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ABSTRACT 

A mathematical theory is developed for computing the probability that m 
genes sampled from one population (species) and n genes sampled from another 
are derived from 1 genes that existed at the time of population splitting. The 
expected time of divergence between the two most closely related genes sam- 
pled from two different populations and the time of divergence (coalescence) 
of all genes sampled are studied by using this theory. it is shown that the time 
of divergence between the two most closely related genes can be used as an 
approximate estimate of the time of population splitting ( T )  only when T = 
t l ( 2 N )  is small, where t and N are the number of generations and the effective 
population size, respectively. The variance of Nei and Li's estimate ( d )  of the 
number of net nucleotide differences between two populations is also studied. 
It is shown that the standard error ( s d )  of d is larger than the mean when T 
is small ( T  << 1). In this case, sd is reduced considerably by increasing sample 
size. When T is large (T > I) ,  however, a large proportion of the variance of 
d is caused by stochastic factors, and increase in the sample size does not help 
to reduce sd. To reduce the stochastic variance of d ,  one must use data from 
many independent unlinked gene loci. 

FTER the discovery of the molecular clock (ZUCKERKANDL and PAULING A 1965), many authors have attempted to estimate the time of divergence 
between species or populations from amino acid or nucleotide sequence data. 
Although the molecular clock does not run as regularly as the ordinary clock, 
it gives a rough idea about the divergence time (FITCH 1976). When this 
method of estimating divergence time is applied to closely related species or 
populations, however, some caution is necessary because the divergence time 
between a pair of genes (or proteins) sampled from different populations may 
be substantially greater than the time of population splitting (Figure 1). This 
situation occurs when the ancestral population is polymorphic. When more 
than two genes are sampled from each population, a correction for the effect 
of ancestral polymorphism can be made, and the number of nucleotide substi- 
tutions (net nucleotide substitutions), d ,  that occurred after population splitting 
is estimated by subtracting within-population differences (NEI and LI 1979). 
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a b c  d e  f 
FIGURE 1 .-Genealogy of six sampled genes, three (a, b and c) from one population and three 

(d, e and 9 from the other population. The two populations are assumed to have diverged at time 
T .  T I ,  Ts and Ts represent the times of gene splitting. 

When nucleotide substitution occurs by mutation and genetic drift, the ex- 
pectation of d is given by E ( d )  = 2vt, where v is the mutation rate per gene 
and t is the time since divergence between populations X and Y (LI 1977; NEI 
and Lr 1979). Therefore, if we know v ,  we can estimate t from d .  However, 
to evaluate the accuracy of this method, we must determine the variance of d 
generated by both sampling and stochastic errors. The sampling variance was 
studied by NEI and TAJIMA (1981)) but the variance due to stochastic errors 
has not been worked out. 

To evaluate the variance of d generated by both sampling and stochastic 
errors, we must first know the expected genealogy of sampled genes. Knowl- 
edge of the expected genealogy of sampled genes is also important for esti- 
mating the difference between the time of population splitting and the time 
of gene splitting. If this difference is small, the time of population splitting 
may be estimated approximately by the time of gene splitting. 

The main purpose of this paper is to study the above two problems. We 
first examine the relationship between population and gene splitting times and 
then investigate the variance of d. Throughout the paper, we assume that one 
population splits into two (populations X and Y) t generations ago and, there- 
after, no migration occurs between them. We also assume that the effective 
population size (N) remains constant throughout the evolutionary process, and, 
thus, the populations are in steady state with respect to the effects of mutation 
and genetic drift. We use the infinite-site model of neutral mutations with no 
recombination (KIMURA 197 1 ; WATTERSON 1975). 

GENEALOGY OF GENES SAMPLED FROM TWO POPULATIONS 

We first consider the expected genealogy of m genes sampled from popula- 
tion X (or Y) and derive a formula for the probability that the m genes are 
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descended from mo at the time of population splitting. Obviously, 1 5 mo 5 
m. We start with the formula for the probability density vp-l(s)] of waiting 
time s at which p genes are descended from p - 1 genes. We use the contin- 
uous time approximation to the Wright-Fisher model and apply KINGMAN'S 
(1 982) equation 

where ap = p ( p  - 1)/2 (see also HUDSON 1983; TAJIMA 1983; TAVAR~ 1984). 
Equation 1 may be written as 

fp-1(7) = ape-*P', (2) 

if we measure time in terms of T = s/(2N). 
To obtain the probability distribution of the number of ancestral genes (mo) 

at the time of population splitting [T = t/(2N) units of time ago], we introduce 
a set of random variables ( T ~ ) .  ~ ~ - 1  is the waiting time at which p genes are 
descended from p - 1 ancestral genes and follows the exponential density 
function given by (2). For 1 5 mo 5 m - 1, we define the sum 

and denote by p(Smmo = T )  the probability density of S,,, = T .  Equation (3) 
represents the waiting time at which m genes are descended from mo ancestral 
genes. p ( S m m ,  = T )  can be obtained by the convolution of fmo, , . . , f m - z , f m - l .  

Using the Laplace transform and the partial fraction expansion, we obtain 

where 
m 

Pp(m, mo) = n (a, - a$'. 
r=mo+l 
+P 

( 5 )  

The probability, Pmmo(T), that m genes are descended from mo ancestral 
genes T units of time ago can be obtained by using (4). That is, 

P m m ( T )  = p b ' m m o  T 5 Smm, + T m o - l )  

(6) T m 

= d T P ( S m m o  = 71 dr~moeXP(-&oo, 

which becomes 

for 2 5 mo 5 m - 1. PmI(T)  and P,,(T) are computed separately. 
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TABLE 1 

Probabilities, P,,, (T), that m genes sampled from a population are descended from 
mo ancestral genes T units of time ( 2 N T  generations) ago 

mo 

T m 1 2 3 4 5 5 m 0 5 m  

0.5 2 0.3935 0.6065 
5 0.0813 0.401 3 0.4030 0.1076 0.0068 

10 0.0248 0.2047 0.4051 0.2788 0.0866 

1 .o 2 0.6321 0.3679 
5 0.3341 0.5298 0.1300 0.0061 0.0000 

10 0.2278 0.5257 0.2221 0.0237 0.0007 

1.5 2 0.7769 0.2231 
5 0.5695 0.3990 0.0312 0.0003 0.0000 

10 0.4824 0.4583 0.0581 0.0012 0.0000 

2.0 2 0.8647 0.1353 
5 0.7329 0.2601 0.0070 0.0000 0.0000 

10 0.6746 0.3120 0.0134 0.0000 0.0000 

Equations (7a)-(7c) are equivalent to those of GRIFFITHS (1980), 
(1 984) and WATTERSON'S ( 1  984) when mutation is absent. In particular, we 
have 

for m = 2, and 
3 1 
2 2 

P31(T) = 1 - - e-T + - e-3T, 

for m = 3. Some numerical values of (7a)-(9) are given in Table 1 .  It is noted 
that mo decreases quite rapidly as T increases. 

We are now in a position to compute the probability, P[(T) ,  that m genes 
sampled from population X and n genes sampled from population Y are de- 
scended from l genes at the time of population splitting (T units of time ago). 
Obviously, the probability, Pnno( T), that the genes sampled from population Y 
are descended from no genes T units of time ago is given by (7a)-(7c), if we 
replace m and mo by n and no, respectively. Therefore, we have 
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TABLE 2 

Probabilities, P,(T), that m genes sampled from population X and n genes sampled 
from population Y are descended from 1 ancestral genes at  the time of PoPulation 

splitting (2NT generations ago) 

1 

T ni n 2 3 4 5 6 5 1 5 m + n  

0.5 2 2 
5 5 
2 10 

10 10 

1 .o 2 2 
5 5 
2 10 

10 10 

1.5 2 2 
5 5 
2 10 

10 10 

2.0 2 2 
5 5 
2 10 

10 10 

0.1548 
0.0066 
0.0098 
0.0006 

0.3996 
0.1116 
0.1440 
0.0519 

0.6035 
0.3244 
0.3747 
0.2327 

0.7476 
0.5371 
0.5833 
0.4550 

0.4773 
0.0652 
0.0956 
0.0102 

0.4651 
0.3540 
0.4161 
0.2395 

0.3467 
0.4545 
0.4637 
0.4421 

0.2340 
0.3812 
0.361 1 
0.4209 

0.3679 
0.2266 
0.2836 
0.0620 

0.1353 
0.3675 
0.3338 
0.3775 

0.0498 
0.1947 
0.1474 
0.2661 

0.0184 
0.0780 
0.0538 
0.1154 

0.3410 
0.3554 
0.1797 

0.1418 
0.0967 
0.2443 

0.0252 
0.0139 
0.0544 

0.0037 
0,001 8 
0.0084 

0.3606 
0.2556 
0.7475 

0.025 1 
0.0094 
0.0868 

0.001 2 
0.0003 
0.0047 

0.0000 
0.0000 
0.0003 

where 1 = mo + no I 2. Note that, when only one gene is sampled from one 
of the two populations, say X, Pl(T) becomes identical with Pnno(T). In (lo), 
the probability that the genes in the two populations are derived from the 
same genes at exactly T units of time ago is neglected, because this probability 
can be shown to be very small. Table 2 gives some numerical values of (10). 
It is seen that, when T is small and m and n are relatively large, 1 is expected 
to be quite large, but  as T increases, the expected value of 1 declines. 

Let us now consider the time of divergence (or coalescence) of all genes 
sampled from populations X and Y. KINGMAN (1982) and TAJIMA (1983) stud- 
ied the time of coalescence of genes sampled from a single population, and 
their theory applies to the 1 genes at the time of population splitting. That is, 
the expected time of coalescence of 1 genes prior to population splitting is given 
by 

E(7max)  = 2(1 - 1/1) (1 la) 
(KINGMAN 1982; TAJIMA 1983), whereas the variance 'is 
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TABLE 3 

Expected minimum and maximum divergence times of genes prior to population 
splitting when m genes are sampled from population X and n genes are sampled 

from population Y 

n 

T m 2 3 5 10 
__ 

0.20 0.13 0.07 0.032 
0.09 0.05 0.026 

- 0.1 
2 1.47 - 
3 1.56 1.63 0.04 0.019 
5 1.66 1.70 1.76 0.012 

- 
- 

10 1.77 1.79 1.82 1.850 

1 .o 0.58 0.49 0.42 0.35 
0.43 0.36 0.30 2 1.22 - 

3 1.27 1.32 0.3 1 0.26 
5 1.32 1.36 1.40 0.23 

10 1.37 1.41 1.44 1.47 

- 

- 
- 

0.83 0.79 0.75 0.71 
0.75 0.7 1 0.68 2 1.09 - 

3 1 . 1 1  1.13 0.68 0.65 
0.62 5 1.13 1.15 1.17 - 

10 1.15 1.17 1.19 1.20 

- 2.0 

- 

The figures above the diagonal refer to the minimum divergence times, 
whereas those below the diagonal refer to the maximum divergence times 
(times of coalescence). Time is measured in 2N generations. 

(TAJIMA 1983). Here, the time is still measured in terms of 2N generations, 
i . e . ,  7 = t/(2N). If  time is measured in generations, ( l l a )  and ( l l b )  must be 
multiplied by 2N and (2N)’, respectively. E(7,,,) is identical with the expected 
time of divergence (prior to population splitting) of the two genes which are 
most distantly related (e.g., a and e or f i n  Figure 1). On the other hand, the 
mean and variance of the time of divergence of the two most closely related 
genes (e.g., d and b or c in Figure 1) prior to population splitting are given 
by 

(LITTLER 1975; GRIFFITHS 1980; TAJIMA 1983). 
In the above, we treated the number of ancestral genes as a constant. Ac- 

tually, this is a random variable so that we have to take the expectation with 
respect to the distribution P!(T).  For example, when m = n = 2, the distribu- 
tion is given by PZ(T) = (1 - Ps(T) = 2e-=(1 - e-T) and P4(T) = e-2T 
from (8) and (lo).  Table 3 gives numerical values of the unconditional means 
of 7,in and 7,,, when multiple samples are involved. When T is small, E(7,in) 
decreases substantially with increasing m and n. Therefore, the divergence time 
between the two closest genes can be used as an approximate estimate of the 
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time of population splitting. However, this estimate gradually becomes inac- 
curate as T increases, and when T is as large as 2.0, the divergence time 
between the two closest genes is substantially larger than the time of population 
splitting. It is also noted that E(7,,,) is much larger than E ( 7 4  when T is 
small, but the difference is gradually diminished as T increases. Both E(rmin) 
and E(?,,,=,) approach 1 with increasing T regardless of m and n, since mo and 
no become 1 and, therefore, 1 = 2 because of coalescence. 

VARIANCE OF THE NUMBER OF NUCLEOTIDE DIFFERENCES 

NEI and LI’S (1979) estimate of the number of net nucleotide substitutions 
between two populations is given by 

(13) 
1 

d = dxy - - (dx + dy), 
2 

where dxy is the mean number of nucleotide substitutions between genes from 
populations X and Y, and dx and d y  are the number of nucleotide differences 
(substitutions) between two randomly chosen genes within populations X and 
Y, respectively. In actual data analysis, dxy ,  dx and d y  are estimated from the 
proportion of nucleotide differences or restriction site data U. C. STEPHENS 
and M. NEI, unpublished results). In the present case, however, we are consid- 
ering the infinite-site model so that the number of nucleotide substitutions 
between a pair of genes is identical with the number of nucleotide differences. 

Suppose that m and n genes are sampled from populations X and Y, respec- 
tively, and let k,, be the number of nucleotide differences between the ith gene 
from population X and the j th  gene from population Y. dxy in (13) is then 
given by 

On the other hand, dx is given by 
m m  1 

dx = C E kiif m(m - 1) i‘+i 

where hi, is the number of nucleotide differences between the ith and i’th 
genes sampled from population X. d y  can be obtained in the same way. The 
estimates of d,, dx and dy are obtained from (14) and (15) by using the 
observed values of k,  and h$. 

The expectation of d m  is given by M + MT, where M = 4Nv (LI 1977; 
GILLESPIE and LANGLEY 1979) and that of dx or dy by M regardless of sample 
size (KIMURA 1969; WATTERSON 1975; NEI and TAJIMA 1981). Therefore, the 
expectation of d in (13) is E ( d )  = MT = 2vt. To derive the variance of d in 
(13), we first note that V ( d )  can be written as 
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where V(.) and Cov(., .) refer to the variance and covariance of the quantities 
concerned. Thus, V(d) can be obtained by evaluating all terms on the right- 
hand side of (16). 

TAJIMA (1983) derived V(dx), which is given by 

M2.  
2(m2 + m + 3) 

9m(m - 1) 
M +  

m + l  
V d x )  = 3(m - 1) 

The variance of d y  is also given by (17) if we replace m by n .  

E(dxdy), E(dxydx) and E(dxydy), which can be written as 
To calculate the remaining quantities in (16), we need to evaluate E(d:y),  

1 
mn E(d&) = - [ E ( @ )  + (m + n - 2)E(k&) + (m - l ) ( n  - l)E(kijkt7t)], (18a) 

E(dxdy) = E(kii,kjj,), (1 8b) 
m - 2  

E(kji .kyj) ,  E(dxydx) = - E ( k i j 4 j )  + - 2 
m m 

where subscripts i and j stand for the ith gene from population X and the j th  
gene from population Y,  respectively. Obviously, E @ $ )  = E(K,K,,) = 
E(k,k,.,), etc. In the evaluation of (18a)-(18d), it is necessary to consider the 
genealogical relationship of the genes sampled. For example, in the case of 
one gene sampled from population X and two genes sampled from popula- 
tion Y, there are four possible genealogical relationships as shown in Figure 3. 
Therefore, we must consider all of these possibilities in evaluating 

We note that in the infinite-site model, mutations accumulate in a nucleotide 
sequence following the Poisson distribution. Therefore, the mean and variance 
of the number of accumulated mutations (x) for a given time period T are 
both M 7 / 2  = ut. T o  facilitate the computation of E(k$) ,  E(k,k, ,) ,  etc., we in- 
troduce the following random variable 

E@%),  E(k,k, ,) ,  etc. 

[ = x - M T / ~ .  (19) 
Obviously, E([) = 0, and E([*) = M T / ~ .  We use [ for each evolutionary time 
which should be considered separately. 

The first term [E(k;)]  on the right-hand side of (18a) refers to the case in 
which two randomly chosen genes, one from each of X and Y, are compared. 
In this case, we consider four ('s, i.e., E l ,  E 2 ,  E3 and t4 as shown in Figure 2 ,  
where T is the time of population splitting and T + ~f is the time when gene 
C from population X and gene D from population Y diverged. The number of 
nucleotide differences (k,) between C and D is then given by 

4 
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T 

0 
C D 

FIGURE 2.-Two genes (C and D) derived from the ancestral gene 0 that existed at time T + 
7 ; .  T and the dotted line represent the time of population splitting. € 1 ,  {2, &, and 5 4  are random 
variables representing the deviation of the number of nucleotide substitutions from the expected 
number. 

where koc and bD are the numbers of nucleotide differences between 0 and 
C and 0 and D in Figure 2, respectively. Obviously, the expectations of k,. 
and k$ conditional on 7 ;  are E&) = M(T + T ; ) ,  and E,@$) = (T  + 71)M + 
(T  + d ) ’ M 2 ,  respectively, because E:=lE([?) = (T  + 71)M. If we note that 7 ;  

follows the distribution of fl(7i) = exp(-71’) in (2) ,  the unconditional expecta- 
tions become 

E(k,j.) = ( T  + 1)M, 

E@$) = (T + l)M + (T2  + 2T + 2)M2, 
(214 

(21b) 
and, thus, the variance is 

V(kq) = (T  + l)M + M 2  

This agrees with the result of LI (1977), who used the generating function 
method. 

We have already obtained the expectation of ki in the first term of (1Sa). 
The second term can be computed in a similar way. In this case, however, we 
have to consider four different types of gene genealogies as given in Figure 3. 
Type (a) occurs when the divergence time ( T I )  between genes j and j’ from 
population Y is shorter than the time (T) of population splitting. This proba- 
bility is given by 1 - e-T [equation (S)]. Therefore, with the condition of T~ 5 
T ,  we have 

E ( & )  = E(k t j , )  = (T  + 1)M, 

E(kgk,j,) = (T  + 1 - F)M + (T2 + 2T + 2)M2,  (23) 
C O V ( ~ ,  k t j , )  = (T  + 1 - F)M + M 2 ,  
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a b C d 

........................ /xh/x/x ................................................................................. 

I J J’ I J J’ J‘ I J J I J’ 
FIGURE J.-Four different types of gene genealogies possible for three sampled genes. Gene I 

is from population X ,  and genesJ and]’ from population Y. The dotted line represents the time 
of population splitting. 

where 2F = JOT ~ , e - ~ l d ~ 1  = 1 - (T + l )e-T.  The remaining three types occur 
when 71 > T, and each has a probability of e-T/3.  Therefore, we obtain 

E&) = E(kc,) = ( T  + 4). 

for type (b). We also have 

for type (c) and 

E&) = ( T  + $)M, E&<) = ( T  + i ) M  

E(k,kc,) = (i T + :)A4 + ( T2 + + :)M2 
(26) 

for type (d). Cov(k,, k,,) can be obtained by evaluating the mean of E&),  
E(k,,) and E(k,k,,) over all four types. It becomes 

Cov(k,, k,,) = (1 - e-T){(T + 1 - F)M + M 2 )  + e-T 

In the case of four genes, we have to consider 14 different types of gene 
genealogies if all the genes are to be distinguished. However, if we do not 
distinguish between two genes sampled from the same population, there are 
seven different types (Figure 4). Table 4 summarizes the probabilities of oc- 
currence of the seven types. The formulas for E(kj) ,  E(ki7,) and E(k&7,) for 
each type of genealogy are given in the APPENDIX. The final formula for 
Cov(kckj7,) becomes 
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X X Y  Y X X Y Y  

X Y X  v 
FIGURE 4.-Seven different types of gene genealogies possible for four sampled genes, two 

from each of populations X and Y. The dotted line represents the time of population splitting. 

TABLE 4 

Probabilities of seven different types of gene genealogies for  two genes 
from each of populations X and Y in relation to the time of 

population splitting 

Genealogy Genealogy Probability 
class t Y Pe Probability of class within class 

I (a) (1 - e-')' 1 
I1 (b) 2e-T(1 - e-') % 

2e-T(1 - e-') 'h 
e-2T '/9 

I1 (4 

2/9 
e-'r I11 ( 4  

2/9 e-2T 
Ill  (e) 

e-2r 4/9 

I11 (0 
111 (g) 

See Figure 4. Genealogy class I, two gene divergences occur 
after population splitting; genealogy class 11, one gene divergence 
occurs before population splitting and the other occurs after pop 
ulation splitting; genealogy class 111, two gene divergences occur 
before population splitting. These probabilities are identical with 
those given by TAJIMA (1 983). 

We are now in a position to compute V(dW) = E(d&r) - E2(dxr). It becomes 
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V(dxy) = ;[(T+ 1 l)M+M'+(m+n-2){(l -e-')((T+ 1 -F)M+M2) 

+e-'(;(T+ l)M+-M')f(m- 1 l)(n- 1){(1 
3 

x ( ( T +  1 -2F)M+M2)+2e-T(1 -e-') (29) 

. ((i T + 8 - F)M + i M 2 )  + e-2T(iM + iM2)}]. 

Before going further, let us examine a few properties of this variance. We 
note that, when m = n = 1, (29) reduces to (22), whereas, when m, n >> 1, 
(29) becomes 

V(dxy) = (1 - e-T)2((T + 1 - 2F)M + M2) + 2e-'(1 - e-') 

Furthermore, when T << 1, equation (30) becomes 

1 2 
V(dxy) = - 3 M + - 9 M 2 ,  

and, when T >> 1, 

V(dxy) = MT + M2. 

Equation (31a) is identical with (17) when m is large, whereas (31b) is smaller 
than (22) by M when m = n = 1. Thus, multiple sampling of genes does reduce 
the variance for any T,  but the extent of the reduction is small when T is 
large. 

Using formulas (25), (26) and those in the APPENDIX, we can also derive the 
formula of V(dx). As noted by TAJIMA (1983), V(dx) can be written as 

V(dx) = [2V(kG) + 4(m - 2)C0v(kG, kG,) 1 
m(m - 1) 

+ (m - 2)(m - 3)cov(kj, kky,)]. 
The first and second terms of the right-hand side are given by (22) and (27) 
with T = 0, respectively. The third term is 

from the required moments for genealogy types (c), (e), (f) and (g) given in 
the APPENDIX and letting T = 0. Substitution of these formulas into V(dx) gives 

The same procedure as that for computing V(dxy) can be used to obtain the 
(17). 
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covariances in (16). We first consider Cov(dx, d y )  and then Cov(dxy, dx), which 
is the same as Cov(dxy, d y ) .  The expectation of the product of dx and d y  is 
independent of m and n values. This is because Cov(dx, dy) is generated only 
when four different genes are involved and any permutation of either i and if  
or j and j' or both does not affect the value of E(k,,kjj ,) .  Putting this another 
way, there is no sampling covariance for this quantity (NEI and TAJIMA 1981). 
Therefore, it suffices to consider only the genealogies given in Figure 4. We 
present only the final result: 

Equation (32) indicates that the covariance equals (31a) for T = 0, and it 
disappears when T is large. 

The computation of Cov(dx~, dx) is as cumbersome as that of V(dxy) .  We 
use Figure 3 with if  = j f  to obtain the first term of the right-hand side of 
(18c). We then have 

Next, we consider Cov(ki,, k ~ j )  corresponding to the case in which one gene 
is sampled from population Y and three genes are sampled from population X. 
The possible genealogical relationships of the four genes sampled in relation 
to the population divergence time are presented in Figure 5 ,  and the proba- 
bility of each type of genealogy is given in Table 5 .  This probability was 
obtained by using (9). 

The values of E(K,,*k-j), E(&) and E(knj )  for each type of genealogy of Figure 
5 are given in the APPENDIX. Using these values and the probabilities of dif- 
ferent types of genealogies in Table 5 ,  we finally obtain 

(1 - e-T)MF + e-T 

X {i (T + 1 - S2)M + 

+ e-3T (: M + M')], 

where S1 = 1 - (+)(1 + T)e-T + (4)(1 + 3T)e-3T and SZ = 

C o v ( d ~ ,  dy) can be obtained by replacing m in (34) by n. 

(34) 

($)U - (1 + 37-1 

Substituting (1 7), 
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a 

b 

c 

x X X Y X X Y X 

.................................. 
................................. i ................................... f ........................................ Ad)/ A 

Y X X X X x x  Y Y x x  X 
FIGURE 5.-Nine different types of gene genealogies possible for four sampled genes, three 

from population X and one from population Y. The dotted line represents the time of population 
splitting. 

(29), (32), (34) and Cov(dw, d y )  into (16), we have the formula of the variance 
of d. The general formula is quite complicated, but, when T << 1 ,  it becomes 

(M + M‘). 
(m + n - l)(m + n - 2) 

V ( d )  = 
6mn(m - l)(n - 1) 

On the other hand, when T >> 1 ,  

V ( d )  = M T  + M 2 .  

Furthermore, when m, n >> 1 ,  it becomes 

+ ( 1  -e-T)2((T+ 1 -2F)M+M2]+2e-T(1 -e-’) 

+-(e-T-e-3T){$T+ 3 1 -S2)M 
2 

+ .M‘} 9 + e-”(;M + M‘)] 

(35) 

for any value of T. When T is small, this becomes 0 as expected. 
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TABLE 5 

Probabilities of nine different types of gene genealogies for  three genes 
from population X and one gene from population Y in relation to 

the time of population splitting 

339 

~~ ~ 

Genealogy Genealogy 
class type 

Probability 
of class 

Probability 
within class 

~~ ~ 

See Figure 5. Genealogy class 1, three X genes split after pop- 
ulation splitting; genealogy class XI, one X gene splitting occurs 
before population splitting and the other X gene splitting occurs 
after population splitting; genealogy class 111, both X gene split- 
tings occur before population splitting regardless of Y gene split- 
ting. 

Table 6 gives the standard errors of d and dm for various values of m, n, 
M and T. It is seen that when T [or E ( d ) ]  is small, the standard error ( s d )  of 
d is very large relative to its mean [ E ( d ) ]  unless the sample size is large. 
Namely, in this case, a large sample size is required for obtaining a reli- 
able estimate of E ( d ) .  This large standard error is caused by the variation of 
(dx  + d y ) / 2  in (13). As T increases, however, the ratio of Sd to E ( d )  declines 
rapidly. When A4 = 10, E ( d )  = 10 and m = n = 2 ,  s d  is of the same order of 
magnitude as E ( d ) .  When T is large, s d  does not decrease very much with 
increasing sample size. 

Properties of the standard error (SdXy) of dxy  are somewhat different from 
those of s d .  When sample size is small, SdXY is slightly larger than s d  for T I 1, 
but since SdXY does not decrease appreciably with increasing sample size, the 
difference between s d  and s d x y  for a large sample size is substantial. The reason 
for the larger standard error of d~ is that dXY includes the nucleotide differ- 
ences that existed in the ancestral population (effects of polymorphism), and 
the variance of the number of nucleotide differences between two randomly 
chosen genes from a population is not reduced very much by increasing sample 
size, as shown by TAJIMA (1983). When M is large and T = 10, SdXY is slightly 
smaller than s d .  This is because, when T is large, the covariance between d x y  

and (dx + &)/2  in (34) is reduced subtantially. 
It should be noted that E ( d ) ,  Sd and S d x y  in Table 6 refer to the number of 

nucleotide (or amino acid) differences per gene. If one is interested in the 
number of nucleotide differences per nucleotide site, their values should be 
divided by the total number of nucleotides involved. For example, if the gene 
studied consists of 1000 nucleotides, M ,  E ( d ) ,  sd and S d x y  should all be divided 
by 1000. 
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TABLE 6 

Standard errors of d and d,, 

m 

100 

10 

1 

0. I 

0.01 1 .o 
0.1 10.0 
1 .O 100.0 

10.0 1000.0 

0.01 0.1 
0.1 1 .O 
1 .O 10.0 

10.0 100.0 

0.01 0.01 
0.1 0.1 
1 .o 1 .o 

10.0 10.0 

0.0 1 0.001 
0.1 0.01 
1 .o 0. I 

10.0 1 .O 

65.4 (69.4) 
70.8 (71.9) 

103 (88.8) 
126 (105) 

6.71 (7.32) 
7.28 (7.60) 

10.8 (9.64) 
15.8 (14.3) 

0.83 (1.03) 

1.49 (1.53) 
0.90 (1.09) 

3.39 (3.39) 

0.17 (0.25) 
0.19 (0.27) 
0.36 (0.41) 
1.01 (1.03) 

11.8 (50.7) 
20.5 (53.6) 
73.8 (79.5) 

111 (105) 

1.22 (5.39) 
2.11 (5.70) 
7.86 (8.61) 

14.5 (14.2) 

0.15 (0.79) 
0.26 (0.84) 
1.16 (1.36) 
3.27 (3.33) 

0.03 (0.20) 
0.06 (0.21) 
0.29 (0.36) 
0.98 (1.01) 

2.15 (48.0) 
11.8 (50.5) 
70.0 (77.4) 

110 (105) 

0.22 (5.1 1) 
1.22 (5.38) 

14.4 (14.1) 

0.03 (0.75) 
0.15 (0.80) 
1.11 (1.32) 
3.26 (3.32) 

7.47 (8.39) 

0.01 (0.19) 
0.03 (0.20) 
0.28 (0.35) 
0.98 (1.01) 

1.25 (47.8) 
11.0 (50.2) 
69.6 (77.2) 

110 (105) 

0.13 (5.08) 
1.14 (5.35) 
7.43 (8.36) 

14.4 (14.1) 

0.02 (0.75) 
0.14 (0.79) 
1.11 (1.31) 
3.26 (3.32) 

0.00" (0.19) 
0.03 (0.20) 
0.28 (0.35) 
0.98 (1.01) 

The standard errors of d~ are given in parentheses. M = 4Nv, T = t/(2N) and m = n have 

' The actual value is less than 0.001. 
been used. E(dW) = E ( d )  + M .  

DISCUSSION. 

We have seen that, when the time (T) since divergence between two popu- 
lations is relatively short and the numbers of genes (m  and n)  sampled from 
the two populations are relatively large, the expected number of ancestral 
genes (I) at the time of population splitting is quite large (Table 1). This 
number gradually declines as T increases, but even for T = 2, i . e . ,  4N gener- 
ations, the probability of 1 larger than 2 is 0.545. NEI and ROYCHOUDHURY 
(1 974) have estimated that the Negroid and Mongoloid populations of man 
diverged about 120,000 yr ago. If the average effective size for the populations 
and the generation time in the past have been N = 10,000 and 25 yr, respec- 
tively, a period of 120,000 y r  corresponds to 4800 generations or T = 0.24. 
Therefore, if we sample five genes from each of the two populations, the 
probability of E 2 5 is 0.857 from equation (10). Thus, the genes from the 
Negroid and Mongoloid populations are expected to share many common 
ancestral genes. That this is indeed the case has been subtantiated by the data 
of CANN, BROWN and WILSON (1982) on the genealogical relationship of mi- 
tochondrial DNA sequences. 

J. C. STEPHENS and M. NEI (unpublished results) analyzed the nucleotide 
sequences of the alcohol dehydrogenase genes from Drosophila melanogaster 
and D. simulans (data from KREITMAN 1983; COHN, THOMPSON and MOORE 
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1984; BODMER and ASHBURNER 1984). Using a rate of nucleotide substitution 
of 4 X lo-’ per site per year (LI, Luo and WU 1984), they estimated that the 
time since divergence between the two species is about 2 million yr and the 
average effective population size (N) is about 2 X lo6. A period of two million 
yr corresponds to 12 million generations or  T = 3 if there are six generations 
per year in nature. In this case, the probability of 1 = 2 is as high as 0.77 even 
for m = n = 10 (see also Table 2). This prediction is supported by the genea- 
logical relationship of 1 1  genes from D. melanogaster and two genes from D. 
simulans. In this case, the number of ancestral genes ( 1 )  at the time of popu- 
lation splitting has been estimated to be two U. C. STEPHENS and M. NEI, 
unpublished data). 

When the number of ancestral genes at the time of population splitting is 
large, one can compute the maximum and minimum times of divergence of 
genes from information on nucleotide sequences. The minimum time can be 
used as an estimate of the time of population splitting when the latter is not 
known. However, this minimum time is expected to be a serious overestimate 
when T is large. In practice, of course, we usually do not know whether T is 
large or not, but if the number of common ancestral genes shared by the two 
populations is small, T is expected to be large. Therefore, in this case, this 
method should not be used. It should also be noted that the estimate has a 
large stochastic variance, the standard error being the same as the mean [equa- 
tion (12)]. 

In general, a more reliable estimate of the time of population splitting is 
obtained from (1 3), provided the rate of nucleotide substitution (or mutation 
rate) is known. As long as the rate of nucleotide substitution is constant and 
the populations are in equilibrium with respect to mutation and genetic drift, 
(1 3) gives an unbiased estimate. However, d is also subject to a large variance 
when d is small. 

J .  C. STEPHENS and M. NEI (unpublished data) compared the nucleotide 
sequences (807 nucleotides long) of the alcohol dehydrogenase genes from D. 
melanogaster, D. simulans and D. mauritiana and estimated the d values. In the 
comparison of D. melanogaster (T) and D. simulans j Y ) ,  m = 1 1  and n = 2, 
and they obtained ixy = 20.32, dx  = 5.75, a y  = 7, d = 13.94 and ? = 2.18, 
where A refers to an estimate. We can, therefore, estimate M by ((i.,+ &)/2, 
which is 6.38. Using this estimate together with m = 1 1 ,  n = 2 and T = 2.18, 
we can compute the expected standard error of d by using (16). It bec9mes 
7.74. Therefore, sd is about half of d .  Similarly, we can estimate s d  of d for 
the co*mparison of D .  melanogaster and D. mauritiana (n  = 2; b = 6). In this 
case, d and & become 17.94 and 7.75, respectively. In th: case of comparison 
of D. simulans and D .  mauritiana, however, we obtained d = 6.0 f 7.1. That 
is, i d  was as large as d. 

The large value of sd relative to d for the D. simulans to D. mauritiana 
comparison is partly due to the small sample sizes ( m  = n = 2) used for these 
two species. However, equation (16) indicates that, even if m = n = 1000, sd 

is reduced only slightly and becomes 4.8. This indicates that a large part of 
the variance of d is due to stochastic factors. It should be noted that the 
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stochastic variance can be reduced only by using sequence data from many 
independent (unlinked) gene loci. 

We thank CLAY STEPHENS for his help in computing the numerical values in Table 6 and for 
his comments on the manuscript. We also thank NARUYA SAITOU, SIMON TAVARE and GEOFF 
WATTERSON for their comments. This work was supported by research grants from the National 
Institutes of Health and the National Science Foundation. 
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APPENDIX 

According to the classification of gene genealogies in Figure 4, we present the formulas of 
E&,), E(k,?,) and E(k,h,>,) required for computing V(dm). Here, the arrow sign between E&,) and 
E(k,y) indicates that the two values occur with an equal probability for each of E&,,) and E(k,>,) .  
The probability of each of the seven different types of genealogies in Figure 4 is given in Table 
4. The formulas are: 

Genealogy Proba- 
t Y Pe bility E(kJ E (ki&y) 

M ( T +  1 - 2 F ) + M 2 ( p + 2 T + 2 )  
M(4T + $ - F )  + M 2 ( p  + IT + p )  
z& + M 2 ( T 2  + 3T + &) 
M(4T + 6 - F )  + M 2 ( T 2  + f T  + 8) 
$4 + M 2 ( T 2  + 2 T  + 8) 
M 2 ( T 2  + %T + 4) 

+ M ~ ( T ~  + 3~ + g) 
M ~ ( T ~  + IT + 6) 
$4 + M 2 ( T 2  + 2 T  + i$) 

Formulas of E&,), E(k,i ,)  and E(k&) required for computing Cov(dx, dy) are: 
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Formulas of E(R,,,), E(k,",) and E(R,, ,L,pj)  required for computing Cov(d,, dx) are: 

Genealogy Proba- 
f Y Pe bility E@.-) E(k*,) E(k.*kj,) 

4 
4 
f 
4 

s 
s 

1 
3 

1 
3 
- 

f 
4 

4 

4 
4 
4 

I 
3 
- 

1 
J 

M ~ ( T  + I)& 
iMS1 + M2(T + l)(Si + Sp)  
M 2 ( T  + b)S* 
'&(T + f - Sp) + M2(T2 + $T + %) 
M 2 ( P  + $T + &j 
&+I + M 2 ( p  + 2 T  + 8) 
M 2 ( T  + 3)Sz 

f ( T  + 4 - Sp) + M 2 ( P  + $T + 5) 
M p ( p  + $T + &) 
f + M p ( p  + 2 T  + 8) 
M ~ ( T ~  + QT + 3) 
I& + M2(P + 2T + i) 
M 2 ( T  + f )Sp  
$M(T + f - Sp) + M 2 ( P  + 4 + p )  
M ' ( p  + $T + i) 

M 2 ( T  + 4T + 4) 
I& + M2(T2 + 3 T  + E) 

ifM + MZ(P + 3 T  + E) 

In the above tabulation, genealogy type refers to those in Figure 5, and SI = 1 - ($)(1 + T ) F T  
+ (:)( 1 + 3T)e-3T and S p  = ($)I 1 - ( 1  + 3T)e-ST). 


