Abstract
In pneumococcal transformation the frequency of recombinants between point mutations is generally proportional to distance. We have recently described an aberrant marker in the amiA locus that appeared to enhance recombination frequency when crossed with any other allele of this gene. The hyperrecombination that we have observed in two-point crosses could be explained by two hypotheses: the aberrant marker induces frequent crossovers in its vicinity or the mutant is converted to wild type. In this report we present evidence showing that, in suitable three-point crosses, this hyperrecombination does not modify the recombination frequency between outside markers, suggesting that a conversion occurs at the site of this mutation. To estimate the length over which this event occurs, we isolated very closely linked markers and used them in two-point crosses. It appears that the conversion system removes only a few base pairs (from three to 27) around the aberrant marker. This conversion process is quite different from the mismatch-repair system controlled by hex genes in pneumococcus, which involves several thousand base pairs. Moreover, we have constructed artificial heteroduplexes using separated DNA strands. It appears that only one of the two heteroduplexes is specifically converted. The conversion system acts upon 5'..ATTAAT..3'/3'..TAAGTA..5'. A possible role of the palindrome resulting from the mutation is discussed.
Full Text
The Full Text of this article is available as a PDF (711.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Claverys J. P., Louarn J. M., Sicard A. M. Cloning of Streptococcus pneumoniae DNA: its use in pneumococcal transformation and in studies of mismatch repair. Gene. 1981 Jan-Feb;13(1):65–73. doi: 10.1016/0378-1119(81)90044-5. [DOI] [PubMed] [Google Scholar]
- Claverys J. P., Méjean V., Gasc A. M., Sicard A. M. Mismatch repair in Streptococcus pneumoniae: relationship between base mismatches and transformation efficiencies. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5956–5960. doi: 10.1073/pnas.80.19.5956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gasc A. M., Vacher J., Buckingham R., Sicard A. M. Characterization of an amber suppressor in Pneumococcus. Mol Gen Genet. 1979;172(3):295–301. doi: 10.1007/BF00271729. [DOI] [PubMed] [Google Scholar]
- Guha A., Szybalski W. Fractionation of the complementary strands of coliphage T4 DNA based on the asymmetric distribution of the poly U and poly U,G binding sites. Virology. 1968 Apr;34(4):608–616. doi: 10.1016/0042-6822(68)90082-2. [DOI] [PubMed] [Google Scholar]
- Kramer B., Kramer W., Fritz H. J. Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell. 1984 Oct;38(3):879–887. doi: 10.1016/0092-8674(84)90283-6. [DOI] [PubMed] [Google Scholar]
- LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
- Lacks S. A., Dunn J. J., Greenberg B. Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell. 1982 Dec;31(2 Pt 1):327–336. doi: 10.1016/0092-8674(82)90126-x. [DOI] [PubMed] [Google Scholar]
- Lefèvre J. C., Gasc A. M., Burger A. C., Mostachfi P., Sicard A. M. Hyperrecombination at a specific DNA sequence in pneumococcal transformation. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5184–5188. doi: 10.1073/pnas.81.16.5184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radding C. M. Genetic recombination: strand transfer and mismatch repair. Annu Rev Biochem. 1978;47:847–880. doi: 10.1146/annurev.bi.47.070178.004215. [DOI] [PubMed] [Google Scholar]
- Roger M. Evidence for conversion of heteroduplex transforming DNAs to homoduplexes by recipient pneumococcal cells (DNA strand resolution-DNA repair-bacterial transformation-genetic recombination). Proc Natl Acad Sci U S A. 1972 Feb;69(2):466–470. doi: 10.1073/pnas.69.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SICARD A. M. A NEW SYNTHETIC MEDIUM FOR DIPLOCOCCUS PNEUMONIAE, AND ITS USE FOR THE STUDY OF RECIPROCAL TRANSFORMATIONS AT THE AMIA LOCUS. Genetics. 1964 Jul;50:31–44. doi: 10.1093/genetics/50.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiraby G., Sicard M. A. Integration efficiency in DNA-induced transformation of Pneumococcus. II. Genetic studies of mutant integrating all the markers with a high efficiency. Genetics. 1973 Sep;75(1):35–48. doi: 10.1093/genetics/75.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trombe M. C., Lanéelle G., Sicard A. M. Characterization of a Streptococcus pneumoniae mutant with altered electric transmembrane potential. J Bacteriol. 1984 Jun;158(3):1109–1114. doi: 10.1128/jb.158.3.1109-1114.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]