives the number of alleles each of which will be present singly. The average 
number of singly present alleles in a sample of M genes taken from an equilibrium 
population is given by 

4NvM 
M + 4Nv  - 1 

while, similarly, the average number of alleles each present k times is 

4 N u M ( M -  1) . . .  M - k +  1) 
K(M + 4Nv  - 1)(M + 4Nv  - 2 ) .  . . (M + 4Nv  - k ) '  

We can examine how alleles singly present are found in the population at 
various times after the start of the mutational process. Examples are given in 
Figure 4. The population rapidly reaches a plateau with respect to the number 
of such alleles, and this number changes little after the plateau is attained. Since 
formula ( 1 4 )  gives easily the expected number of singly present alleles we 
calculated the excess of singly present alleles assuming the population is at a 
steady state with the measured amount of variability. 
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FIGURE 4.-The number of alleles each present singly in sample. M = 100. 

Assuming that the population is in a steady state at the observed level of 
genetic variability, we calculated from formulas (1 3) and (1 4) the excess of singly 
present alleles. Figure 5 presents some examples of the mean excess for sample 
size 100. It was found that, as 4Nv increases, the excess of singly present alleles 
makes up a larger fraction of the total excess. When 4Nv is larger than 5, and 
when the sample size is reasonably large, more than a half of the total excess is 
due to the excess of singly present alleles. This confirms the emphasis of NEI and 
LI (1976) that in an expanding population the number of rare alleles should be 
in great excess. 

EXPANSION FROM A NONHOMOALLELIC STATE 

In the preceding sections, we assumed that the population under consideration 
expanded from a completely homoallelic population. This describes one extreme 
case of a postbottleneck population. The model can be used to place bounds on 
the more realistic case in which genetic variability is not lost completely. It is, 
however, not difficult to extend the analysis to situations in which the starting 
population has nonzero variability. Such a model was analyzed by NEI and LI 
( 1  976) using an eigenfunction series expansion. Here, we will present an analysis 
based on the difference equation method. 

Suppose that $(x) is the frequency spectrum in a starting population. Then, 
the number of alleles in an evolving population can be obtained using formula 
(8), where uy,l is replaced by 

M c % A X , )  (15) 
I= 1 
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5.-Excess number of singly present alleles to be seen between the actual 
on the equilibrium assumption. M = 100. 

number and 

and U?, is the solution of difference equation (3) satisfying the boundary condi- 
tions (4) and (5). The quantity given by (15) is simply the total number of alleles 
carried over from the founder population which appear in a sample of M genes 
sampled at time t. 

If the founder population is in equilibrium between mutation and drift, and 
with population size equal to No,  the frequency spectrum at time (t = 0) is given 
by 

4 ( ~ )  = ~N,VX- ' (  1 - x ) ~ ~ ~ ~ - ~  

where +)dx is the number of alleles whose frequency at t = 0 is in the range (x, 
x + dx) .  

Of course, for the case of a true bottleneck, the population will not be in an 
equilibrium state because of the sampling process involved in going through the 
bottleneck. This does not mean that we cannot obtain the allele frequency 
spectrum for such cases, and in fact we will present results obtained using 
stochastic integrals in a future paper (P. A. FUERST and T .  MARUYAMA, unpub- 
lished results). If the initial spectrum is known, even if this is not for an 
equilibrium population, it can be used in (14). For instance, if the initial popu- 
lation has two alleles with frequency x, and (1 - x,), formula (1 5) reduces to 

U Y j ,  + U r h  

where j ,Ax = x, and j,Ax = 1 - x,. 
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FIGURE 6.-The excess number of alleles calculated on the assumption that the starting population 
has 0.1 heterozygosity. Solid curves, Starting populations are in equilibrium; Dashed curves, starting 
populations consist of loci of zero variability and of those of 0.5 heterozygosity. 

We have used this approach to study two extreme cases of a population 
expanding from nonzero variability. In the first case, we assume that the 
population is small but in equilibrium between mutation and drift. 

We can, therefore, use the allele frequency spectrum of the equilibrium 
population as a starting point for the study. In the second case, we assume that 
the population is not in equilibrium. To do this, we use the most extreme case 
possible; one or more loci are started with two alleles, each having frequency 
0.5, with all remaining loci started in a homoallelic state. This would be analogous 
to sampling a single founding individual to form a population. 

In both situations which we studied, the populations rapidly accumulate new 
mutations. It should be kept in mind that, especially in the situation when the 
population is initiated in a nonequilibrium state, the average heterozygosity of 
the population will be considerably larger than it would be in the case of a 
recently homoallelic population. In addition, the number of rare alleles in the 
first few generations would be less than expected for a population with equivalent 
average heterozygosity. Nevertheless, the results are changed only negligibly 
from those obtained for homoallelic populations. An excess in the number of 
alleles is seen for all values of 4Nv studied, compared with the number of alleles 
expected in an equivalent equilibrium population. The slight deficiency of alleles 
initially seen for the population started at nonequilibrium is so transient, and of 
such low magnitude, that it has not been plotted in these figures. In Figure 6 
the excess in total number of alleles for the initial populations in equilibrium 
with low variability is given by the solid curves, whereas the excess for the 
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populations in nonequilibrium state with the same heterozygosity level is given 
by the dashed curves. 

It can be seen from these figures that the availability of preexisting genetic 
variability does little to dampen the increase in the number of alleles that are to 
be found in a rapidly expanded population. The increase in the number of alleles 
follows a similar time course for all comparable cases shown in Figures 3 and 4. 
The increases in the number of alleles are almost the same when there is a small 
amount of variation as when there is no variation in the population. The situations 
used to generate the model for Figure 6 with low variability, and that for 
nonequilibrium low variability, represent the extreme types of populations which 
are significantly different from those in Figure 2, in which the population begins 
with no variation. It appears, therefore, that Nei’s speculation that there will be 
an increase in the number of alleles following a population bottleneck may be 
correct, at least when the population is very rapidly expanded following the 
restriction. In a subsequent study (T. MARUYAMA and P. A. FUERST, unpublished 
results), we will show that under some situations the action of restricting popu- 
lation size will result in a transient decrease in the expected number of alleles in 
a population. There are thus interacting forces that are determining allele 
numbers in a population. However, this may last only a very short time, because 
the loss of alleles due to population reduction will dissipate much faster than the 
time period during which the excess of alleles is observed due to population 
expansion. We are carrying out extensive computer simulations based on the 
stochastic integral method to investigate the spectral change in a bottleneck 
population. We also intend to apply the analysis developed here to reveal more 
detailed features of the transient behavior of the number of alleles in a postbot- 
tleneck population. 

DISCUSSION 

A point of biological interest concerns the probability that the allele that 
existed in the original homoallelic population is found in a sample of genes taken 
from the evolving population. This allele is the only connection between the 
evolving population and the original population from which it was derived. This 
probability is equal to the first term, uy,l, on the right side of equation (8). This 
is directly related to the incidence of finding a common allele in two evolving 
populations derived from a common ancestral homoallelic population. Figure 7 
shows the relationship between the probability of retaining the original allele 
and the value of 4Nv, assuming a sample size, M ,  of 200 genes. Examining other 
sample sizes, we found that the probability of retaining the original allele is 
nearly independent of sample size ( M ) ,  once M has attained even a fairly small 
value such as 20 (ten individuals). Unless the sample is very small, the probability 
of persistence decays faster as 4Nv gets larger. It also shows that the time at 
which the persistence probability is equal to 0.5 is, approximately, inversely 
proportional to the value of 4Nv.  Note that the area under the curve in Figure 
7 is equal to the average age of a mutant whose frequency is 1.0 when it is 
introduced. This is because the age is a time-reversible process, the time required 
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FIGURE 7.-Probability that an originally present allele appears in a sample taken from an evolving 

am 

population. 

for x to change from a low value (x = 0) to 1 being the same as that for the 
reversed process (MARUYAMA and KIMURA 1974; WATTERSON 1977; NAGASAWA 
and MARUYAMA 1979). 

We must be cautious in the interpretation of the results presented in this 
paper, particularly when extrapolating them to the bottleneck situation. N E I ,  
MARUYAMA and CHAKRABORTY (1 975) have shown that, even in a rather extreme 
case of bottleneck, a population does not lose all of its genetic variability but 
rather that a substantial fraction of the variability is retained in the population 
following the bottleneck. We will show in a subsequent paper of this series (P. 
A. FUERST and T. MARUYAMA, unpublished results) that the population easily 
loses its rare alleles but that many intermediate frequency (polymorphic) alleles 
are retained following the bottleneck. Therefore, as far as losses of gene diversity 
and alleles are concerned, the loss of alleles will be much more drastic. If all rare 
alleles, but many intermediate alleles, are lost from the population there may 
actually be a strong deficiency of alleles for a few generations following the 
bottleneck. Nevertheless, our studies on populations that begin at nonequilib- 
rium, but with some variability, suggest that an excess of alleles will quickly 
appear. 

The next paper in this series (T. MARUYAMA and P. A. FUERST, unpublished 
results) will deal with the model labeled (1) in the introduction, and show that a 
population size reduction does, in fact, yield a deficiency of alleles following the 
change in population size. Only a complete treatment of the problem, which we 
hope to provide with subsequent papers in this series, will allow the determination 
of the total change in allelic expectations. 

We are grateful to M. NEI to whom we owe a number of substantial improvements in this paper. 
We would like also to thank two anonymous reviewers, T. GOJOBORI and G. WATTERSON, for their 
comments on an earlier version of this paper. This study was supported by research grant DEB- 
81 10220 from the United States National Science Foundation and by grant 57120001 from the 
Japanese Ministry of Education, Science and Culture. 
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