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ABSTRACT 

In population studies, adults are frequently difficult or inconvenient to iden- 
tify for genotype, but a family profile of genotypes can be obtained from an 
unidentified female crossed with a single unidentified male. The problem is to 
estimate an allele frequency in the cryptic parental gene pool from the ob- 
served family profiles. For example, a worker may wish to estimate inversion 
frequencies in Drosophila; inversion karyotypes are cryptic in adults but visible 
in salivary gland squashes from larvae. A simple mixture model, which assumes 
the Hardy-Weinberg law, Mendelian laws and a single randomly chosen mate 
per female, provides the vehicle for studying three competing estimators of an 
allele frequency. A simple, heuristically appealing estimator called the Dob- 
zhansky estimator is compared with the maximum likelihood estimator and a 
close relative called the grouped profiles estimator. The Dobzhansky estimator 
is computationally simple, consistent and highly efficient and is recommended 
in practice over its competitors. 

ORKERS (DOBZHANSKY and POWELL 1975) collect adult Drosophila from W nature to make inferences about the inversion polymorphism in adult 
populations. Adult genotypes are cryptic, but the genotype becomes visible in 
larvae. Collected adults are taken into the laboratory, and a fixed number of 
offspring per adult are identified for inversion genotype. Some uses of this 
familial data are to (i) estimate inversion frequencies, (ii) test population struc- 
ture (e.g., the Hardy-Weinberg law), (iii) test for selection components (e.g., 
fertility and viability) and (iv) estimate the frequency of multiple insemination. 
The complication of cryptic parental genotypes arises not only in the studies 
of inversions in Drosophila (DOBZHANSKY and EPLINC 1944; STALKER 1976; 
CARSON 1983) but also in the study of human blood groups (FINNEY 1948; 
CEPPELLINI, SINISCALCO and SMITH 1955), of allozymes in conifer populations 
(MORRIS and SPIETH 1978), of color morphs in salamanders (HICHTON 1975) 
and of allozymes in termites (LUYKX 1981), in Tribolium (SAMOLLOW, DAWSON 
and RIDDLE 1983) and in insect-pollinated plants such as morning glories 
(CLECC and SCHOEN 1984) due to missing parental data. The problem herein 
to be addressed is the estimation of an allele frequency among cryptic parents 
from their familial data, as in the examples just given. 

Consider a diploid species, such as Drosophila pseudoobscura (ANDERSON et al .  
' To whom correspondence should be addressed. 
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1975), and select a large isolated pocket of the species for study (e.g., Bogot;, 
Colombia). Adult males and females are collected from this isolate. Preliminary 
collections, together with a laboratory analysis of offspring, reveal a trait under 
genetic control of two or more alleles; furthermore, collected females are 
usually inseminated only once. The collector’s interest centers on a particular 
allele with the other allele(s) treated as one. In deciding to monitor the pop- 
ulation, the collector hopes that a combined field and laboratory analysis of 
the natural population will allow him to estimate the particular allele’s fre- 
quency. 

ARNOLD (1981) describes a model for collecting N cryptic fathers with n 
offspring per father identified for genotype. The model provides a context in 
which to estimate a particular allele frequency. Here, we describe a model for 
the second basic experimental protocol, the collection of N singly inseminated 
mothers, from each of whom n offspring are identified for genotype. The 
current model differs from the earlier one (ARNOLD 1981) in two ways: First, 
there are two unknown parental genotypes in the second protocol (us. one 
unknown parental genotype in the first protocol), and second, there is an 
additional assumption about the natural population’s mating structure being 
random. An adult’s chromosome in nature carries one allele, hereafter referred 
to as the allele, with probability 8, or an adult’s chromosome in nature carries 
the other allele with probability 8 = 1 - 8. A collected mother carries y copies 
of the allele. The count y must be 0, 1 or 2, and it can be identified with the 
cryptic genotype of the collected female. If y is 2, she is homozygous for the 
allele; if y is 1, she is heterozygous. Assume that each mother mates with one 
father in nature. The parental genotypes of the mother and father are denoted 
by yo and y l ,  respectively, and these parental genotypes y = (yo, y l )  are cryptic 
to the collector. 

The field collector takes the collected mother into the laboratory, obtains 
progeny and identifies the genotype of each of her offspring. For a given 
mother, an examination of n of her offspring yields (i) 122 offspring, which are 
homozygous for the allele, each with probability w; (ii) no offspring, which are 
homozygous for the other allele, each with probability U and (iii) nl offspring, 
which are heterozygous, each with probability U. The family profile of counts 
- n = (no, n l ,  n2) is the familial genetic data on one collected cryptic mother. 
The number n = no + nl + 722 isfixed by the experimentor. 

When the mother mates only once, then the Mendelian laws of inheritance 
give values for the probabilities U ,  u and w,  conditional on the cryptic parental 
genotypes y These values are found in Table 1. With a knowledge of the 
parental genotypes, the Mendelian laws are summarized in the family of con- 
ditional densities F = (pr(E1 y ): y = (0,  0), (0,  I), . . . ]. A conditional density 

- 

r(n I y ) for the family profil? n<f one collected mother is trinomial with p - _  

where the trinomial coefficient = n!/no!nl!nz!. 0 
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TABLE 1 

The model 

Mendelian laws 

P'( Y 10) Yo Y l  U U W 

e4 0 0 1 0 0 
2830 0 1 Y2 Y2 0 
8 2 0 2  0 2 0 1 0 
2830 1 0 Y2 Y2 0 
4 m 2  1 1 % Y2 Yi 
298' 1 2 0 Y2 Y2 

a2e2 2 0 0 1 0 
2803 2 1 0 Y2 v 2  

o 4  2 2 0 0 1 
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Although the parental genotypes are cryptic, the Hardy-Weinberg law pro- 
vides a probability density over the parental genotypes. Each adult chromo- 
some carries the allele with probability 8, where the parameter 0 lies in the 
interval [0, 11. The Hardy-Weinberg law implies that the probability density 
of parental genotypes denoted by pr(yolO) for a mother (and pr(yl 10) for a 
father) is binomial with parameters 8 and 2. This probability density is explicitly 
written out in equation 1.2 of ARNOLD (1981). Furthermore, the Hardy-Wein- 
berg law also assumes random mating and that none of the factors of evolution 
are operating (e.g., selection), so the probability of drawing a mother of gen- 
otype yo and a father of genotype yl is pr( y 119) = pr(y0 I B)pr(yI IO ) .  The prob- 
abilities pr( y 18) of parental combinations are listed in Table 1. Together, the 
Mendelian lzws and the Hardy-Weinberg law in Table 1 provide the model 
specification: 

The family profiles A = ( E :  no I 0, nl L 0, n2 I 0, no + n~ + n2 = n )  are 
defined in (and the density (2) lies on) a sample space A, which is the interior 
and sides of an equilateral triangle with height n. The density pr(n 10) is called 
a finite &mixture or simply finite mixture of the Mendelian family F. The family 
F is the kernel of the mixture, and the density pr( y 16) is a product-mixing 
density. A collection of N inseminated mothers is &en viewed as a simple 
random sample drawn from this &mixture model specification (2). The statis- 
tical analysis of finite mixture models has been reviewed by EVERITT and HAND 
(1981). The problem is to select one model specification pr(nl8) out of the 
family of possible model specifications M = (pr(z1O):O E [0, 11) to describe the 
isolate collected, i.e., to estimate 8, the allele probability. 

INFERENCE 

As reviewed by EVERITT and HAND ( 1  98 1) and considered by JAMES (1 978), 
HALL (1  98 1)  and GANESALINCAM and MCLACHLAN ( 1  98 1) recently, one prob- 
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TABLE 2 

The score statistic (3) and the Dobrhansky score for collected mothers 

Event Probability Count ( E )  Weight Score 

Aoo = ( n : n o  = n )  KW = (8' + a88)2 Noo 0 o + o  
Ao2 = (E:n l  = n )  K O 2  = 288(a + cif@ No2 % 0 + 2  
A22 = = n) KpP = (8' + a88)2 N22 1 2 + 2  
A01 = (n :no  + nl = n ,  no > 0 ,  KOl = 48~?~(ci8 + bo) Noi % 0 + 1  

Alp  = ( n : n l  + n2  = n ,  n 1  > 0 ,  K i p  = 4828(ci8 + be)  Nip ?4 1 + 2  

A l l  = ( n : n o  + n l  + nq = n ,  K~~ = 4ep82c Nii % 1 + 1  

n l  > 0) 

nq > 01 

n o  > 0, n 1  2 0 ,  np > 0) 

lem considered by a number of authors is the estimation of the mixing density 
of a &mixture with known kernel. That is, one problem is to infer the allele 
probability 8. The estimation problem is well defined if, and only if, no two 
distinct allele probabilities 0 and e* yield the same model specification pr(z1 e). 
More precisely, the family M is identijiable if, and only if, for all pr(z I e) in M, 
the relationship pr(z I e) = I! pr(n I e*) holding for all family profiles 2 implies 
6 = e*. A general discussion of identifiability can be found by EVERITT and 
HAND (198 1, pp. 5-7). 

Result 1: The family of model specifications, M, is identifiable. The proof 
proceeds similarly to that by ARNOLD (1 98 1) by using a partition of the sample 
space generated by the counts of family profiles based on the presence or 
absence of one or more genotypes that will be described. If a collection of N 
mothers is taken from nature, and if n offspring are examined in the family 
of each mother, the collection can be thought of as a simple random sample 
of size N from the model specification (2). Six mutually exclusive events AOO, 
. . . , A l l  are singled out for special consideration (Table 2). In this table, I!I = 
1 - 8, a = (?h)"-'; ii = 1 - a;  b = (%)n - (s)" - (Yi)n; and c = 1 - 2(%)n + 
(%)n. The constants a,  b and c all lie on [0, 11. The events AOO, ..., A l l  
constitute a partition of the different possible family profiles in the sample 
space A. This partition identifies types of family profiles 24 by the presence or 
absence of one or more genotypes in a family. The partition can be described 
by the corners, two sides, an interior, plus one side of the sample space A in 
Figure 1. The probabilities Koo, . . . , K11, of each of these six events can be 
computed from the model specification (2) (Table 2). In a collection of N 
mothers, the numbers Noo, . . . , NI1 count types of family profiles based on 
the presence or absence of one or more genotypes. For example, the event 
AOO in the sample space A is a family profile with all offspring homozygous 
for the other allele. The number No0 is a count of those family profiles 
with only events A00 in a collection of size N .  The joint density of the list = 
(Noo, . . . , N11) is multinomial and is given in result 2. 

Result 2: The probability density for the list of counts of family profile types, 
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“2 

FIGURE I.-The sample space A of possible family profiles for n = 5. The dotted perpendic- 
ular distance from the side labeled n2 is the number of offspring in a family o f  size 5 with genotype 
y = 2. The other two perpendicular distances represent n1 and no. 

&! = (Noo, . . . , NI1),  is multinomial: 

If we accept the model, nearly all of the necessary information about the 
allele probability in a collection is contained in the list of counts E, as will be 
shown later in this section. Thus, if a collector thought the model was appro- 
priate and wished to know what data to record on each collected mother, we 
would recommend that the collector record the counts of different types of 
family profiles and the number of offspring per mother. 

For 50 yr. Dobzhansky and coworkers have used certain heuristic procedures 
to estimate allele probabilities without formal justification of those procedures. 
ARNOLD (1981) justifies the use of an allele probability estimator based on 
familial data from collected fathers. A similar procedure has been used 
throughout the study of the inversion polymorphism in D. pseudoobscura for 
familial data on collected mothers. The “Dobzhansky estimator” for collected 
mothers was first fully described by DOBZHANSKY et al. (1963). It is defined as 
a weighted average of the list of counts E: 
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From the well-known properties of the multinomial distribution in (3), result 
3 follows. 

Result 3: The Dobzhansky estimator I?, is unbiased, consistent and has the 
following variance 

As before, the constant a 2 - (%)n - (%)n - 3(1/)n. The 
heuristic argument for the estimator is based on a “scoring procedure.” A 
scoring procedure is a rule for inferring the number of each allele in the 
parents in nature and observed in offspring in the laboratory. A “score” is the 
inference made from the scoring procedure. The Dobzhansky scoring proce- 
dure is found in Table 2. Given a family profile 14, his procedure is equivalent 
to selecting parental genotypes y so that pr(EI y ) is maximum, and the score 
equals yo + yl .  For example, suppose that the  family profile obtained was 
- n = (0, 0, n); all offspring are homozygous for the allele. Then, (1) both 
parents could be homozygous for the allele ( y  = (2, 2), pr(nl y ) = 1); (2) one 
parent could be homozygous for the allele and the other heterozygous ( - y = 
(2, 1) or (1, 2), pr(nl2)  = a/2) or (3) both parents could be heterozygous 
( y = (1, 1 ) ,  pr(nl y ) = a2/4). Given the parental karyotypes, the odds for these 
three possibilities are 1 :a/2:a2/4. The probability pr( - n I - y ) is maximum when 
y = (2, 2), yielding a score of 2 + 2. The scoring procedure is applied to the 
family profile of each mother. Summing the scores and normalizing by 4N 
(the number of alleles in all parents) yields the Dobzhansky estimator (4). 

The variance var(6D) is approximately 08[l + a]/4N as could be predicted 
from result 3 by ARNOLD (1981). The extra term 66[208(2ii - d)]/4N is exactly 
zero for n = 1, 2 and is maFimal for n = 5. This extra term adds no more 
than 6% to the variance var(OP) in (5). The approximate variance is intuitively 
appealing. The variance, var(6,) 68[ 1 + a]/4N, takes the usual sample vari- 
ance used by geneticists, 68/4N, and enlarges it by (1 + a )  because of the 
uncertainty about cryptic parental genotypes. This result 3 here and result 3 
by ARNOLD (1981) provide a simple adjustment to the collection size N re- 
ported in current geographic surveys, thus allowing one to compute a standard 
error on allele probability estimates. From result 3 in this paper, the relevant 
adjusted collection size NA should be NA = N/(1 + a ) .  

of family profile types allow us to establish that the model is 
identifiable and to characterize the Dobzhansky estimator. A natural question 
is whether or not the list of counts E contains all of the relevant information 
for estimating the allele probability 6. There remains a minute amount of 
information relevant for estimating 6 beyond that in the list of counts E. When 
there are two kinds of juvenile genotypes in a family, one kind being homo- 
zygous and the other kind being heterozygous ( i . e . ,  14 € A01 or A12), the number 
of heterozygotes in the offspring provides a small amount of additional infor- 
mation about 6. So, we need to further subdivide family profiles in A01 or A12 

according to their number of heterozygotes. We introduce new events Aol( j )  
and A l p ( j )  in A01 and h 1 2 ,  respectively. These new events partition some family 

2-@-l) and d 

- 

- 

The counts 
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profiles by the number j of heterozygotes observed in a family profile E. Define 
the new events: 

Aol ( j )  = (2:no = 12 - j ,  nl = j ) ,  

A12( j )  = (n:n2 = n - j ,  nl  = j ) .  

The event hol( j )  is a family profile that contains j heterozygous offspring and 
n - j  offspring homozygous for the other allele. These new events are points 
on the sides n2 = 0 and no = 0, respectively, of Figure 1. The probabilities of 
these new events contained in A01 or h12 can be calculated from (2): 

-2 - - ~ ~ ~ ( j )  = pr(2 = (n - j , j ,  O)l8) = 488 (uj8 + bje), 

where the constants i j  = ($4)” and b j  = ($%)”-j(%r. When these constants 

are summed ( j  = 1, . . . , n - 1) in the probabilities K o l ( j )  or K12(j) to yield 
U = U+ and b = b+, then we recover the probabilities Kol or K12 of a family 
profile containing one homozygous type and the heterozygous type in Table 
2. The joint density of the list of counts _” = (Noo, N02, N22, Nol(l), . . . , 
Nol(n - l),  N12(1), . . . Nln(n - l), Nll) is also multinomial like the density of 
N - and is given in result 2A. 

Result 2A: The minimal sufficient statistic is N’, the list of counts of family 
profile types, where 111’ = (Noo, N02, N22, Nol(l), . . . , Nol(n - l), N12(1), . . . 
N14n - l), NI1). The probability density of this sufficient statistic is also 
multinomial: 

The multinomial coefficient 

When the multinomial probability given in (6) is considered as a function of 
8 and fixed at some list of realized counts E’ ,  the resulting likelihood also 
yields the maximum likelihood estimator gML advocated by several authors. 
These authors describe three different methods of computing the maximum 
likelihood estimator for models such as (2): (i) Fisher’s maximum likelihood 
scoring (FINNEY 1948); (ii) gene counting (CEPPELLINI, SINISCALCO and SMITH 
1955; HABERMAN 1977) and (iii) iteratively reweighted least squares (THOMP- 
SON and BAKER 1981). It is d$sirable then to explore the relative propeTties 
of the Dobzhansky estimator 8 D  and the maximum likelihood estimator 8ML. 

Computing the fully efficient maximum likelihood estimator by iteratively re- 
weighted least squares (BURN 1982) is an attractive alternative to the Dobzhan- 
sky estimator because it can easily be generalized for use in other inversion 
studies; it provides a variance; it provides goodness of fit, and it can be imple- 
mented by use of existing statistical packages. The relative merits of the other 
two methods are discussed by HABERMAN (1977). 
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There is a third estimator analogous to the maximum likelihood estimator, 
which is based on the list of counts of family profile types N. We will call this 
third alternative, GGP, the grouped profiles estimator. When the multinomial 
probability given in (3) is considered as a function ofAO and fixed at some list 
of realized counts E, the grouped profiles estimator OCp will be that function 
of the counts maximizing pr(N I 0) with respect to 0. The major difference 
between this grouped profiles estimator GGP and the maximum likelihood esti- 
mator GML is that the former sacrifices the small amount of information in the 
number j of heterozygotes in families with one homozygous type and the 
heterozygous type (i.e., E A01 or A12). As a result, the grouped profiles 
estimator is simpler to compute than GML but not as simple as the Dobzhansky 
estimator. 

Result 4: The log likelihood function In pr(N' - I 0) and the function In 
p r ( 8  I 0) are concave over the interval (0,  1). 

Result 4 implies that the maximum likelihood and grouped profiles esti- 
mators are unique when they exist. By taking the derivatives of In pr(N' I 19) 
and In p r ( 8  I 0) with respect to 0, polynomial equations can be found, for 
which the estimators GML and ~ G P  are roots. _Denote the likelihood equation by 
LE(~ML) = 0 and the equation for GGP, by L ( ~ G P )  = 0. These equations establish 
the existence of these two estimators. 

Result 5: The likelihood equation LE(GML) = 0 is a polynomial equation of 
degree at least 7 and has a unique root 6,, E [0, 11. The equatjon L(GGp) = 
0 is a polynomial equation of degree 7 and has a unique root OCp E [0, 11. 
The equation for 8 G p  is 

(Y&p + &p + '&p + &$p + [&p + l @ p  + L g ~ p  + K = 0,  (7) 
where (Y = i3(i - b)'4N, K = Nza'ib, N2 = 2N2' + 2N12 + 2Nll + N20 + NOl 
and the remaining coefficients are given in Table 3. A unique root always 
exists within the interval [0, 11. 

TABLE 3 

Equation for grouped profiles estimator 

L 

Noo (a + 1)(-2a2ib)  
N o ]  ( b  - 2 a ) a 2 b  
NO2 a i 2 b  
N12 a 2 i 2  
N Z 2  2aib  
N 2  [-5aib + aa2 + ab + ab2 + a'bla 

i- 
Noo [5aa2b - aa' - 2a2b - aab2 - a3b + 3aab - a i 2  - ab - ab2]2a 
N o l  [-4ab2 + 7aab - 2aa2 + b2 - 2ab + a2b2 - 2a'b]a 
NO2 [-5aab + a 2 a  + ab2 + asb]a  
N12 [-2aa + a + ab + i 3 ] a a  
N Z 2  [-4aa2b + 2aa3 + 2a6b2 + 2a4b - 6a2ab + 2 a 2 i 2  -k 2aab + 2a2b2 - 2 a 2 i 2 b ]  
N 2  [10a26b - 4 a 2 a 2  - 4 a i b  - 4a2b2 + 5a2a2b - 7 a i 2 b  + aa2 + ab2 

+ aa4 + a2b + a i 2 b 2  - aa'b] 
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TABLE 3-continued 

€ 
Noo [-10a2ci2b + 4a'i' + 8aa'b + 4a2ab2 + 6aasb - 2aa' - 2a(ib' - ai' - a b  -' 

- aa'b' - 4a'ab + 2a2 i2  + 2aab + 2a2b2 - aa' - ab' - a'b]2 
Nor [5a2b2 - 9a'ib + 4a'a' - 3ab' + 5aib  + 4a'ib' - 7a'a'b - 6aab' 

+ l laa'b - 2ai' - 2aa' + ab2 - 2ci'b - aa'b' + 2aa'bI 
NO' [IOaab - 46'a - 4ab' - 6ci'b + a' + a'b'](i 
NI' [ab + 2a'a - 5aa + aab + ci - aa']a' 
N 2 2  [ -a26  - ai' - aab' + 2a(i'b - 4 i 3 b  + a5 + i'b' - (i'b + 4a2ab - 2a2G2 

N 2  
- 2aab- 2a2b2 + 3a'a'b + aa' + ab2 - a2a3 - a'cib' + a'b]2 

- 6aa' - 5i'b - 6a(ib2 + 6aa'b + ci' + ab' - aa' - ci'b - aci'b'] 
[-10a2ab + 5a'a' + 6acib + 5a'b' - 10a2a2b + 19aa'b - 3aa' - 3ab' + 4a'a' + 4a2ab2 

6 
Noo [10a2a2b - 5a2as - 15aa'b - 5a'ab' - 15aci'b + 7aa3 + 7aab' 

+ 5aa' + 5E'b + 5aa'b' - 6' - a'b' + 3a'b - is - (ib']2 
N o ,  [-5a'ib' + 9a2 i2b  + 14aab2 - 25aa'b - 4a2as + 10aa3 - 4ib' 

+ 7a'b + 5a(i2b2 - 9a(i'b - 2a' + 2ai4  - Ci'b' + 2cisb] 
No2 [-l0aab + 5i'a + 5ab' + 10asb - 5a4 - 5i2b2 + 5risb](i 
N 1 2  [-a'?i + 4aa + a'b - 2 i  - 3ab + 3aa' + b - a' - acib]ci' 
N Z 2  [18aa2b - 8aa' - 8aib' + 12a'b + 2aa' + 2aa'b' - 66' - 6a2b2 + 8a4b - 2a5 

N 2  [-2a'a2 - 2a'b' + 10a2a2b - 30aa'b + 2aa' + 2ab' - 5 a 2 i s  - 5a2ib2 + 12a(i' 
- 2asb2 - 8a'a'b + 4a'a' + 4a'ab' - 6a'b + 2a' + 26b2] 

+ 10a'b + 12aab' - 15a(i3b - 4as - 4Gb' + 5aci' + 5ci'b + 5aci'b' - a4 - (i2b2] 

Y 
No0 [-4a2ib + 2a'a' + 10aab + 2a'b' + 20ai'b - 5ai' - 5ab' - 9aa' 

- 10i'b - 9aab' + 4a' + 4ib' - 4ab + 2a2 + 26'12i 
N o r  [2a2b2 - gab' - 4a'~ib + 17aab + 56' - 9aab' - 9ab + 16aa'b 

+ 4ib' - 7a'b + 2a2a' - 8ai' + 4a' - 6a(is + 2ci']~i 
NO' [4aab - 2 i2a  - 2ab' - 20a'b + 9a4 + 9a2b2] i  

N 2 2  [-10aa'b - 6a'b + 4a6' + 4acib' - 14a'b + 6a4 + 6 i2b2  + 4a2ib  - 16acib - 2a'~i' 

N2 [-4a2ib + 18acib + 2 a z i 2  + 2a'b' - 9aci' - IOib - gab' + 20aa'b + 5a' + 56' 

N,' [3a - 26154 

- 2a'b' + 4a6' + 8 i b  + 4ab2](i 

- 9aas - 10i2b  - 9a(ib2 + 4a' + 4ib']a 

B 

[7b - 6ci](i - b)as 
Noo [7a - 6](u - b) '2 i2  
Nor 
No2  -7(a - b)'Ci' 
Nr2 (b  - U)a4 

N Z ~  (U  - b)'(-2i2) 
N2 ( U  - b)'(-7US) 

~ 

The eight coefficients a, . . . , K of the equation for &P are linear in the score statistic and 
are obtained by multiplying each row by its row label (e.g., No,, . . . , N2) and summing all entries 
under a given coefficient. The constants a, U and b are defined in Table 2. The coefficients a and 
K are in result 5. 
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Equation (7) for k p  was verified by computing 8GP via two distinct numerical 
methods, Fisher's scoring method and the method of iteratively reweighted 
least squares (BURN 1982), and comparing the result with the root of (7). In 
the case in which family size is 2, the equation for 8 , ~  is the likelihood equa- 
tion, i .e. ,  ~ M L  = 8 ~ p .  The easiest way to solve (7) is to graph this polynomial 
over the interval [0, 13. Note that (7) expresses the grouped profiles estimator 
gGP in terms of the statistic 8. If n = 1, n = 00 or N = 1 in result 5 ,  the 
Dobzhansky, grouped profiles and maximum likelihood estimators are the 
same. 

The three estimators can be compared in large samples by their relative 
efficiency; for this purpose, the variances of the three estimators are needed. 
Let CRLB denote the Cramer-Rao lower bound (RAO 1973) and I(I9) = 
(CRLB)-' denote the Fisher information about I9 in a sample of size 1 described 
by (6). Similarly, we can define the Cramer-Rao lower bound CRLBGp and 
Fisher information Icp(I9) about I9 in a sample of size 1 described by (3). As in 
RAO (1973, p. 368), we can establish result 6. 

Result 6: If the allele probability I9 E [0, 11, then 

and 

The Fisher information I(I9) and IGp(8) are symmetric about 8 = 1/2, are convex, 
have a minimum value at 8 = M and increase uniformily with family size n. 

Results 3 and 6 permit one to calculate the asymptotic (large N ,  fixed n) 
relative efficiency of the Dobzhansky estimator, 8 ~ ,  and of the_grouped profile 
estimator, I9cP. The respective efficiencies are CRLB/var(b) and CRLB/ 
CRLBG~ (see Figure 2). When family size n = 1, the sufficient statistic E' in 
result 2A is binomial, and these relative efficiencies are 1 .  If the family size n 
is greater than 1, the relative efficiency of the Dobzhansky estimator is at least 
0.90 on the interval [0.01, 0.991; it is also concave on [0, I]; it is symmetric 
about I9 = '/2 and has a maximum value at I9 = S. The same statements hold 
true for the relative efficiency of the grouped profiles estimator except that it 
is fully efficient for n = 2. Minimum values of these two relative efficiencies 
on the interval [0.01, 0.991 for different family sizes are 

n 1 2 3 4 5 

min{CRLB/CRLBGp) 1 1 0.995 0.995 0.995 

minlCRLB/var(&)) 1 0.90 0.92 0.95 0.97 
e E ~0 .01 ,  0.991 

e E [o.oi, 0.991 
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n = 2  

8 
FIGURE 2.-Effciency of the Dobzhansky estimator as a function of inversion 

least favorable case, n = 2. 
frequency in the 

First, the counts 
tion in a sample relevant for estimating an allele probability 8. Second, the 
Dobzhansky estimator I?D is highly efficient. 

In conclusion, the Dobzhansky estimator is simple to compute, unbiased, 
consistent and highly efficient for the two basic experimental protocols in 
inversion studies (ARNOLD 1981), and its use is recommended. 

of family profile types contain nearly all of the informa- 

AN ILLUSTRATION 

A large geographic survey of the D. pseudoobscura inversion polymorphism 
is nearing completion. J. R. POWELL and L. B. KLACZKO have kindly provided 
us with the data in Table 4. The study has included four collections in the 
Texan Davis Mountains over a 50-yr period. The data in Table 4 are a random 
subsample of ten families obtained from mothers collected on July 24-25, 
1982, in and around the Davis Mountains State Park. Previous data by AN- 
DERSON et al. (1975) suggest that one can expect to find at least two inversions 
in the offspring, denoted Pike’s Peak (PP) and Arrowhead (AR). The ten 
collected mothers were isolated in separate laboratory vials and allowed to lay 
eggs. Five larvae from each female were identified for genotype (Table 4). 

The Dobzhansky estimator can be computed by the scoring procedure 
in Table 2 or by (4). Counting the numbers of family profiles in which A 

only PPPP homozygotes appear (e.g., N22 = 4, NI2 = 5, etc.), then OD = 

(4 + 5 + - 0 + - 0 + - 1 10 = %o. This is the same as counting the 

number of PP inversions in the scores ( i . e . ,  32) and dividing by the number 
of parental chromosomes ( i .e . ,  40). The Dobzhansky estimate of the PP prob- 
ability in the natural population is then 0.8. Substituting the Dobzhansky es- 

)I 1 1 
2 2 4  
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TABLE 4 

Familial data from D. pseudoobscura mothers collected in the 
Davis Mountains, Texas (7124-25182) 

Game Outcomes Score Event Weight - 
1 PPPP, ARPP, ARPP, ARPP, ARPP 1 + 2  Ais ?4 
2 ARPP, ARPP, PPPP, ARPP, PPPP 1 + 2  Ais  ?4 
3 PPPP. PPPP. ARPP. ARPP. ARPP 1 + 2  A.* 3L --.. 
4 ARAR, ARPP, ARPP, ARAR, ARAR o + i  Aoi % 
5 PPPP. PPPP, PPPP, PPPP, PPPP 2 + 2  h z  '/' 
6 PPPP, PPPP, PPPP, PPPP, PPPP 2 + 2  &z '1' 
7 PPPP, ARPP, PPPP, ARPP, ARPP 2 + 1  Ais  ?4 
8 PPPP, PPPP, PPPP, PPPP, PPPP 2 + 2  ASP 'h 
9 PPPP, PPPP, PPPP, PPPP, PPPP 2 + 2  A22 % 

?4 
8 
- 10 PPPP, ARPP, ARPP, ARPP, ARPP 1 + 2  Ais  

No0 = 0 No2 = 0 Nzz = 4 
N o i =  1 N i n = 5  N I I = O  
Noi (2 )  = 1 N i z ( 3 )  = 3 

N12(4) = 2 
i D  = %o 

timate (gD = 0.8), the collection size (N = 10) and the family size ( n  = 5 )  into 
( 5 )  yields a standard error estimate of 0.0666. 

For inference purposes the only data needed are the Dobzhansky scores, 
given that the number of offspring examined from each family is five (Table 
4). If family size were variable, it would also be necessary to record family size 
along with each Dobzhansky score. 

For comparisop, the maximum likelihood estimator 8 M L  and its variance 
estimator l/(NI(BD)) were computed by maximum likelihood scoring. The 
Fisher information is provided in result 6. The Dobzhansky estimator (&, = 
0.80, SE = 0.0666) is very close to the maximum likelihood estimator (GML = 
0.79, SE = 0.0720) and grouped profiles estimator (& = 0.80, SE = 0.0659). 
In more than 100 trials the Dobzhansky, grouped profiles and maximum 
likelihood estimators agreed to two decimal places. It is clear that the extra 
effort needed to obtain the maximum likelihood or grouped profiles estimates 
and the estimates of their standard errors is not warranted. 

The Dobzhansky scoring procedure is simple and appropriate for collected 
females who are singly inseminated, whether or not their families are small or 
large. This recommended procedure produces an allele probability estimator 
that is unbiased, consistent and highly efficient. 

CONCLUDING REMARKS 

A number of new experimental protocols have been developed in inversion 
studies of D. pseudoobscura. A number of new mixture models need to be 
developed to handle the new protocols and existing situations, such as when 
there are variable numbers of offspring. Other situations have been described 
previously (ARNOLD 198 l), and CLEGG and SCHOEN ( 1  984) give a direct exten- 
sion of the model in this paper for insect-pollinated plants. Simple estimators 
for these new mixture models need to be developed. 
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Having fitted various models to existing data, we should now test their 
goodness of fit and test various hypotheses made in the models. As an illustra- 
tion, several models for differing experimental protocols in Drosophila inver- 
sion studies assume the Hardy-Weinberg law, such as those for cryptic fathers 
or mothers. Given this assumption, it would be worthwhile using the condi- 
tional probability of the sample given the sufficient statistic to construct a 
significance test (ANSCOMBE 1982, chapter 12). The probability of the sample 
is the basic test statistic first discussed in studies of Drosophila by LEVENE 
(1 949). 

There are several experimental protocols used for making inferences about 
cryptic parental population data, depending on the sex of the collected parent. 
Within any one protocol there is the decision of how many offspring, n, per 
collected parent are to be identified as to genotype and how many adults N 
are to be collected for a fixed total amount of field/experimental effort. The 
problem is to choose an optimal n and N to estimate an allele probability. 
Also, different experimental protocols must be compared for relative sampling 
efficiency. BROWN (1 975) and BROWN, WEIR and MARSHALL (1 970) consider 
similar design problems for estimating genetic parameters in plant populations. 
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