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ABSTRACT 

Some statistical properties of samples of DNA sequences are studied under 
an infinite-site neutral model with recombination. T h e  two quantities of inter- 
est are R, the number of recombination events in the history of a sample of 
sequences, and RM, the number of recombination events that can be parsimon- 
iously inferred from a sample of sequences. Formulas are derived for the mean 
and variance of R.  In contrast to R, RM can be determined from the sample. 
Since no formulas are known for the mean and variance of RM,  they are 
estimated with Monte Carlo simulations. It is found that RM is often much less 
than R, therefore, the number of recombination events may be greatly under- 
estimated in a parsimonious reconstruction of the history of a sample. T h e  
statistic Rm can be used to estimate the product of the recombination rate and 
the population size or, if the recombination rate is known, to estimate the 
population size. To illustrate this, DNA sequences from the Adh region of 
Drosophila melanogaster are  used to estimate the effective population size of 
this species. 

HE neutral infinite-site model introduced by KIMURA (1971) is a natural 
framework for analyzing nucleotide sequence data. Much of the analytical 

development of this model has been for the cases in which the rate of recom- 
bination is zero or infinite (WATTERSON 1975; EWENS 1979). Recently, HUDSON 
(1983b) has studied some properties of this model when the rate of intragenic 
recombination is finite. Using a result of GRIFFITHS (1981) for a two-locus 
model with finite recombination, he derived a formula for the variance of the 
number of segregating sites in a sample of size 2 and obtained an approxi- 
mation for the expected homozygosity. 

HUDSON (1983b) has also developed an efficient method for simulating sam- 
ples from the neutral infinite-site model with finite recombination. His method 
generates the "history" of a sample. The history of a sample is a collection of 
correlated family trees, one for each site (for DNA sequence data, each nu- 
cleotide is considered a site). The family tree for a site traces the genealogy 
of a site back to its most recent common ancestor indicating which sampled 
gametes are most closely related and when the most recent common ancestors 
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occurred. If the rate of recombination is 7er0, then each site has the same 
family tree and therefore the history of the sample consists of just one tree. 
T h e  method for generating this tree depends on results of WATTERSON (1975) 
(for details see HUDSON 19831; TAJIMA 1983). On the other hand, if the 
recombination rate is infinite, then all of the family trees are independent of 
each other, and each family tree is generated in the same way as when the 
recombination rate is zero. If the recombination rate is finite, then the topol- 
ogies and lengths of the branches of the Family trees are correlated because of 
linkage, and generating them is more complex but still possible (HUDSON 
1983b). 

Let generation t ( t  P 0) denote the population t generations before the 
present one from which the sample is taken. Those gametes in generation t 
that have descendants in the sample are referred to as the ancestral gametes 
in generation t .  For any site the number of ancestral gametes in generation t 
is just the number of branches t generations before the present one in the 
family tree of that site. If an ancestral gamete in generation t - 1 is the 
recombinant descendant of two ancestral gametes in generation t ,  then we say 
that a recombination event has occurred in generation t. Let R denote the 
total number of recombination events in the history of the sample. T h e  object 
of this paper is to study the statistical properties of R. If the rate of recombi- 
nation is zero, then R = 0, and if the rate of recombination is infinite, then 
R = W .  Thus, only when the recombination rate is finite and nonzero is R 
interesting. For this case formulas are derived for the mean and variance of 
R for arbitrary sample size. 

Although R is a quantity of interest from a theoretical point of view, its 
drawback is that it cannot be evaluated from data, since the history of a sample 
is never observed. A way of inferring that between two sites at  least one 
recombination event took place in the history of the sample is to use the “four- 
gamete” test. This test can be explained in the following way. For the infinite- 
site model the mutation rate for any site is infinitesimal; therefore, at  most 
one mutation event can occur in the history of the sample at  that site. Thus, 
for any two sites there are at  most four gametic types in the population. 
Furthermore, since the model does not allow for back mutation and recurrent 
mutation, the only way for all four gametic types to be in the sample is for at  
least one recombination event to have occurred in the history of the sample 
between the two sites. 

Not all recombination events in the history of the sample are revealed by 
the four-gamete test. For a recombination event to be detected by this test, 
the history of sampled gametes must have a specific structure and mutations 
must occur on appropriate lineages of the family trees. It is shown that even 
for extremely high mutation rates and moderate sample sizes a substantial 
fraction of the recombination events in the history of the sample can never be 
detected using the four-gamete test. 

Let R.V, denote the minimum number of recombination events implied by 
the data using the four-gamete test (see APPENDIX 2). T h e  statistical properties 
of Rtr are of interest since this quantity arises naturally when one attempts to 
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actually construct the history of the sample. Furthermore, RM may be useful 
in estimating the rate of recombination. The mean and variance of RM are 
complicated functions of the mutation and recombination rates. It is shown 
that E(RM) is an increasing function of the mutation rate and the limiting value 
of E(RM) is identified. 

The statistical properties of R and R M  for different rates of mutation and 
recombination are also examined using the simulation methods of HUDSON 
(1983b). Finally, the results in this paper are discussed in light of the recent 
data set published by KREITMAN (1 983). In particular, the effective population 
size of Drosophila melanogaster is estimated from RM. 

STATISTICAL PROPERTIES OF R 

Let 2N denote the population size which is assumed to be fixed, c the rate 
of recombination per generation per gamete, U the rate of mutation per gen- 
eration per gamete and n the sample size. Both c and u are assumed to be of 
order 1/N; therefore, it is convenient to define f3 = 4Nu and C = 4Nc. For 
simplicity the chromosome under study is represented by the interval [0, 11. 

Suppose that for any integer, m, the genome is divided into m equal segments 
which are labeled from 1 to m starting from the left. One then has the identity 

m 

R = Ri, 
i= 1 

where Ri is the number of recombination events in the history of the sample 
for segment i. Since recombination is assumed to occur uniformly across the 
genome, all of the Ri have the same distribution. Furthermore, it is shown in 
APPENDIX 1 that 

and 

jP(R1 = j )  = O(m-'). 
jr2 

It follows that 

(4) 

= c (:I: 1) + o(m-'). 
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Letting m 4 m, we obtain 

We next evaluate the variance of R. It follows from (1) that 
m 

Var(R) = Var(R,) + 2 cov(R,, RJ. 
E= 1 1 - 9  

In view of (2), (3) and (4) 

The derivation of the formula for cov(R2, Rj)  requires some additional notation. 
For the family tree of the portion of the (i + 1)th segment contiguous to 

the ith segment, let l(t) denote the number of ancestral gametes in generation 
t ,  and set 1, = (1(0), Z(l), 4 2 ) ,  . . .). In a similar way define 1; = (r(O), r(l), 
r(2) ,  . . .) for the family tree of that portion of the (j - 1)th segment contiguous 
to the j th  segment. The key observation is that, if no recombination events 
have occurred in generations 1 ,  . . . , t - 1 in the ith segment, then the history 
of the ith segment up to generation t is exactly the same as the contiguous 
portion of the (i + 1)th segment. Thus, given I (O) ,  . . . , Z(t - l),  the probabil- 
ity that no recombination events occur in generation t in the ith segment is 
(1 - c/m)'('-'). Define, 

1 if no recombination event occurred in the 
ith segment in generation t. 1' 0 otherwise. 

&(t) 

Let 4(t)  be defined analogously for thej th  segment. It follows that 

= E (I! P (6,(t) = 1 1 :  k-0 b,(K) = 1, $) 
= E ( ? ( l - i ) )  

= E ((1 - 

where Ti = Ct Z(t). Similarly 

P(R, = 0) = E  ((1 - :r) (9) 

where TI = Et  ~ ( t ) .  Also, if no recombination events have occurred in genera- 
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tions 1, . . . t - 1 in the ith and j th  segments, then, given Z(O), r(O), . . . , 
l ( t  - l ) ,  r(t - l),  the probability that no recombination events occurred in the 
ith and j th  segments in generation t is (1 - ~/m)' (~- ' )+f l ' - ' )  . T h  us, 

P(R: = 0, Rf = 0 )  

From (8), (9) and (lo), one concludes that 

E'(&= 1,R,= l ) = E ( ( l  - (1  - i r ) ( l  - ( 1  -ir)) 

where T:  and T,' are measured in units of 4N. In APPENDIX 1 it is shown that 

E(RBJ = P(R, = 1, R~ = 1)  + 0 ( ~ - 3 )  

and 

Hence, 

therefore, 

T: and T/ are quantities related to family trees of two parts of the genome 
for which the recombination rate between them is ((j - i)/m)C. Thus, 
cov(Ti, T;) can be studied using the two-locus theory. In particular, HUDSON 
(1983b) has shown that cov(T:, T;) = fR(((j - i)/m)C), where fn is a function 
that depends on the sample size. 

We can now evaluate Var(R). From (6), (7), (IO) and (1 1) we obtain 



152 R. R.  HUDSON AND N .  L. KAPLAN 

Letting m + CO results in the formula: 

Var(R) = C (;I: T :) + 2 6': (C - Z) f,(z)dz. 

For n = 2, HUDSON has shown that 

For n P 3 no formula is known forf,(z), but N. L. KAPLAN and R. R. HUDSON 
(unpublished results) have recently shown how to compute f n ( z )  for any values 
of n and z. They also proposed the following two approximations forf,(z): 

and 

T h e  estimate in (14) is more appropriate for small to moderate values of z, 
whereas the estimate in (15) is more accurate for larger values of z (N. L. 
KAPLAN and R .  R.  HUDSON, unpublished results). 

It is interesting to note the similarity between the formulas for the mean 
and variance of R and S, the number of segregating sites in the sample. WAT- 

TERSON (1 975) has shown that 
n--1 1 

E(S) = 8 7, 
a 

and HUDSON (1 983b) has proved that 

Thus, when 8 = C, E(S) = E(R) and Var(S) = Var(R). Even though the mean 
and variance of S and R are  equal when 8 = C, simulation results not shown 
indicate that the distributions of S and R are  not the same. 

STATISTICAL PROPERTIES OF RM 

Before the statistical properties of RM are explored, it is instructive to elab- 
orate on its definition. It is clear from the discussion of the four-gamete test 
that the sample size must be at  least four and only segregating sites in the 
sample need to be compared. Suppose there are S segregating sites in the 
sample labeled 1 to S.  Define, 

(1 if all four gametes are  present in the 
sample for sites i a n d j .  

and let D = (d(i,j))lsi,js~. T h e  value of R,q, represents the minimum number 

d(i' ') = 1 0  otherwise. 
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1 2 3  - 
1 2 3  

i i i  
FIGURE 1.-The possible D matrices when there are three segregating sites in the sample. To 

the right of each matrix is a representation of the chromosome indicating with a solid bar the 
regions in which at least one recombination event must have occurred to account for the pairs of 
sites that pass the four-gamete test. 

of recombination events in the history of the sample which is consistent with 
the structure of D. To demonstrate this idea we consider the following simple 
example. Suppose there are three segregating sites in the sample, then there 
are three pairs of sites to which the four-gamete test can be applied. In Figure 
1 the spatial relationship between the recombination events and the segregating 
sites is given for the eight possible D matrices. In case (1 )  there is no evidence 
of recombination and, therefore, R,I, = 0. For cases (2) through (6) only one 
event is needed to account for the pairs of sites that pass the four-gamete test; 
for cases (7) and (8) two recombination events are required. For large numbers 
of segregating sites the determination of RM from D is not a simple matter 
and an algorithm for doing this is given in APPENDIX 2. 

It is clear from the definition of R M  that increasing S cannot decrease RM. 
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Thus, E(RM I S) is a nondecreasing function of S. Furthermore, HUDSON 
(1983b) has shown that distribution of S conditional on the history of the 
sample is Poisson with mean 8T/4N, where T is a quantity that depends only 
on the history of the sample. Thus, 

Since E(RM I j )  is a nondecreasing function of j ,  E(RM) is an increasing function 
of 8 (BARLOW and PROSCHAN 1975). Define 

One is tempted to interpret F,(8) as the probability that a particular recombi- 
nation event is detected by the four-gamete test when the mutation rate is 8. 
This interpretation can be justified when 8 is large. Consider a segment of 
length I/m and let R’ and RA denote the values of R and Rhf for this segment. 
It is shown in APPENDIX 3 that 

F,(w) = lim F,(B) = lim lim P(R& = 1 I R’ = 1). (16) 
8-m m-m e- 

The existence of F,(w) is immediate since E(R) does not depend on 8, and 
E(RM) is an increasing function of 8. In APPENDIX 3 it is shown that 

t= l  a 

As n increases, F,(w) converges to 1 and it appears from calculations that it 
does so in a monotonic fashion. The rate of convergence of F,(w) to 1 is very 
slow. For example, F500(w) = 0.69 and Flooo(w) = 0.71. There is no obvious 
way to compute F,(B) for finite values of 8 and, therefore, simulation methods 
must be used to estimate it. 

SIMULATION RESULTS 

Simulations were carried out to study the mean and variance of R and RM. 
The history of the sample was generated using HUDSON’S ( 1  983b) algorithm. 
Given the collection of family trees, the number of mutations on any branch 
has a Poisson distribution with mean Bt,, where t, is the length of the branch. 
Furthermore, each mutation is independently and uniformly placed on the 
branch. In Tables 1, 2 and 3 the estimated means and variances of R and RM 
obtained with Monte Carlo simulations are shown for sample sizes of 11 and 
25. The sample size of 11 was chosen to match the sample size in the data set 
of KREITMAN (1983) which is discussed in the next section. 

The estimated mean of R is consistent with the predicted mean given by (5). 
The estimated variance of R is in good agreement with the predicted values 
obtained by N. L. KAPLAN and R. R. HUDSON (unpublished results). 
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TABLE 1 

The mean and variance of R, the number of recumbinarion events in the histo7 of the 
sample 

C 

size Stat is ic  1 5 10 20 50 100 

1 1  &R)’ 2.94 14.5 29.2 58.6 146.6 292 
2.93 14.6 29.3 58.6 146.5 293 
4.29 33.5 86.7 226 655 1497 

1 1  Var(R)d 4.21 34.9 87.7 215 665 1509 

1 1  
I 1  

1 1  V%(R)’ 4.21 35.4 09.7 243 708 1645 

3.84 18.7 37.5 74.7 189 378 
3.78 18.9 37.8 75.5 189 378 
5.10 39.2 99.5 255 795 1683 

40.1 99.4 242 752 1715 45 Var(R)‘ 5.10 
25 GiiR)’  5.11 40.3 100.9 245.3 770 1777 

%;)e 

25 m)’ 
25 E(R)* 
25 W R Y  

An estimate of E(R) obtained from 1000 computer-gcnerated samples. 

J 
‘An estimate of Var(R) obtained from 1000 computer-generated samples. 

L. KAKAN and R. R. HULBON (unpublished results). 

(C - z)f&)dz which is obtained from (13) and (14). 

TABLE 2 

Monte Carlo sstimates of the mean and varianu of Rrr in somplcr of size I 1  

C 

Lo htistic 1 5 10 20 sa 100 

5 0.17 0.69 1.1 I .6 2.6 3.3 
5 0.17 0.62 0.85 1.9 2.0 2.4 

0.30 1.1 1.8 2.8 4.5 6.0 
10 0.31 0.99 I .4 1.9 3.0 4.5 

15 0.39 1.4 2.3 3.6 5.9 7.9 
15 0.37 1.1 1.9 2.7 4.1 5.5 

0.51 2.0 3.3 5.1 8.6 14 
4.4 6.8 9.7 

0.42 1.5 2.3 3.6 5.8 8.0 
TGi-i-~d 0.40 1.1 1.4 9.0 2.9 3.6 

30 &W 

&MY 

30 V S ~ R M ) .  0.46 1.8 3.0 

a Estimates of the mean and variance of R M  obtained f m  1000 computer-generated samples. 
’Estimates of the mean and variance of R M  conditional on 44 segregating sites in the sample 

obtained from 1000 computer-generated samples. 
‘ Number of segregating sites was fixed at 44. 
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TABLE 3 

Monte Carlo estimates of the mean and variance of RM in samples of size 25 

c 

R Statistic 1 5 10 20 50 100 

5 
5 

0.37 
0.33 

1.2 
0.92 

1.9 
1.4 

2.7 
1.9 

4.0 
2.5 

5.3 
3.4 

10 
10 

0.54 
0.46 

1.9 
1.3 

2.9 
2.0 

4.4 
2.8 

6.7 
4.2 

8.9 
4.9 

15 
15 

0.67 
0.57 

2.4 
1.7 

3.7 
2.4 

5.5 
3.5 

8.8 
5.5 

1 1  
7.0 

30 
30 

0.97 
0.84 

3.3 
2.5 

5.2 
4.3 

8.1 
5.8 

13 
8.9 

18 
12 

0.61 
0.47 

2.2 
1.2 

3.2 
1.6 

4.8 
2.3 

7.4 
3.3 

9.8 
3.8 

a Estimates of the mean and variance of Rw obtained from 1000 computer-generated samples. 
' Estimates of the mean and variance of RM conditional on 44 segregating sites in the sample 

' Number of segregating sites was fixed at 44. 
obtained from 1000 computer-generated samples. 

The simulation results in Tables 1, 2 and 3 show that the expectation of R M  
is much smaller than the expectation of R. Even with C small and fl large, the 
case in which RM will be closest to R, the mean of RM is much smaller than 
the mean of R. For example, when n = 11, C = 1 and 6' = 30, the mean of 
R~,,, was 0.506 and the mean of R was 2.94. Thus, the probability that any 
particular recombination event is detected using the four-gamete test is only 
about 0.506/2.94 = 0.17. It follows from (16) that as 6' approaches infinity, 
this probability will approach 0.32. For smaller mutation rates and higher 
recombination rates, the ratio of the mean of RM to the mean of R is even 
smaller. For example, with n = 11, C = 20 and 0 = 15, the ratio is 3.62/58.3 
= 0.06. The variance of R,,,, for which no formula is known is approximately 
equal to the mean of R,,, for C < 10, and for C > 10, is somewhat smaller 
than the mean. 

The simulations just described were carried out with a specified value of 8, 
and, therefore, the number of segregating sites in each sample is a random 
quantity. Since the number of segregating sites in a sample is observable and 
0 is unknown, it may be appropriate for the interpretation of data to consider 
the distribution of RM for a given number of segregating sites in the sample. 
This conditional distribution is not difficult to study since, given the collection 
of family trees, each of the given numbers of mutations is independently and 
uniformly placed on a branch of length t, with probability t,/C, t,. Shown near 
the bottom of Tables 2 and 3 are the means and variances of R M  for several 
rates of recombination and 44 segregating sites. This number of segregating 
sites was chosen to match the number of segregating sites in the data of 
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TABLE 4 

Estimates of the probability of detecting a single recombination event 
an samples of size I 1  and 25 when specijied numbers of sites are 

segregating on each side of the recombination site 

157 

No. of segregating 
sites on each side of 

Probability of detection“ 

the recombination site n =  1 1  n = 25 

10 0.12 0.16 
20 0.22 0.26 
50 0.29 0.36 

100 0.31 0.43 
200 0.32 0.43 

m 0.318’ 0.450b 
~~ 

a Each estimate was obtained from 1000 computer-generated 
samples. 

Calculated with ( 1  6). 

KREITMAN (1983). The variance of R M  tends to be somewhat reduced when 
the number of segregating sites is fixed. This is not unexpected since one 
component of the variability of R M  is removed if the number of segregating 
sites is fixed. 

Table 4 gives Monte Carlo estimates of the probability that a single recom- 
bination event is detected using the four-gamete test when given numbers of 
mutations occur on each side of the recombination site. With ten mutations 
on each side of the recombination site, less than half of those recombination 
events that are potentially detectable are detected. With 100 mutations on 
each side, the asymptotic value, as predicted by (16), is nearly reached. 

KREITMAN DATA 

KREITMAN (1983) published the DNA sequences of the Adh region from 1 1  
chromosomes obtained from natural populations of D. melanogaster. Although 
the 1 1  chromosomes were not a random sample, in this section we will treat 
them as if they were. There are 43 polymorphic nucleotide sites in the sample. 
For these 43 sites, R M  = 4. In addition, there are four sites with insertion/ 
deletion polymorphisms, each of which can be interpreted as resulting from a 
single insertion/deletion event. If these insertion/deletion polymorphisms are 
included, then there are 47 polymorphic sites, and R M  = 5. It follows from 
WATTERSON’S (1975) results that an estimate of 0 is S/(&!zl l/”), where S is 
the number of segregating sites in the sample. For Kreitman’s data S = 43 or 
47, depending on whether insertion/deletion polymorphisms are included and, 
therefore, an estimate of 0 is approximately 15. Estimates of 0 from electro- 
phoretic data are much smaller, typically about 0.1. This is not surprising since 
electrophoresis will not detect variation in untranslated regions, at silent sites 
and often even at nonsilent sites. If, however, some of the segregating sites 
are caused by deleterious mutations, then the above estimate of 0 may be 
biased upward. Table 2 shows that, if 6 = 15, then the value of C for which 
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E(RIM) = 4 is less than 50 and greater than 20. One cannot conclude with any 
degree of confidence that C lies between these two values because the variance 
of Rhl is large over this range of C values. However, it can be argued that C 
is likely to be between 5 and 150. Indeed, with C = 5 and the number of 
segregating sites fixed at 43, only eight of 1000 stimulated samples had RM 2 
4, and with the number of segregating sites fixed at 47, only 12 of the 1000 
samples had R,M 2 5. On the other hand, with C = 150 and 43 segregating 
sites, RM was 5 4  for only ten of 1000 samples, and with 47 segregating sites, 
R,,, was 5 5  for 15 of 1000 samples. 

Is an estimate of C between 5 and 150 compatible with other estimates of 
N and c? The average recombination rate per kilobase in D. melanogaster fe- 
males has been estimated to be 1.7 x (CHOVNICK, GELBART and MC- 
CARRON 19’77). Since there is essentially no recombination in Drosophila males 
and the sequence data covers 2.7 kb, an estimate of c is (1.7 x (0.5) 
(2.7) = 2.3 X lop5. If C lies between 5 and 150, then an estimate of N is 
between 5.4 X 1 O4 and 1.6 X 1 06. This range of values is well below Kreitman’s 
estimate, 3.3 X lo6, which was based on the number of segregating sites and 
estimates of the mutation rate. This discrepancy may be due just to the sam- 
pling variability in the number of segregating sites or the estimate of the 
neutral mutation rate used by Kreitman may be too small or the recombination 
rate in the Adh region may be smaller than 1.7 X 10-5/kb. 

DISCUSSION 

In some ways, R, the number of recombination events in the history of a 
sample, and S, the number of segregating sites in a sample, are analogous. 
One can intepret S as the number of mutation events in the history of the 
sample. The similar formulas for the means and for the variances of R and S 
reflect how7 analogous the two quantities are. It is well known that 4Nu can 
be effectively estimated using S (WATTERSON 1975; EWENS 1979). Unfortu- 
nately, 4Nc cannot be estimated in an analogous fashion using R, because R is 
not directly observable in samples. An observable quantity that is related to R 
is RM. However, RM is typically much smaller than R and has statistical prop- 
erties that make estimates of 4Nc imprecise. The mean of RM grows rather 
slowly with increasing values of 4Nc and the variance is large enough so that 
a large range of 4Nc values are compatible with an observed value of RM. 
Nevertheless, some information about 4Nc can be obtained using RM as was 
illustrated for the KREITMAN (1983) data. An estimate of N ,  the population 
size, can be obtained if c is known. Direct estimates of c can be obtained for 
some genetic loci (CHOVNICK, GELBART and MCCARRON 1977). Such estimates 
of c are likely to be much more precise than estimates of U, which are typically 
based on estimated divergence times of species. Consequently, estimates of N 
based on R, may still be more precise than estimates based on S .  It should be 
noted, however, that such estimates may be quite sensitive to departures from 
random mating and constancy of population size. 

Our results also bear on the problem of reconstructing phylogenies of DNA 
sequences. For most samples, RM is much smaller than R. This means that for 
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(b) 

ab a 6  AB AB ab AB AB 

FIGURE 2.-Two possible histories of a sample of four gametes. (a) In this history no recom- 
bination events occur. This is a most parsimonious tree relating the four gametes. (b) In  this 
history one recombination event occurs. Although the resulting gametes are the same, the order 
of the mutations, the placement of the mutations on the tree and the ancestral genotypes are 
different from the history in (a). 

a typical sample many more recombination events probably took place in the 
descent from the most recent common ancestors of the sample than would 
appear in a most parsimonious reconstruction of the history of the sample. 
Thus, when recombination can occur, it appears that parsimonious reconstruc- 
tions of phylogenies of DNA segments should be viewed with some scepticism. 

For some questions, undetected recombination events may be of no impor- 
tance, and for others they may be relevant. For example, if one is concerned 
with the order in which mutations arose, or with the actual genotypes of the 
ancestors of sampled gametes, then conclusions based on parsimonious recon- 
structions can be incorrect. An example in which four gametes are sampled & 
shown in Figure 2. The four gametes are denoted aB, ab, AB and AB. Suppose 
that it is known that the ancestral state is AB (from the examination of related 
species, for example). As shown in Figure 2a, no recombination events are 
required to explain the origin of the four gametes. If the ancestral state is AB, 
the most parsimonious tree, without recombination, leads to the conclusion 
that the mutation A 4 a occurred before the mutation B + b and that the 
genotype Ab never existed in the ancestry of the sample. However, Figure 2b 
shows that, with a recombination event, the order and placement of the mu- 
tations could be much different, with the mutation B 4 b occurring before 
the mutation A + a and the genotype Ab being an ancestor of the ab and the 
aB gametes. 

Our simulations show that even with fairly large numbers of mutations many 
recombination events will go undetected. For example, with 44 segregating 
sites and C = 40, in samples of size 11, the mean value of RM is approximately 
5, whereas the mean number of recombination events is 118. These parameter 
values were chosen to match the data of KREITMAN (1983). Reconstructions of 
the history of Kreitman’s sample of gametes that contain only five recombi- 
nation events are, therefore, likely to be quite misleading. 
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APPENDIX 1 

To study properties of the distribution of R I  it is necessary to describe in more detail the 
method used by HUDSON (1938b) to simulate the history of a sample. We first introduce two 
definitions. If any two ancestral gametes of segment 1 in generation t - 1 have a common ancestor 
in generation t, we say  that a CA event has occurred in generation t. Alternatively, if an ancestral 
gamete of segment 1 in generation t - 1 is the recombinant descendent of two ancestral gametes 
of segment 1 in generation t ,  we say that an RE event has occurred in generation t. Let event i 
be the ith most recent event. HUDSON (198313) has shown that the distribution of the time (mea- 
sured in units of 4N) between the (i - I)th and ith events (i ? l )  conditioned on the history of 
the sample for segment 1 up to the time of the (i - 1)th event is asymptotically exponential with 
parameter K,(Ki - 1) + G,C/m, where K ,  represents the number of ancestral gametes of segment 
1 in the generation when the ith event occurred (note that K i  2 2) and G, is a number that lies 
between 0 and Ki and depends on the outcomes of the previous i - 1 events. The quantity G,c/m 
is the probability that an RE event occurs in any particular generation between the (i - 1)th event 
and the ith event. Furthermore, the probability that the ith event is a CA event is K,(K, - I ) /  
(K,(K,  - 1) + G,C/m),  and the probability that it is an RE event is (GiC/m)/(Ki(K, - 1) + G,C/m). 

Define: 

1 
0 otherwise. 

if ith event is an RE event, 

Then 
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The  only value of j for which P(RI = j )  can be evaluated is j = 0. In this case all the events are 
CA events, and 

c 
m m 

- ( n - i + I ) - a n d K , = n - i + l ,  1 1 i 1 n - 1 .  
GC _ -  

Thus, 

" i ( i  - 1) 
=: c 

=2 c 

i- + i ( i  - 1) 
m 

" i - 1  

- + i - 1  
m 

For values of j 2 1 no simple formula for P(RI = j) exists. However, we do have the following 
inequality. 

Lemma. P(R1 = j )  5 (C/m)j; j 2 2. 
Proof. For simplicity we assume that j = 2. The  argument for larger values of j is the same. 

Let 1 sil  < j 2 .  Then, 

P(qJ1 = 1, qj2 = 1 and all the other q, = 0) 

Ki(Ki - 1 )  - - 

P(all q, are zero, i # j , ,  j,, and no conditions are placed on v,, and q,J. 
The  last inequality follows because j ,  and j ,  2 2, G,, 5 K,,, and G,, 5 KJp. Summing over all j ,  and 
j 2  results in 

P(R1 = 2) c (.).,(RI m c 2) c (:)Z. 

It follows from the lemma that 

2 (iy 
I - C = 0 ( ( y ) ,  

1 - -  
m 

The  argument for showing that E(R,R,, R, + R, 2 3) = O((C/m)') is similar to the one above. 
For this case one considers the history of the entire segment from the ith segment to the j t h  
segment. T h e  same structure governs the interevent times except that now one needs to also keep 
track of where along the segment the RE events occur. When an RE event occurs in generation 
t the ancestral gamete in generation t - 1 is divided into two pieces at a randomly chosen crossover 
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point. Hence, P[(1 + I)th event is an RE event and it occurred in either the ith o r j t h  segment I 
the history of the sample up to the Ith event] I (2GIC2)/[mC,C + m2Kl ( K L  - l)]. 
The  argument used in the lemma can be used to show that 
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Thus, 

APPENDIX 2 
We describe here an algorithm for determining RM. Recall the matrix D = (d( i ,  j ) ) ,  where 

d(i ,  j )  = 1 if all four gametes involving sites i and j are present in the sample; otherwise d(i, j) = 
0. To each nonzero element d(i ,  j) of D above the diagonal we associate the open interval (i, j) 
and form a list of these intervals ordered so that the starting points of the intervals are not 
decreasing. The  method for finding RM deletes certain members of this list. The first type of 
intervals deleted are those that completely contain other intervals. For example, if (2, j )  and (m, n) 
are on the list, and m 5 i < j  I n, then (m, n) is deleted. For the remaining intervals on the list, 
let (il, j , )  be the first interval that is not disjoint from all of the others. All intervals (m, n) such 
that il < m < j l  are then deleted. Next, let (22, j 2 )  be the first interval with i s h  j ,  such that (i2, j s )  
is not disjoint from all of the remaining intervals and delete all intervals whose first component is 
<j2 and >i2.  This process is continued until it is not possible to find an interval that has a nonempty 
intersection with some other interval on the list. At this point all of the intervals are disjoint, and 
to each interval we must assign at least one recombination event. Hence, RM equals the final 
number of intervals on the list. 

APPENDIX 3 
Let 

Since E(R) = C(c:=;' l/i), it is sufficient to establish (17) to show that 

lim E(&) = CA. 
e-+= 

I f  we divide the genome u p  into m segments, then 
(n 

lirn E(RM) = c E(RM(i)) = m E ( R d I ) ) ,  

where RM(1) represents the number of recombination events in segment 1 in the history of the 
sample which are potentially detected by the four-gamete test, i . e . ,  they are detectable when the 
number of segregating sites is sufficiently large. I f  R(1) equals the number of recombination events 
in segment I in the history of the sample, then R M ( ~ )  I R(1) and, therefore, 

E(&(]))  = P ( R M ( I )  = 1, R(1) = 1) + 0(m-'). 

8- I= 1 

To evaluate P(R,v(I) = 1, R(1) = 1) we observe that 

P ( R d 1 )  = 1 ,  R ( l )  = 1 )  = 2 P(k)Ph 
h=4 

where 
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(a) 

\ /  
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FIGURE 3.-Three possible histories of a sample of four gametes, each with one recombination 
event at generation t .  In (a) and (b), Q = 1 and 2 respectively, and it is not possible to place two 
mutations on these trees so as to produce four gametic types in generation t - 1. In (c), Q = 3, 
and it is shown how two mutations can be placed so as to produce four gametic types in generation 
t -  1. 

P ( k )  = probability that the first n - k events in the history of the sample for segment 1 are CA 
events and the (n - k + 1)th is the RE event, 

and 

Pi = probability that the recombination event is potentially detectable given that first n - k 
events in the history of the sample of s gment 1 are CA events and the (n - k + 1)th 
event is the RE event. 

It follows from APPENDIX 1 that 

To evaluate Pk it is necessary to determine which topologies of the family tree will result in a 
potentially detectable recombination event. Suppose that the first (n - k )  events in the history of 
the sample are CA events, the (n - k + 1)th is the RE event and this event occurs in generation 
t. Hence, in generation t there are k - 1 ancestral gametes that are direct ancestors of the gametes 
in the sample and two ancestral gametes that form a recombinant. The topology of the tree 
determined by the first (n - k )  events is not relevant to the question of detectability and, therefore, 
does not need to be considered. The possible topologies of the tree determined by the k - 1 CA 
events proceeding the RE event can be categorized in the following way. For any possible tree 
consider the path connecting the two gametes that form the recombinant. Let Q denote the 
number of nodes on this path. In Figure 3 examples of trees are given in which Q = 1, 2 and 3. 
For the RE event to be potentially detectable it must be possible to place two mutations on the 
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tree, one to the left of the crossover point and one to the right, which result in four gametes in 
the sample. Since no RE events occur in the first (n - k) events, it is necessary that the four 
gametes be present among the ancestral gametes in the generation in which the (n - k)th event 
occurred. 

It is straightforward to check that, if Q = 1 or 2 ,  then it is impossible to obtain four gametes 
in the sample regardless of where the two mutations are placed. Thus, Pk is identified as the 
probability that the family tree relating the k - 1 gametes and the two gametes that form the 
recombinant is such that Q 2 3. A tree with Q 2 3 can only occur in the following way: 

( 1 )  The first i events are CA events not involving either of the two gametes that form a 
recombinant. (i = 0, . . . , k - 4);  

( 2 )  The (i + 1 )  event is a CA event involving only one of these two gametes; 
( 3 )  The next 1 CA events do not involve either of these two gametes or their ancestors. 

( 4 )  The (i + 1 + 2) event involves only one of these two gametes or their ancestors. 
Let p b  (i, 1) denote the probability of (1 ) - (4 )  for 0 5 i 5 k - 4 and 0 5 1 5 k - 4 - i. Then 

(1 = 0, . . . , k - 4 - i); and 

(k - i - 1 - 1 ) ( k  - i - 1 - 2)' 
( k  + 1)k2(k - 1 ) ( k  - i - 2) 

= 16 ' 

Thus, 

k - 2 - i - j )  (YJk - 1 - i - 2 

( k - f - i )  )I( (k+) )) 

1-4 b-4-2 PI = 16 E---!---[ E ( k - i - 1 -  
( k  + 1)k2(k - 1) ,=o k - i - 2 I=O 

Finally we have 

1 2 ) ' ( k - i - l -  1) 

Letting m tend to m we obtain 

To prove equation 16 one only has to note that for large 0, R A  = R,w(l). Thus 

P(Rd1)  = 1, R ( 1 )  = 1) 
lim lim P(R$ = 1 I R' = 1) = lim = F,(m). 
m- &m m- P(R(1)  = 1) 


