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ABSTRACT 

Previous mathematical analyses of mutation-selection balance for metric 
traits assume that selection acts on the relevant loci only through the charac- 
ter(s) under study. Thus, they implicitly assume that all of the relevant muta- 
tion and selection parameters are estimable. A more realistic analysis must 
recognize that many of the pleiotropic effects of loci contributing variation to 
a given character are not known. T o  explore the consequences of these hidden 
effects, I analyze models of two pleiotropically connected polygenic traits, de- 
noted P1 and l'~. The actual equilibrium genetic variance for PI, based on 
complete knowledge of all mutation and selection parameters for both PI and 
Pz, can be compared to a prediction based solely on observations of P1. This 
extrapolation mimics empirically obtainable predictions because of the inevi- 
tability of unknown pleiotropic effects. The mutation parameters relevant to 
PI are assumed to be known, but selection intensity is estimated from the 
within-generation reduction of phenotypic variance for P1. The extrapolated 
prediction is obtained by substituting these parameters into formulas based on 
single-character analyses. Approximate analytical and numerical results show 
that the level of agreement between these univariate extrapolations and the 
actual equilibrium variance depends critically on both the genetic model as- 
sumed and the relative magnitudes of the mutation and selection parameters. 
Unless per locus mutation rates are extremely high, i .e. ,  generally greater than 
1 0-4, the widely used gaussian approximation for genetic effects at individual 
loci is not applicable. Nevertheless, the gaussian approximations predict that 
the true and extrapolated equilibria are in reasonable agreement, i . e . ,  within a 
factor of two, over a wide range of parameter values. In contrast, an alternative 
approximation that applies for moderate and low per locus mutation rates 
predicts that the extrapolation will generally overestimate the true equilibrium 
variance unless there is little selection associated with hidden effects. The tend- 
ency to overestimate is understandable because selection acts on all of the 
pleiotropic manifestations of a new mutation, but equilibrium covariances 
among the characters affected may not reveal all of this selection. This casts 
doubt on the proposal that much of the additive polygenic variance observed 
in natural populations can be explained %y mutation-selection balance. I t  also 
indicates the difficulty of critically evaluating this hypothesis. 

T is not known what accounts for the persistence of heritable polygenic I variation. Based on a mathematical analysis and empirical estimates of the 
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relevant parameters, LANDE (1 975) argued that mutation-selection balance may 
play a major role. This hypothesis, discussed earlier by FISHER (1930), LATTER 
(1 960), KIMURA ( 1  965) and BULMER ( 1  972), is extremely appealing because it 
involves an equilibrium between two ubiquitous forces: stabilizing phenotypic 
selection, which tends to eliminate additive genetic variance (e.g., FISHER 1930; 
ROBERTSON 1956; LEWONTIN 1964; WRIGHT 1969; BULMER 1972) and muta- 
tion, which continually reintroduces it. Previous mathematical analyses of mu- 
tation-selection balance for quantitative characters (reviewed in TURELLI 1984) 
assume that selection acts on the relevant loci only through the character(s) 
under study. This implies that all of the relevant mutation and selection pa- 
rameters are empirically estimable. However, the complex pathways that con- 
nect DNA to phenotypes ensure that the alleles contributing variation to any 
one character will also affect numerous other characters, not under study, that 
are also under selection. Naturally, one expects these hidden effects to obscure 
the relationship between estimable mutation and selection parameters and the 
actual mutation-selection equilibrium. This paper presents mathematical anal- 
yses that display how this relationship changes with alternative genetic assump 
tions and mathematical approximations. The mathematics is coupled with an 
attempt to determine the biological conditions under which the alternative 
models and approximations are appropriate. A major corollary of the calcula- 
tions is that genetic conclusions based on a set of mathematical assumptions 
introduced by LANDE (1975) may not be robust. 

LANDE’S (1 975) treatment of mutation-selection balance, which he has ex- 
tended to multiple characters connected by pleiotropy (LANDE 1980), uses a 
generalization of the CROW and KIMURA ( 1  964) continuum-of-alleles model for 
polygenic traits. This model assumes that alleles and loci contribute additively 
to the trait(s) of interest ( i .e . ,  dominance and epistasis are ignored) and that 
the segregating alleles at each locus have an essentially continuous range of 
effects. The cornerstone of Lande’s analyses is the additional assumption that 
at each locus the distribution of allelic effects in a population is approximately 
gaussian. The additivity assumptions of Lande’s generalization of the contin- 
uum-of-alleles model together with the use of gaussian distributions to approx- 
imate the effects of the segregating alleles will be referred to as the gaussian 
genetic model. Unlike traditional population genetic analyses which derive ga- 
mete and allele frequencies from specified recursions, the gaussian genetic 
model assumes that the form of the distribution of effects is known. This 
profoundly simplifies the mathematics. Consequently, the gaussian genetic 
model is now the most commonly applied genetic analysis for polygenic traits, 
with applications including mutation-selection balance (LANDE 1975, 1977, 
1980), sexual selection (LANDE 198 l), spatially varying selection (FELSENSTEIN 
1977; SLATKIN 1978), disruptive selection (FELSENSTEIN 1979), and rapid phe- 
notypic evolution (KIRKPATRICK 1982). 

It is important to recognize that the gaussian genetic model is not inter- 
changeable with gaussian-based models for phenotypes (e.g., FISHER I9 18; 
LANDE 1976, 1979). The latter are grounded in the empirical observation 
that, on an appropriate scale of measurement, the distributions of quantitative 



CONSEQUENCES OF PLEIOTROPY 167 

traits in populations are often nearly gaussian (see WRIGHT 1968, chap. 15). 
In contrast, the gaussian genetic model stems from KIMURA’S (1965) mathe- 
matical derivation of an approximate gaussian distribution for allelic effects at 
individual loci under mutation-selection balance. Although KIMURA’S (1 965) 
result is frequently invoked, the underlying biological assumptions have gen- 
erally been unknown and ignored. Using the single character mutation and 
selection model of LANDE (1975), I have shown (TURELLI 1984) that the gaus- 
sian approximation for segregating alleles is likely to be applicable at equilib- 
rium only if the relevant loci experience extremely high mutation rates, e.g., 
in excess of per locus. An alternative approximation, named after KING- 
MAN’S (1 978) “house-of-cards” model, was demonstrated to be applicable for 
more usual per locus mutation rates, i .e. ,  5 1 OW4. However, this conclusion was 
based on a one-character analysis that ignored confounding effects in the es- 
timation of the intensity of stabilizing selection. One objective of this paper is 
to describe biological and mathematical conditions under which the gaussian 
and house-of-cards approximations for the continuum-of-alleles model are valid 
when pleiotropy is considered. 

The basis for the house-of-cards approximation is the empirically motivated 
assumption that among mutants at a given locus, the variance of phenotypic 
effects exceeds the variance of effects associated with currently segregating 
alleles (see Turelli 1984, pp. 147- 148). Unlike LANDE’S (1 975) predictions and 
the closely related results of KIMURA (1 965) and FLEMING (1 979), the house- 
of-cards predictions agree with those derived from a diallelic model by LATTER 
(1960) and BULMER (1972, 1980) and from a triallelic model by TURELLI 
(1 984). Thus, a key result from the single-character house-of-cards analysis is 
that the equilibrium genetic variance maintained by mutation-selection balance 
is approximately independent of the number of available alleles at each locus. 
The analysis below shows that pleiotropy destroys this property. Thus, the 
validity of multivariate predictions for mutation-selection balance hinges on the 
validity of assumptions concerning the number and effects of segregating al- 
leles. This is one source of uncertainty that confounds equlibrium predictions 
based on single-character analyses. 

As noted previously, the other major source is the estimation of selection 
intensity. Selection estimates for quantitative characters generally come from 
observing the frequency distribution of a character, or set of characters, in a 
cohort at two stages of the life cycle (JOHNSON 1976; LANDE and ARNOLD 
1983). These estimates are used to predict selection intensities at the under- 
lying loci (see TURELLI 1984), but there are confounding influences. As shown 
by LANDE and ARNOLD (1983), changes in a given character are caused not 
only by direct selection on that character, but also by selection on correlated 
characters. This suggests that selection intensities may tend to be overesti- 
mated. Conversely, however, all of the selection experienced by new mutations 
may not be reflected accurately by phenotypic correlations. The goal of the 
analyses below is to sort out these contradictory effects. 

My analysis is broken into three parts. In MODELS AND METHODS, I introduce 
a two-character model and dual method of analysis that displays the conse- 
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quences of hidden pleiotropic effects. Within this general framework, I present 
two extreme alternative models for the number and effects of segregating 
alleles at each locus. The first is the continuum-of-alleles model of LANDE 
(1 980), the second is a five-allele generalization of the triallelic model of TUR- 
ELLI (1984). To simplify the subsequent analyses, I argue for assuming com- 
plete linkage equilibrium so that only single-locus equilibria need be approxi- 
mated. 

In the second section, APPROXIMATE ANALYTICAL RESULTS are presented for 
each model. Two alternative approximations are used for the continuum-of- 
alleles model: a gaussian approximation based on LANDE (1 980), which is 
shown to be appropriate for relatively high per locus mutation rates, and a 
generalization of the house-of-cards approximation from TURELLI (1 984), 
which is shown to be appropriate for relatively low per locus mutation rates. 
Only a low mutation rate analysis is presented for the five-allele model. Qual- 
itative differences between the models and approximations are highlighted by 
simple special cases. In  addition, I present some asymptotic results for the low- 
mutation approximations which display the range of possible discrepancies be- 
tween actual equilibrium variances and extrapolations based on incomplete 
information. Detailed calculations are relegated to appendices. 

The third part of my analysis consists of two sorts of NUMERICAL RESULTS. 

The first is numerical approximations for mutation-selection equilibria which 
exhibit the accuracy and domains of applicability of the alternative approxi- 
mations. The second consists of graphical and numerical comparisons of actual 
and extrapolated equilibria for various parameter values. Finally, the DISCUS- 

SION elaborates the difficulties of experimentally evaluating the power of mu- 
tation-selection balance to account for observed heritable variation. 

MODELS AND METHODS 

To unravel the connection between observed phenotypic selection and un- 
known pleiotropic effects, it seems reasonable to begin with a simple model. 
A minimal model that captures the phenomena of interest involves stabilizing 
phenotypic selection acting on two polygenic traits, denoted PI and PB, which 
share variance-contributing loci. For simplicity, let us assume that these loci 
experience selection only through their effects on these characters and that 
correlations between them are due solely to pleiotropy and environmental 
effects ( i . e . ,  linkage effects are ignored, CJ: DAVIES 1971). T o  reveal the con- 
sequences of hidden pleiotropic effects, this bivariate system will be approached 
from two perspectives. First, we can assume, as in LANDE (1980), that all of 
the selection and mutation parameters are known. This allows a complete 
bivariate analysis of equilibrium genetic and phenotypic means, variances and 
covariances. Second, we can mimic the dilemma faced by experimental studies 
and assume that observations are available only on one of the two characters, 
say PI. In this context, the single character P2 crudely represents all of the 
unknown effects of the loci that contribute variation to PI, the character under 
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study. The complexity of the results from this simple model dampens enthu- 
siasm for more realistic models of unknown pleiotropic effects. 

As in empirical studies, we can estimate the intensity of stabilizing selection 
on P I  by measuring the reduction in phenotypic variance through the life cycle. 
If it is assumed that both characters are at mutation-selection equilibrium, this 
within-generation reduction in variance can be calculated from a_ bivariate 
analysis. This yields a stabilizing selection estimate for PI, denoted Vs,l ,  which 
will be called the realized intensity of selection in PI. Assuming thzt the mu- 
tation parameters relevant to P1 are known, we can put them and V5,] into the 
formulas derived from single-character mutatioc-selection balance theory. This 
produces an extrapolated prediction, denoted Vg,l, for the equilibrium genetic 
variance for PI. In this model system, it can be directly compared to the true 
equilibrium genetic variance, denoted cg,l, obtained from a complete bivariate 
analysis. Thus, we can assess the accuracy of mutation-selection equilibrium 
predictions based on incomplete knowledge of genotype-phenotype relation- 
ships. 

Basic assumptions: We assume an effectively infinite, randomly mating, dip- 
loid population with nonoverlapping generations. T o  facilitate comparison with 
existing gaussian a’nd single-character results, we assume additive genetic ef- 
fects, no genotype-environment interaction and gaussian stabilizing selection as 
in LANDE ( 1 9 8 0 ) .  Let P = ( P I ,  P2), G = (GI ,  G2) and E = ( E l ,  E2) denote the 
bivariate phenotype and its genetic and environmental components. We assume 

P = G + E ,  (1) 
with the random vector E independent of G and distributed as a bivariate 
gaussian with mean (O,O), variances Ve,l and Ve,2 and correlation pe. Letting n 
denote the number of loci contributing variance to either character, additivity 
of allelic effects implies 

in which x(*) = (xt), ~ $ 3  denotes the average phenotypic contributions of an 
allele at the ith locus and the subscripts 8 and 0 denote maternal us. paternal 
inheritance. 

Fitnesses are assigned to phenotypes by 

w ( p l ,  ~ 2 )  = exp{-’/2[(Pl/wd2 - 2pw(PI/w1)(P2/w2) + ( P 2 / ~ 2 ) ~ ] / ( 1  - p 3 .  (3) 
Thus, both characters are subject to stabilizing selection with selection inten- 
sities proportional to wT2 and w;’ and optima scaled to 0. The correlation 
parameter pw satisfies -1 < pw < 1 and measures the extent to which selection 
acts to produce covariance between P1 and Pz. Assumptions (1 )  and (3) imply 
that the mean fitness of genotype G is 

w(G1, Gz) = c exp[-Vz(G:V;: - ~ ~ , G I G Z ( V , , I V ~ , S ) - ’ ~  + G%L?)/(1 - ~ 3 1 ,  (4) 
in which c is a genotype-independent constant, 

V,,, = wp + V,,,, and ( 5 4  

(5b) P5 = (PwWIWZ + ~,~~,1v~,z)(v~,I~s,2)-~’2. 
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Note that, as V,,, increases, the intensity of selection against nonoptimal geno- 
types for character i decreases. 

Calculation of realized selection: - The key step in understanding the effects of 
pleiotropy is calculating Vs,l, the intensity of realized selection on PI, in terms 
of the parameters and phenotypic equilibrium of the bivariate model. T o  cal- 
culate vs,l, we assume that P I  experiences univariate stabilizing selection and 
we estimate its intensity from the within-generation reduction of phenotypic 
variance. The bivariate and univariate calculations for the change in pheno- 
typic variance rely on the approximation that the equilibrium distribution of 
phenotypes is gaussian. Because of the assumptions of polygenic inheritance 
(2) and gaussian environment effects ( l) ,  this approximation for phenotypes is 
consistent with nongaussian distributions of allelic effects at the underlying 
loci. The accuracy of this approximation is discussed in APPENDIX 1 and in 
FISHER (1 9 18). 

Let Vp,l (Vi,,) denote the variance of P I  before (after) selection, once the 
population has reached mutation-selection equilibrium. If we assume univariate 
gaussian stabilizing selection with intensity G*, i.e.,  

w ( p l )  = exp(-P:/2G2), (6) 

it is easy to show that 
$2 

and, hence, 
A!= V' 
vp,1 + VpJ 

Under weak selection, i .e. ,  G 2  >> Va,l ,  

thus (7) implies that 

The weak selection approximation (8) is consistent with empirical estimates of 
?s,l/Ve,l which generally fall between 10 and 20 (TURELLI 1984). 

As (9) shows, predicting r?,,, from the bivariate model requires an approxi- 
mation for VP,] - Vi,, at equilibrium. Let X p  (2;) denote the variance-covariance 
matrix for phenotypes before (after) selection, let E, denote the variance-co- 
variance matrix for environmental effects, and let E, denote the variance-co- 
variance matrix of the bivariate gaussian fitness function (3). As noted by 
LANDE (1 980), 

X p  - 2; = zppw + 2J'Zp 

2s Xp(& + X t ) - l 2 p ,  

( 1 0 4  

( 1 Ob) 
under weak selection. Thus, for two characters, approximations (9) and (lob) 
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yield 

with 

As expected from LANDE and ARNOLD’S (1983) discussion of indirect selection, 

t . 1  5 V*J (1 2) 
with equality if and only if ps = y. 

Continuum-ofalleles model: T o  carry out this analysis, we must specify the 
number and effects of alleles at each locus and the mutation scheme. Two 
models will be considered. The first is a special case of LANDE’S (1980) mul- 
tivariate extension of the continuum-of-alleles model. It assumes that at each 
locus there is an effectively infinite number of alleles with a continuous range 
of effects on one or both of the characters. Mutation at locus i occurs with 
probability pt and transforms an allele of effect x = (xl, xz) into an allele of 
effect x’ = (XI, xi) with 

The mutation-induced displacement, M, is assumed to follow a bivariate gaus- 
sian distribution with mean (0, 0 ) ,  variances m:,t and mf, ,  and correlation pA,,. 
Apart from the existence of correlation in the mutation-induced changes of P I  
and Pz, this model assumes that no constraints are imposed by the genetic 
system. In particular, every locus affecting both characters is capable of pro- 
ducing essentially any effect on each character. 

Five-allele model: The alternative model that will be considered is a five-allele 
generalization of the triallelic model of TURELLI (1984). It is a simple attempt 
at introducing genetic constraints associated with a limited range of potential 
bivariate allelic effects. For locus i, the alleles are denoted A$!o and Ail for 
j ,  k = -Cl; allele Alfl contributes (jcl,,, kcz, , )  to (GI, Gz) with C I , ~  cp,, 2 0. This 
model is most plausible when allele A$!o is nearly fixed. Then, mutation affects 
the equilibrium genetic structure primarily through the mutation rates from 
A$)O to the other four alleles. The mutation rate from A&, to AJ$ is 

x ’ = x + M .  (13) 

PLlfd,O).(r*.t) = lhPt(l + jhPA,I )  (14) 

with -1 < P , , ~  < 1. For simplicity, the mutation model will be completed by 
assuming that each of the alleles A$ for j ,  k = f l  mutates only to A ~ ! o  at rate 
p,. This simplifying assumption has little effect on the low mutation rate ap- 
proximations presented in the next section. This model assumes that among 
mutants from A&, the variance introduced for PI (Pz) is c:,, (&) and the 
correlation between the changes in P1 and Pz is P ~ , ~ .  Thus, the parameters 
c!,, and cf , ,  are analogous to m:,, and m:,, in the continuum-of-alleles model, 
and pa., has the same interpretation in both models. 
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The five-allele model differs from the continuum-of-alleles model in one 
critical respect. In both models nonzero P ~ , ~  imposes a probabilistic coupling 
between the effects of mutation on the two characters. The five-allele model 
imposes an additional deterministic coupling between the variances contributed 
to the two traits, namely, their ratio must be ~ : , , / c f , ~  irrespective of other 
parameter values. Given our lack of knowledge of the genetic variants under- 
lying quantitative variation, it is difficult to determine whether this strict con- 
straint is more or less realistic than the weaker coupling imposed by P ~ , ~ .  
Unfortunately, these alternative assumptions lead to quantitatively different 
consequences for hidden pleiotropic effects. 

Linkage equilibrium and weak selection approximation: To complete the descrip- 
tion of these polygenic models, the linkage relationships among the n loci 
should be specified. However, several lines of evidence presented in TURELLI 
(1 984) suggest that the overall genetic variances and covariances will be essen- 
tially independent of the recombination scheme under realistic selection values 
and reasonable constraints on the recombination rates. For instance, although 
both LANDE (1 975) and FLEMING (1 979) account for linkage disequilibrium 
and diploidy in their analyses, their final results for V, can be very well ap- 
proximated by applying their analyses to each locus in isolation as done earlier 
by LATTER (1960), KIMURA (1965) and BULMER (1972). Moreover, several 
numerical multilocus calculations show that, unless many of the loci are very 
tightly linked, so that the harmonic mean recombination rate falls below 0.05, 
the polygenic equilibria can be well approximated by extrapolating from single- 
locus haploid results (cJ: LANDE 1980). This holds even with selection as strong 

denote a one-locus hap- 
loid prediction for the equilibrium genetic variance contributed to P I  by locus 
i, and let @) denote the covariance for effects on P I  and P2 of the alleles at 
locus i. We assume that the overall variances and covariances can be approxi- 
mated by summing over loci, i.e., 

as VJV,  = 10. 
This simplification will be exploited below. Let 

(15b) 

APPROXIMATE ANALYTICAL RESULTS 

Continuum of alleles 
Let p,,t(x) denote the bivariate distribution of allelic effects at locus i among 

zygotes in generation t ,  let m,(x )  denote the gaussian distribution of mutant 
effects at this locus as described by (13), and let w ( x )  denote the gaussian 
fitness function for genotypes (4). Denote by &) and 2, = XW + 2, the 
respective variance-covariance matrices. Following section 2 of TURELLI 
(1 984), the linkage equilibrium and weak selection approximations imply that 
it suffices to analyze the equilibrium genetic variance-covariance structure gen- 
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erated by the recursion 

pi,t+l(x) = (1 - ~ i ) p l t  + pi J pl!,t(y)ma(x - y)dy  

pL(x) = pi,t(X)w(x)/% G , t  = J pa,t(x)w(x)dx, 

(16) 
with 

and pi the mutation rate at locus i. (All integrals here and below are taken 
over the entire domain of the integrands unless otherwise specified.) For con- 
venience of notation, I have assumed that each locus has a mean effect of 0 
at equilibrium. 

Gaussian approximation: following LANDE (1980), if we assume that p, , (x)  and 
pi,t+l(x) are gaussian, (16) implies 

Z,,+, = Z$ - Z@, + Zpt ) - lZp t  + paZ$. (17) 
For weak selection ( i . e . ,  Zs + Z,), the equilibrium is approximated by 

(18) 
2(i) E . ~ - l / z ~ g ~ ; %  )%E?, 

g s P r s  

with positive semidefinite matrix square roots. Together with (15), this pro- 
vides explicit, albeit cumbersome, formulas for f g , l  and Fs,l .  The single-char- 
acter extrapolation analogous to (18) is given by KIMURA'S (1965) formula 

@,'I E JpjmT,ifs,l ; (19) 

cg,i(G) J ~ ~ E , I & , I ~ ~ , I ,  (20) 

from which (1 5) produces 

n n 

with u:,1 = 2 pimT,i and nE.1 = 2 ( 1  -/&I 
i=l i= 1 

as in LANDE (1975). 
Because of the complexity of the expressions for cg,1 and Pg,l ,  algebraic 

comparisons are not generally informative. However, one special case is worth 
considering, despite being biologically implausible, because it reveals a critical 
difference between the gaussian and house-of-cards predictions. Suppose there 
is no environmental correlation, no correlation in the phenotypic fitness func- 
tion (3) and no correlation in the mutant effects at the pleiotropic loci, i.e., p e  
= pw = pm,i 0. This reduces all of the matrices in (18) to diagonals, so that 

= and @ ) =  0 for i = 1, ..., n. (21) 

vgg,i(G) cg,i(G). (22) 

It follows from (1 l), (15) and (20) that in this special case 

This applies for any number of hidden characters. Thus, in the absence of 
correlation, hidden pleiotropic effects do not confound equilibrium predictions 
when the gaussian analysis applies. Although (22) is not preserved when cor- 
relation is introduced (e.g., Vg,l(G) < fg,l(G) if p c  # 0 but ps = pm,i = 0), the 
numerical results of the next section show that Qg,l(G) is within a factor of two 
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of $g,l(G) for a wide range of parameter values. This is in marked contrast to 
the house-of-cards predictions. 

House-of-cards approximation: The central argument presented in TURELLI 
(1984) in favor of the house-of-cards (HC) approximation is not affected by 
pleiotropy. When the variance associated with new mutants exceeds the seg- 
regating allelic variance, i .e.,  m,TI >> @i, the equilibrium of (16) can be ap- 
proximated by 

if a constant c = (1 - pl)/G1 < 1 can be found so that J p, (x)dx  = 1 (see 
KINGMAN 1978). APPENDIX 2 displays an approximation for the equilibrium 
genetic variance and covariance produced by this distribution. The general 
algebraic expressions are complex and will not be repeated. However, if ps = 
P,,,,~ E 0, they reduce to 

n 

$g,I(HC) = 4VS,1 pJ(1 + P,) and tg(HC) = 0, with (24) 

PP = s d s 1 , 2  and sJ,z = m,TI/V,,. ( 2 5 )  

I= 1 

The composite parameter PI plays a critical role in what follows. Note that, if 
an allele of optimal effect at locus i mutates, it will suffer a decrease in relative 
fitness of order s,,: from selection on character j .  Thus, when the house-of- 
cards approximation is applicable, PP quantifies the relative intensity of selec- 
tion on new mutants that is attributable to their effect on the hidden character 
( P 2 )  us. their effect on the observed character (PI) .  Even with nonzero corre- 
lations, remains central param5ter. As shown by approximation (2.6b) in 
APPENDIX 2, for each value of pp, Vgs1 depends on Vs,2, m;,, and m& only through 
PE. 

From TURELLI (1 984), the general single-character extrapolation is 

For p e  = pw = pm,i 
the special case Pi  

0, cS,1 = Vs,] so that (24) implies cg,] (HC) < vg,l (HC). In 
P, the relationship is simply 

eg,i(HC) = (1 + P)Qg,i(HC). (27) 
A simple generalization to k hidden characters is available under complete 
symmetry, i.e., m:, V,, and no correlation. Under these as- 
sumptions (27) generalizes to 

m 2  and V,, 

whereas vg,1(G) = $g,I(G) irrespective of k. 
These cases without correlation illustrate an important difference between 

the gaussian and house-of-cards predictions for the consequences of pleiotropy. 
Under the gaussian genetic model, characters, even if pleiotropically con- 
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nected, can affect each other’s evolution only through phenotypic correlation. 
Because cs,l relies on phenotypic correlation for information about selection 
induce! by hidden pleiotropic effects, Fgg,l(G) may often reasonably approxi- 
mate Vg,l(G). In contrast, under the house-of-cards approximation, pleiotropic 
effects that are not revealed by correlation can decisively influence the genetic 
equilibrium. The reason is clear. The house-of-cards analysis assumes that all 
mutants arise from nearly optimal genotypes. These mutants will experience 
selection associated with all of the characters they affect, whether or not those 
characters, or  the mutational displacements, are correlated. Thus, hidden char- 
acters that are pleiotropically connected to observed ones can produce hidden 
selection that is not detected by cs,l. Even with correlatio?, it is generally true 
that, as P increases, cg,l(HC) increasingly overestimates Vg,l(HC). However as 
shown below, literally any relationship is possible. 

Although algebraic comparisons of the general expressions for cg,l(HC) and 
cg,I(HC) are not practical, three special cases, with Pi p m ,  are 
tractable: P <C 1, P = 1 with pm = ps,  and P >> 1. These cases reflect: selection 
on pleiotropic loci primarily through the character observed, equally through 
the observed and unobserved characters and primarily through the unseen 
character, respectively. From the general expressions for cg,l(HC) and cg,l(HC) 
in APPENDIX 2, it follows that 

P and pm,i 

lim t g , l ( ~ ~ ) / c g , l ( ~ ~ )  = I (29) 
0-0 

if Vs,2/Vs,l 4 as P + 0. Thus, as expected intuitively,Aif selection acts essen- 
tially only on character 1, cg,l accurately approximates Vg,l. However, the ratio 
in (29) can approach one either from above or below depending on the signs 
of the correlation parameters. Thus, hidden pleiotropic effects need not bias 
pg,l upward. 

If pi = 1 and pm,i 3 ps,  it follows from (2.6a) and (2.7a) that 

with equality if and only if 

Thus for P = 1 and pm = ps, the results obtained without correlation supply 
an upper bound for the error introduced by hidden pleiotropic effects. How- 
ever, the numerical results of the next section show that this bound does not 
apply for other parameter combinations. 

+ CO with nonzero corre- 
lations. LANDE and ARNOLD’S (1983) multivariate analysis of phenotypic selec- 
tion suggests that this case, in which most selection experienced by the ob- 
served character is indirect, may frequently apply. Unfortunately, the results 
depend critically on how this selection occurs. Note that selection can be con- 
centrated on P2 by (1) letting mi/m:  + CO with Vs,l/Vs,B fixed or (2) letting Vs,2/ 

Vs,l + 0 with m:/m: fixed or (3) by taking both limits simultaneously. Biolog- 

The full complexity of the problem emerges as 



176 M. TURELLI 

ically, cases 1 and 2 reflect pleiotropic selection through large phenotypic 
effects on an unseen character that is under moderate selection us. moderate 
phenotypic effects on an unseen character that is under strong selection. If it 
is assumed that Vs,2 is bounded above, it can be shown that in case 1 

whereas in cases 2 and 3 

Thus, vg,l can either greatly overestimate or underestimate cg,l depending on 
the nature of pleiotropic selection. These asymptotic results must be inter- 
preted cautiously because the numerical analyses in the next section show that 
there are combinations of paraTeters for which p2 is large, e.g., 10-100, but 
fg,l is within a factor of two of Vg,l. 

Predicted domains of applicability: Reasonable conjectures concerning the do- 
mains of applicability of the alternative approximations can be obtained by 
requiring that the predictions be consistent with the assumptions used to derive 
them. T o  keep the algebra manageable, I will consider only p e  = pm = pw = 0. 
The numerical results in the next section show that these predictions suffice 
to produce useful guidelines. 

LANDE (1975) motivated his gaussian analysis by assuming m? << e). The 
natural extension under pleiotropy is 

m,Tz << Gji for j = 1 , ~ .  (34) 

pUl >> max(m?,JVS,1, m & / v s , ~ ) .  (35) 

In the absence of correlation, substitution of @L(G) leads to 

Thus, the effects and selection coefficients associated with both characters must 
satisfy the corresponding single-character constraints. 

The house-of-cards predictions are based on (23) which assumes the converse 
of (34), namely, 

m,T, >> Q: for j = 1 , ~ .  (36) 

p2 << ml,,m2,, /(v, , l~~,2)' .  (37) 

In the absence of correlation, substitution of @i(HC) leads to 

This suggests that the house-of-cards approximation may apply to loci affecting 
two characters even when the single-character consistency criterion, pl e< 
m?/Vs, is not met for both characters. The numerical results of the next section 
confirm this. They also show that the strong inequalities in (35) and (37) can 
be relaxed to requiring only that the right- and left-hand sides differ by a 
factor of three. 

House-ofcards approximation for the Jive-allele model 
APPENDIX 3 presents five-allele approximations for Qg,l and Fg,l that are 

analogous to the house-of-cards approximation for the continuum-of-alleles 
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model. Two levels of approximations are given. The less precise ones, denoted 
Cg,1(5) and CgTg,1(5), are simpler and are used for the comparisons below. As for 
the continuum-of-alleles approximations, a comparison of the general expres- 
sions for Cg,L and eg,l is not helpful. However, as before, the comparison is 
illuminating when pe = pW = pm,i E 0. In this case, the approximations reduce 
to 

n 

with Pf = S ~ , J S ~ , ~ ,  as in the continuum-of-alleles model, but s),~ = c,’/V,,. For pZ 
p, we have the simple relationship 

Vg,i(5) = (1 -k b2)Cg,i(5)- ( 4 0 )  
Thus, under these conditions, Gg,l always overestimates Cg,l as it does under 
the house-of-cards analysis for the continuum-of-alleles model. However, here 
the overestimate is proportional to p2 rather than /3 [CJ: (2’7)l. 

This discrepancy between the continuum and five-allele predictions arises 
from a change in Cgg,l. Thus, in contrast to the single-character results of 
TURELLI ( 1 9 8 4 ) ,  pleiotropy makes the house-of-cards predictions dependent on 
the number and effects of segregating alleles at each locus. Given our igno- 
rance of these, this result is not reassFring. 

The discrepancy between Cg,] and Vg,l can be increased or decreased by the 
presence of nonzero correlations. As for the continuum-of-alleles, three cases, 
with PI 5 p and pm,, E pm, will be considered: /3 << 1, = 1 and p >> 1 .  As 
with the house-of-cards approximations for a continuum-of-alleles, 

if Vs,2/Vs,1 + CO as P += 0. For P = 1 and sgn(pm) = sgn(p,), 

vg,1(5) 5 2Cg,i(5) ( 4 2 )  
with equality if and only if pe = pm = pw = 0. However, this bound is not 
preserved if sgn(p,) = -sgn(ps). 

A significant difference from the continuum-of-alleles HC predictions arises 
with P >> 1. As before, it is informative to consider selection piling up on 
character 2 in three separate ways: (1)  cg/c: cc with V5,1/V,,2 fixed, (2 )  V5,2/ 
V,,l + 0 with cg/c: fixed and (3)  cf/c: + CO and Vs,2/Vs,l + 0. As for the 
continuum, c y e  1 leads asymptotically to Fgg,1(5) >> Cg,1(5); whereas case 2 leads 
to Cg,l(5) << vg,1(5). The difference is that here case 3 also produces 

Thus, this model, which constrains the relative amount of variance contribu:ed 
to each character, produces a greater tendency for cg,l to overestimate Vg.l, 
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even in the presence of correlation. This is illustrated by the numerical results 
of the next section. 

We can again apply the consistency criterion to delimit parameter values for 
which the five-allele approximation is expected to be accurate. The assumption 
$8) 1 that leads to (3.3) is equivalent to the house-of-cards assumption 

c:~ >> Q$i for j = I ,  2 (44) 

P, << m a ~ ( ~ W ' ~ . l ,  cUVS,d. (45) 

[$ (36)]. If no correlation is assumed, substitution of @;(5) yields 

Thus, for this bivariate model, the house-of-cards approximation is expected 
to apply to a locus if the single-character criterion, pZ << cf/VS, is satisfied by 
either of the characters affected. Because this model directly couples the vari- 
ances contributed to each character, constraint (45) is weaker than the analo- 
gous constraint (37) for a bivariate continuum of alleles. 

NUMERICAL RESULTS 

The analytical approximations of the previous section will be supplemented 
by numerical analyses of two sorts. The first treats the accuracy and domains 
of validity of the various predictions for the equilibrium genetic variances and 
covariances. Supported by the analytical and numerical results underlying the 
linkage equilibrium and weak selection assumptions, I will consider only one- 
locus haploid models. Second, multilocus predictions for ?g,l and eg,] will be 
compared over a range of parameter values. These will extend and generalize 
the qualitative results obtained from the analytical comparisons for special 
cases. All calculations were performed in double precision on a DEC LSI 
1 1 /23 microcomputer (providing approximately 17 accurate decimal digits). 

One-locus haploid equilibria 

All of the equilibria were calculated by the same method. The first step for 
the continuum-of-alleles model is to approximate the recursion (1 6) by a finite 
allele analog of the form 

with S a set of allele indices, the frequency of allele i among gametes in 
generation t, wi the (marginal) fitness of allele i and ug the mutation rate from 
allele i to allele j .  The haploid version of the five-allele model (3.1) is already 
in this form. MORAN (1976) proved that under (46) the allele frequencies 
globally converge to the normalized ( i . e . ,  Zp2 = 1) elements of the unique, 
positive left eigenvector for the dominant eigenvalue of V = ( W I U ~ ) .  This ei- 
genvector was approximated via the EISPACK algorithms (SMITH et al. 1976) 
and was used to approximate the equilibrium variances and covariances. 

Continuum of alleles: The major obstacle to approximating equilibria for (1 6) 
is choosing an appropriate discretization. The numerical results in TURELLI 
(1 984) show that the equilibrium structure of the one-dimensional continuum- 
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of-alleles model can be very well approximated by 2 1 alleles with equally spaced 
effects. When the house-of-cards approximation is applicable, even fewer alleles 
suffice to approximate V,. This is expected because the same analytical ap- 
proximation applies with two, three and a continuum of alleles per locus. In 
contrast, with pleiotropy the house-of-cards predictions for five alleles and a 
bivariate continuum differ appreciably. This suggests that a larger number of 
alleles may be needed to accurately approximate a two-dimensional continuum. 
Surprisingly, the number needed to achieve accuracy comparable to that ob- 
tained in one dimension ( i . e . ,  relative errors of predictions in the neighborhood 
of 1-5%) is very large. In fact, 121 alleles (1 1 possi!de effects for each of the 
two characters) do not generally suffice if effects are assigned by a direct 
extension of the discretization procedure in TURELLI (1984). Because the avail- 
able computer could not easily manipulate matrices larger than 121 X 121, I 
used the more elaborate discretization procedure described in APPENDIX 4. 

A brief review of the single-character continuum-of-alleles results from TUR- 
ELLI (1 984) will be helpful in interpreting the two-dimensional results, partic- 
ularly the restricted range of parameters for which the gaussian approximation 
is accurate. One-locus haploid equilibria were calculated to determine the rel- 
ative accuracy and domains of validity for four alternative approximations: 
house-of-cards, KIMURA (1 965), LANDE (1 975) and FLEMING (1979). The non- 
gaussian approximation of FLEMING (1 979), reviewed in NAGYLAKI (1 984) and 
TURELLI (1 984), refines the gaussian approximations of KIMURA (1 965) and 
LANDE (1975). Over the range of parameter values used, the house-of-cards 
approximation was the most accurate for 20p 5 m2/Vs, whereas the FLEMING 
(1979) approximation was generally the most accurate for 20p  > m'/V,. These 
bounds are not sharp. Near the boundary both approximations err by 10-20% 
in opposite directions. If the estimates m2/Ve 2 0.03 from LANDE (1975) and 
VJV,  s 10-20 from TURELLI (1984) are used, the numerical results supported 
the house-of-cards approximation of c, for p 5 low4 and the Fleming approx- 
imation for p > Even when the Fleming approximation was extremely 
accurate (e.g., for p = 10-2-10-3, its relative error was less than l%), the 
gaussian approximations overestimated cg by 10-40%. With m2/V,  = 0.05, 
Vs/Ve = 20 and p = 10-4-10-5, they overestimated cg by a factor of three to 
ten, with larger errors for smaller mutation rates. 

In all of the tables below, the accuracy of the analytical predictions is esti- 
mated by computing the percent relative discrepancy between the predicted 
and numerically determined values of cg,i. These error estimates, which are 
confounded somewhat by the numerical approximations, are denoted %(G)i 
and %(HC), for the gaussian and house-of-cards predictions, respectively. They 
are computed by 

%(G), = 100(cg,,(G) - eg,i)/eg,t- (47) 
Without loss of generality, we assume henceforth that Ve,l = Ve,2 = 1. 

proximations, the HC is the more accurate for p 5 
Table 1 displays the effects of varying the mutation rate. Of the two ap- 

for p 5 it is 



180 M. TURELLI 

TABLE 1 

Effects of varying the mutation rate on the numerically determined equilibrium genetic 
variances, V,, and G,,, with V,I = 20, Vs,2 = 40, and p. = pm = pw = 0 

c1 m : x  10’ m% x 10‘ $8, I vg.2 %(G)I %(G)z %(HC), %(HC)Z 

IO-‘ 5.44 2.47 9.79 X lo-* 9.64 X lo-‘ 6.8 3.2 176.9 167.6 
IO-’ 5.21 2.68 2.20 X IO-* 2.31 X lo-* 45.7 41.6 19.7 16.4 

5.21 2.61 2.67 X IO-’ 2.65 X lo-’ 282.5 284.5 -0.2 0.3 
5.21 2.61 2.69 X 2.63 X 1102.9 1127.0 -0.7 1.3 

_ _ _ _ ~ ~ ~  

TABLE 2 

Effects of varying fi  with Vs., = 20, Vs,2 = 40 and p. = pu = 0.8, pm = 0.79-0.82“ 

/,( m: x I O 2  mf x 1 0 2  $&I Gg.2 bg %(G)I %(HC)i bk - ;g 

IO-‘ 5.14 2.62 9.34 X lo-‘ 9.95 X IO-‘ 0.81 -0.3 137.3 -0.06 
IO-’ 5.41 2.75 1.96 X IO-‘ 2.07 X IO-* 0.76 54.0 16.0 0.00 

5.39 2.69 2.24 X IO-’ 2.16 X IO-’ 0.75 325.2 1.4 0.01 
lo-‘ 5.39 2.69 2.25 X 2 .11  X 0.75 1239.8 1.1 0.01 

a p,,, = 0.79 for p = lo-‘, p,,, = 0.82 for p = 10-3-10-5. 
* p = equilibrium correlation predicted by the gaussian and house-of-cards analyses. 

extremely accurate. The parameters in Table 1 yield mlmn/(Vs,lVs,2)’ g 1.3 X 
IO-’ and max(m:/Vs,l, mz/Vs,Z) E 2.6 X The results show that the strong 
inequalities in predictions (35) and (37) for the domains of applicability are 
conservative. A factor of three suffices for good agreement. For instance, with 
p = 4 x and the remaining parameters as in Table 1, %(HC)I = 3.3 and 
%(HC)* = 0.5. Like the single-character results in TURELLI (1984), these sug- 
gest that the gaussian approximation is accurate only for extraordinarily high 
per locus mutation rates. For a “typical” rate of order it overestimates 
cg by a factor of ten. The relatively small errors in the regions of parameter 
space for which the gaussian or house-of-cards predictions were expected to 
apply support both the numerical approximations and the analytical predic- 
tions. 

Table 2 shows that the qualitative results of Table 1 are not influenced by 
the addition of correlation. It also illustrates an unexpected relationship be- 
tween the gaussian and house-of-cards predictions. For these parameter values 
as well as all others examined, both approximations make identical predictions 
for the equilibrium genetic correlation. Further examination of the numerical 
results showed that 

for all parameter values used. The first equality is easily verified analytically 
when pe = p m  = pw = 0. 

Table 3 displays the effects of simultaneously varying the mutation variance 
parameters m: and mi. As in Table 1 ,  the house-of-cards approximation is 
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TABLE 3 

Effects of simultaneously varying the mutation variance parameters m: and m: with 
fi  = V , ,  = 20, V,,2 = 40, and p. = pm = pw = 0 

mf m% cg., x lo3 cg.* x io3 % ( G ) ~  %(G), %(Hc)~ %(Hc)* 

2.61 X lo-’ 1.30 X lo-* 2.70 2.64 747.7 765.0 -1.1 1 .0 
5.21 X lo-’ 2.61 X lo-‘ 2.67 2.65 282.5 284.5 -0.2 0.3 
1.04 X 5.21 X lo-’ 2.53 2.60 80.8 75.5 5.5 2.4 
2.09 x 10-3 1.09 x io-$ 1.64 1.76 24.6 18.5 61.4 53.4 
4.33 x 1.96 x 0.89 0.85 5.1 4.0 205.6 202.4 

TABLE 4 

Effects of varying pw with = m: = 5.39 X lo-’, m; = 2.69 X lo-‘, 
pm = 0.82, p. = 0.8, Vs,, = 20 and Vs,2 = 40 

& x 10s e&* x 105 ig %(C)I %(G)p %(HC)i %(HC)e 6 - &  
0.8 2.24 2.16 0.75 325.2 334.8 1.4 3.7 0.01 
0.4 3.04 2.61 0.63 241.3 241.9 -0.2 0.0 0.00 
0.0 2.85 2.39 0.51 249.9 247.8 0.3 -0.3 0.00 

-0.4 2.19 1.87 0.36 301.7 302.5 0.2 0.4 -0.01 
-0.8 1.14 1.04 0.13 483.8 509.9 0.7 5.2 -0.04 

more accurate than the gaussian once p < mlm2/(VS,1V,,2)1/?, whereas the gaussian 
is more accurate for p > max(m:/V,,l, m;/V,,z). Again, both approximations are 
quite accurate once a factor of three separates the two sides of the inequalities. 
The same qualitative results were obtained by varying the selection intensities 
and in the presence of correlation. Table 4 illustrates one of many sets of 
calculations showing that the house-of-cards approximations apply over a wide 
range of correlation parameters. It also displays the complex dependence of 
the equilibrium genetic variance on the correlation structure of the model. 

Table 5 presents a test of prediction (37) concerning the domain of appli- 
cability of the house-of-cards approximation. In the first five rows, m$ decreases 
while the parameters p, m: and Vs,l are held constant in the domain for which 
the single-character house-of-cards prediction is accurate, i.e. , lop 5 m?/Vs,l .  
The house-of-cards approximation is quite accurate for the first three sets of 
parameters which satisfy 3 p  < mlm2/(Vs,1V,,2)1h. It is reasonably accurate even 
for the fifth set with p E mlm2/(V,,1Vs,~)”. Adding pc = pw = 0.8 and P,,, E 0.8 
produces comparable house-of-cards errors but eliminates the decrease in the 
gaussian error as m$ decreases. Similar results were obtained by increasing Vs,2. 
For instance, the house-of-cards predictions are reasonably accurate for the 
parameters in the sixth row of Table 5 even though p = and m1m2/ 

These calculations demonstrate an important difference between the gaus- 
sian and house-of-cards approximations. The gaussian approximation accu- 
rately describes the variance contributed to P1 by a locus only if both of the 
characters affected by the locus satisfy p > m?/V,,i. Thus, its applicability can 
be destroyed by unknown pleiotropic effects involving strong selection ( i . e . ,  

( V ~ , , V ~ , ~ ) ~ ~  = 1.8 x 
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TABLE 5 

Effects of extreme asymmetry, with = m: = 3.13 X lo-*, Vs,, = 20, and 
p. = pm = pw = 0 

3.13 X lo-‘ 40 2.35 3.31 237.5 238.5 -0.1 0.2 
1.04 X lo-’ 40 2.82 2.34 180.6 176.5 0.7 -0.8 
3.18 x 40 3.18 1.51 148.7 136.0 2.6 -2.7 
1.09 x 40 3.35 0.97 136.6 115.3 5.6 -3.9 
3.00 x 1 0 - ~  40 3.43 0.54 131.1 104.0 9.2 -3.7 
3.25 X lo-? 1500 3.37 32.88 135.2 112.3 6.3 -4.0 
1.09 x IO-‘ 5000 3.46 28.59 128.8 158.8 11.4 26.0 
1.13 X IO-’ 5000 3.48 4.79 127.9 398.9 13.5 148.5 

large m ‘/VS). In contrast, the house-of-cards approximation accurately predicts 
both Cg,] and egg,* as long as (37) is satisfied even if CL > m;/V,,,. Additional 
calculations were performed to determine its behavior when (37) is violated 
but y << ~Z:/V,,~. Two examples appear in the last rows of Table 5.  For the 
first, mlm~/(Vs,lVs,2)”* = 5.8 X lov5; for the second, it is 1.9 X Even 
though the house-of-cards approximation overestimates Vg,2, it reasonably ap- 
proximates Qg, This suggests that the house-of-cards approximation can ade- 
quately approximate Cg,] as long as << m:/Vs,l, irrespective of the parameters 
describing other effects of the locus. Clearly, this is a useful property when 
the pleiotropic effects are unknown. 

Five alleles: Equilibria for the haploid version of (3.1) were approximated 
for a wide range of parameter values to test the prediction that the house-of- 
cards approximations for both Cg,1 and Gg,2 would be accurate as long as 

CL << max(R/vS,l, d/vs,2). (49) 

The results of extensive calculations analogous to those presented in Tables 
1-5 can be simply summarized. The “more precise” approximation (3.5) is 
within 10% of the observed equilibria as long as a factor of five separates the 
sides of (49). This holds irrespective of the correlation values used. For the 
cruder approximations (3.7) to reach this level of accuracy, a factor of 20 must 
separate the sides of (49). For such parameters, the “more precise” approxi- 
mation errs by less than 1 %. 

Multilocus comparisons of qg,l and cg,l 

Despite the availability of analytical approximations for Cg,1 and cg,I, their 
complexity rules out simple conclusions concerning their relative magnitudes, 
except in special cases. Even the asymptotic results for the house-of-cards ap- 
proximations are of limited value because it is difficult to determine the actual 
parameter values for which they apply. T o  provide some insight into the be- 
havior of the multilocus predictioy, two sorts of numerical results will be 
presented. The first are graphs of Vg,l and cg,l for each approximation under 
various combinations of parameters. To make the choices of parameter values 
manageable, only the simplest case of interchangeable loci, each having the 
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same mutation parameters, will be treated. Second, I present statistical sum- 
maries of comparisons between tg,l and vg,l obtained with parameter values 
chosen randomly subject to various constraints. Both interchangeable and non- 
interchangeable loci are considered. 

The six graphs in Figure 1 display cg,l and vg,l as functions of P 2 .  The 
parameters were chosen to produce patterns representative of those found in 
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the statistical summaries below. Note that in each graph, there is a single curve 
for Cg,] but several for Qgg,]. T o  produce them, initial values were chosen for 
all of the parameters; then, mz and V5,2 were varied to obtain the desired range 
of p2 values. The alternative curves for eg,I result from varying m; and Vs,z at 
different rates. This was parameterized as follows. An initial choice of param- 
eter values gives p'(0) = m~(0)V5 ,1 /m:Vs ,~ ( (O) .  To achieve P'(x) = 10.P2(0), m: 
and Vs,2 were varied as 

m f ( x )  = m:(O) 1 Ox''@ and (504 

Vs,2(x) = VS,2(O)1 O - x ( l - m p )  (50b) 
with 0 I mp 5 1. Thus, for mp = 0.5 both parameters vary at the same rate; 
whereas for mp > 0.5, mz varies more rapidly. Only a single cg,l curve appears 
in each graph because Cg,l depends on m$ and V5,2 only through p2 once Vs,l, 
m: and p s  are specified. 

All of the graphs in Figure 1 assume Zp, = lo-' and p e  = pm = p s  = 0.8. 
Other correlation patterns are discussed below. The graphs on the left assume 
that selection on new mutants is concentrated on character 1, i . e . ,  p2 = m$,,,/ 
m:V,,2 < 1, and use as initial parameters Vs,I = 20, Vs,2 = 40, m: = 0.06 and 
m: = 0.03. The graphs on the right assume that selection is concentrated on 
character 2, i .e . ,  p2 > 1, and use Vs,l = 40, Vs,2 = 20, m: = 0.03 and mg = 
0.06. The gaussian predictions, Figure 1A and B, assume ten loci so that pz = 

The house-of-cards predictions for five alleles, Figure 1E and F, assume 
100 loci so that pz = 

The graphs on the left show, as expected, that, if selection acts primarily 
through the observed character, the predictions, Qg,,l, are always close to the 
true equilibria, V g , ] ,  irrespective of the model or approximation used. However, 
even as 0' + 0, Qs,1 accurately reflects the selection on the underlying loci 
only if Vs,2 + 03. Thus, although all of the cg,l curves tend toward cg,l as P2 
-+ 0, those with smaller mp values, corresponding to a more rapid increase of 
Vs,2, converge more quickly. 

The consensus among the models and analyses disappears for p' > 1. Figure 
1 B shows that, according to the gaussian analysis, qg,l accurately approximates cg,I for p2 < 10 and then becomes increasing conservative as P2 increases. In 
contrast, Figure 1D showslthat under the house-of-cards analysis of the same 
model, Vg,] overestimates Vg,1 for this range of parameters. Recall from (32) 
and (33) that, if mz/m: 03 with V,, , /V, , ,  constant, we expect cg,,/cg,l >> 1 
eventually; whereas if  mI/m: and Vs,,/Vs,2 both increase, we expect Vg, l / cg , l  -e< 
1 eventually. This is reflected in the approach of cg,l to Pg,l as mp decreases 
from 0.75 to 0.25. However, even with mp = 0.5, so that m;/m: and V5,1/Vs,2 
increase at the same rate, Vg,1 overestimates Vg,1 by a factor of two or three 
for 1 < p2 < 100. As expected from the analytical results of the previous 
section, Figure 1F shows that, for the five-allele model, the house-of-cards 
analysis predicts a larger discrepancy between Vg,l and Cg,] than seen with a 
continuum of alleles. For mp = 0.5, cg,1 overestimates I?&,] by a factor of eight 
or more for 20 < P2 100. For instance, with p2 = 30, Vg,l = 0.35 corresponds 
to a predicted heritability of h 2  = 0.26; whereas 

The five-allele predictions are based on (3.5). 

E h2 G 0.03. 



CONSEQUENCES OF PLEIOTROPY 185 

T o  circumvent partially the biases inherent in choosing examples and to 
understand the consequences of interlocus mutation differences, Vg,l and $g,l 

were computed for parameter values chosen at random subject to various 
constraints. Three regions of parameter space for mutation and selection were 
explored: 0 0‘ < 1, 1 < p’ < 10 and 10 < p2 < 100. T o  illustrate the 
effects of changing p’ = m~V,,l/m:V,,z via m%/m: vs. Vs,l/Vs,2, either the m’s, the 
Vs’s or both were chosen at random. When both were sampled, each ratio was 
restricted to the square root of the range of p2. Thus, for 10 < p2 < 100, 
mz/m‘: and Vs,l/Vs,:, were both restricted to (m, 10). Over a given range, the 
values of m’ and w‘ = Vs,i - 1 were chosen independently and uniformly on a 
log scale. For p’ < 1 (>l), the random values were ordered so that m: 2 mg 
(m: I m;) and Vs,l I Vs,2 (Vs,l 2 Vs,2). Only pairs satisfying the appropriate 
constraints were used to compute cg,, and Gg,l. 

In addition to picking random mutation and selection parameters, several 
patterns of correlation were considered. The simplest, pe = pm = pw = 0, 
provides a standard of comparison for the house-of-cards predictions with non- 
zero correlations; it yields cg,l = Qg,l for the gaussian prediction. The con- 
straints 0.6 < pe, pm, pw < 1 will be called “complementary” correlations. Based 
on the frequent agreement in sign of empirical estimates for genetic and en- 
vironmental correlations (see, for instance, HECMANN and DEFRIES 1970; FAL- 
CONER 1981, TABLE 19. l),  this pattern may be the most reasonable, although 
the magnitudes imposed are large. Three other correlation patterns were also 
investigated in which the sign of one of pe, pm or pw differed from the other 
two; these will be referred to as “antagonistic” correlations. Among them, 
sgn(pe) = sgn(p,) = -sgn(p,) seems most reasonable because environmental and 
genetic perturbations of development may tend to have similar effects. In the 
tables below, only the pattern 0.6 pe, pm, -pw < 1 is considered, but results 
from the other two antagonistic correlation patterns will be briefly described. 
To condense the results, only the estimated means and standard deviations for 
?g,l/$g,l will be presented. For each range of parameters, the estimates are 
based on 10,000 values for interchangeable loci and 1000 for noninterchange- 
able loci. 

Table 6 presents results obtained with the gaussian approximation for ten 
interchangeable loci. The central qualitative result is that cg,l i! generally 
within a factor of two of Qgg,l. Given the difficulty of estimating V, and esti- 
mating the parameters that enter cgg,*this lye1 of agreement seems quite :at- 
isfactory. When cg,l is not within (YZV,,~, 2Vg,1), it is generally less than YzVg,l. 
As illustrated by Figure lB, the gaussian analysis predicts that cg,l tends to 
increasingly underestimate Qg,l as p2 increases through both mX/m? and Vs.l/Vs,z. 
Apart from this distinguishing feature of the gaussian predictions, the other 
two major trends that appear in Table 6 also show up in Tables 7 and 8, 
which present results from the house-of-5ards analyses. For each we see (1) for 
a given range of p2, the mean of fg,l/Vg,, is largest when only mz/m! varies 
among replicates, smallest when only Vs,l/Vs,2 varies and intermediate when 
both vary, and (2) for a given range of parameters, the antagonistic corJelation 
pattern, sgn(p,) = sgn(p,) = -sgn(pw), provides a lower mean for Vg,l/Vg,, than 
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TABLE 6 

Estimated means and standard deviations f o r  $g,,/$g,, obtained from the gaussian 
approximation for  ten identical loci with Cpi = lo-* and randomly chosen parameters 

Ranges for selection and mutation parameters Ranges for correlation parameters (Mean C SD) 

P P  

0- 1 
0- 1 
1-10 
1-10 
1-10 

10-100 
10-100 
10-100 

0-3 
1.5 
0-3 
0-3 
1.5 
0-3 
0-3 
1.5 

loglow: 

0-3 
0-3 
0-3 
1.5 
0-3 
0-3 
1.5 
0-3 

0.6 < p.. p.. py < 1 

1.06 _t 0.11 
0.94 k 0.07 
1.00 k 0.14 
1.09 f 0.21 
0.86 k 0.16 
0.84 k 0.30 
1.50 f 0.68 
0.48 & 0.15 

0.6 < P ~ ,  pm, - py < 1 

0.88 f 0.09 
0.87 f 0.11 
0.73 k 0.17 
0.73 f 0.18 
0.65 f 0.15 
0.59 f 0.22 
0.76 f 0.33 
0.42 f 0.13 

For details see text. 

TABLE 7 

Estimated means and standard deviations for  $g,l/$g,l obtained from the house-of: 
cards approximation with interchangeable loci, Cp, = IO-' and randomly chosen 

parameters 

Ranges for selection and mutation 
parameters Ranges for correlation parameters (Mean _t SD) 

P' -logma loglow? p. = p. = pm = 0 0.6 < p.. p.. py < 1 0.6 < p.. pn,- pw < 1 

0- 1 
0- 1 
1-10 
1-10 
1-10 

10-100 
10-100 
10-100 

0-3 0-3 1.18 f 0.18 1.39 f 0.52 
1.5 0-3 1.44 f 0.27 1.28 k 0.39 

0-3 0-3 2.79 f 0.43 2.83 1 1.20 
0-3 1.5 2.81 k 0.61 3.66 f 2.53 
1.5 0-3 2.79 k 0.60 2.04 -t 0.87 
0-3 0-3 6.68 f 1.34 4.00 2 2.09 
0-3 1.5 6.54 f 1.86 15.36 f 13.92 
1.5 0-3 6.51 f 1.84 1.06 k 0.65 

0.85 f 0.15 
1.02 2 0.15 
1.22 f 0.40 
1.23 f 0.45 
0.98 rt 0.36 
1.63 f 0.74 
2.97 f 1.81 
0.70 f 0.36 

does the complementary correlation pattern, sgn(pp) = sgn(pn) = sgn(p,). Al- 
though the results do not appear in the tables, sgn(p,) = sgn(p,) = -sgn(p,) 
generally produces larger values than the complementary pattern; whereas 
sgn(pm) = sgn(p,) = -sgn(p,) produces values comparable to those with sgn(p,) 
= sgn(p,) = -sgn(pw). Irrespective of their signs, as the magnitudes of the 
correlation coefficients decrease, the results converge to those obtained without 
correlation. For instance, using the gaussian approximation with 10 < p2 < 
100 obtained from random values for m:/m: and Vs,l/Vs,p, the mean and stand- 
ard deviation of pg,,/pg,l are 0.93 * 0.08 for 0.2 < p , ,  pm, p, < 0.6 and 0.78 
& 0.1 1 for 0.2 < pe, p, ,  -pw < 0.6. 

Tables 7 and 8 present results from the house-of-cards analyses of the con- 
tinuum-of-allele and five-allele models, respectively. As expected, pg,l approx- 
imates pg,1 well for p2 < 1. For 10 < p2 < 100, Vg,l/Cg,l depends critically on 
whether P2 is large due to m$/m: or V,,,/V,,, or both. It is also significantly 
influenced by the correlation pattern. The main conclusion is that, unless the 
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TABLE 8 

Estimated means and standard deviations for ?g,,/cg,, obtained from the house-of- 
cards approximation (3.5) for  100 identical jive-allele loci with Cpi = lo-‘ and 

randomly chosen parameters 

Ranges for selection and mutation 
parameters Ranges for correlation parameters (Mean f SD) 

0- 1 
0-1 
1-10 
1-10 
1-10 

10-100 
10-100 
10-100 

0-3 
1.5 
0-3 
0-3 
1.5 
0-3 
0-3 
1.5 

0-3 
0-3 
0-3 
1.5 
0-3 
0-3 
1.5 

0-3 

1.05 t- 0.10 
1.20 f 0.22 
3.08 t- 1.53 
3.29 t- 1.84 
3.20 f 1.71 

16.05 f 12.83 
15.86 f 10.66 
14.40 f 8.51 

1.29 f 0.68 
0.95 f 0.17 
2.64 f 4.19 
4.88 f 11.1 1 
1.58 f 1.05 

11.53 f 9.69 
55.17 f 110.0 

1.99 f 0.86 

0.85 k 0.14 
1.01 f 0.17 
1.57 f 0.50 
1.90 f 0.94 
1.25 f 0.36 
4.58 f 1.98 

11.26 f 6.90 
1.51 f 0.41 

TABLE 9 

Estimated means and standard deviations for ?g,,/$g,, for noninterchangeable loci 
with randomly chosen selection and mutation parameters satisfltng 10 < Bf < 100 for 

each locus 

Ranges for correlation parameters 
Approxi- No. of Range of 
mation loci -logiors” p. = p. = p. = 0 0.6 C p.. pI .  py < 1 0.6 < p,, p., - pw c 1 

Gaussian 20 2.5-5.2 1.00 0.82 f 0.17 0.57 t- 0.12 
House-of-cards 100 3.3-5.5 6.48 f 0.92 3.81 f 1.67 1.53 f 0.56 
House-of-cards/ 100 3.3-5.5 13.31 f 5.91 8.98 f 5.21 4.00 k 0.98 

five-allele 

a These ranges give average gametic mutation rates approximately equal to those in Tables 6- 
8. 

large /3* is determined primarily by Vs,l/Vs,z, vg,l generally overestimates $g,l. 

For 10 < p2 < 100, the overestimate is usually five-fold or less under the 
continuum-of-alleles model; but it frequently exceeds ten-fold under the five- 
allele model. Although correlation tends to moderate the confounding effects 
predicted without correlation, the large mean values for fgJGg,] obtained with 
V,,I = VS,2 correctly indicate that correlation can also enhance the confounding 
effects of unseen characters. Use of noninterchangeable loci in the calculations 
has essentially no effect for /3: < 1, a slight effect for 1 < /3; < 10 and a 
somewhat larger effect for 10 < /3: < 100. Table 9 shows that even for 10 < 
@; < 100, the mean values of fg,l/$g,, are fairly similar to those in Tables 6- 
8. 

DISCUSSION 

Understanding the consequences of hidden variables is a fundamental prob- 
lem in all areas of science. Ignoring them for modeling convenience does not 
make their effects disappear. In the last 10 yr, theoretical population biologists 
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have increasingly turned to this problem. In community ecology, SCHAFFER 
(1 98 1) developed a mathematical framework for evaluating the consequences 
of ignoring some interacting species in community analyses. The diverse results 
of EWENS and THOMSON (1977), HASTINGS (1981, 1984) and NICHOLAS and 
ROBERTSON (1 980) suggest that analogous problems in population and quan- 
titative genetics are generally less tractable. From this perspective, it is hardly 
surprising that no simple message emerges from my analysis of mutation-selec- 
tion balance with hidden pleiotropic effects. Indeed, the results raise more 
questions than they answer. However, these are substantive biological questions 
concerning models and conclusions that have been widely, and perhaps pre- 
maturely, accepted. The two key issues are (1) the validity of the gaussian 
genetic model when applied to mutation-selection balance and (2) the ability 
of mutation-selection balance to account for a significant fraction of the ob- 
served heritable variation in metric traits. 

The analytical .. and numerical approximations suggest that the gaussian ap- 
proximation for Vg,l will be reasonably accurate only when 

pt > max(m?,,/v,,l, m&/Vs,~). (51) 
The analytical extension to K uncorrelated characters is trivial, but checking it 
will be a formidable numerical task for K 1 3. Nevertheless, it is a reasonable 
conjecture that, if sufficient genetic flexibility is available to justify the contin- 
uum-of-alleles model, the distribution of alleles at a locus will be nearly gaus- 
sian if 

p2 > max(mZ/v,,k), (52) 
k 

where K ranges over the characters affected. LANDE (1980) assumes that all of 
these characters are under stabilizing selection. LANDE (1 975) estimated mz > 
0.033 for mutations of nine maize characters studied by RUSSELL, SPRAGUE 
and PENNY (1963). Estimating Vs,h is more problematic. As shown by LANDE 
and ARNOLD (1 983), estimates are confounded by both directional and stabi- 
lizing selection on correlated characters. Thus, the univariate data used in 
TURELLI (1984) to produce V, 10-20 may uniformly overestimate the inten- 
sity of stabilizing selection. However, it should be recognized that the available 
data are generally restricted to viability selection over only a portion of the 
life cycle. Because of these limitations, indirect estimates must be considered, 

Note that a new mutation arising in a nearly “optimal” genotype experiences 
a selection coefficient proportional to mTZ;’m, where mT = (ml, . - ,  mk) is the 
vector of standard deviations for mutant effects and B is the variance-covari- 
ance matrix of the genotypic fitness function. Thus, the right-hand side of (52) 
is proportional to the largest single-character contribution to this selection 
coefficient. The extensive data on spontaneous viability mutants in D. melan- 
ogaster yield average selection coefficients on the order of 0.01 against heter- 
ozygotes for new mutations (CROW and SIMMONS 1983). Even if this is associ- 
ated with effects on as many as 20 characters, it suggests 5 X as an upper 
bound for the right-hand side of (52). Similarly, if Vs,k 5 100 for at least one 
of the characters affected by the locus, LANDE’S (1975) estimate of m 2  and (52) 
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imply that pi > 3 X is needed for the gaussian approximation to apply. 
TURELLI (1 984, pp. 147- 148) presents an independent argument, based on 
estimates of U:, which also predicts that the gaussian approximation is unlikely 
to be accurate unless per locus mutation rates significantly exceed As 
reviewed previously (TURELLI 1984), there are no data to support the preva- 
lence of such high mutation rates. Thus, there is no apparent biological justi- 
fication for using the gaussian genetic model to understand polygenic mutation- 
selection balance. 

Given this, the problem of explaining observed levels of additive genetic 
variances via mutation-selection balance will be discussed only with respect to 
the house-of-cards - predictions. As noted in TURELLI (1 984), the estimates Zpi 

0.0 1 and Vs,1 G 10-20 produce univariate house-of-cards heritability predic- 
tions ranging from 0.29 to 0.44. Thus, if these parameter estimates are rea- 
sonably accurate and gg,l is not inflated by pleiotropy, mutation-selection bal- 
ance may well account for much of the observed additive variance. However, 
both the continuum-of-alleles and five-allele analyses imply that gg,l is generally 
accurate only when most of the selection experienced by new mutants is at- 
tributable to the character observed, i.e., P? < 1. This seems unlikely. 

Based on a multivariate phenotypic selection study, LANDE and ARNOLD 
(1 983) concluded that most observed stabilizing selection may be due to indi- 
rect selection, i.e., selection acting on correlated characters. This may be due 
either to linkage (as indicated by the data of DAVIES 1971) or pleiotropy (as 
emphasized by WRIGHT 1968). If, as the models here assume, most indirect 
selection is due to pleiotropy, the LANDE and ARNOLD (1983) observation 
would imply that P2 tends to be large. But there are insufficient data, and 
insufficient information in obtainable data, to estimate it accurately. As shown 
by LANDE and ARNOLD (1 983), multivariate selection studies can, with consid- 
erable effort, estimate the ratio of intrinsic selection on a character to realized 
selection. At best this might approximate the Vs,l/Vs,2 ratio in 02. However, it 
would be biased downward (assuming most selection is stabilizing) by selection 
on pleiotropically connected characters not included in the study and by selec- 
tion on included characters that are pleiotropically connected to, but only 
weakly correlated with, the character of interest. Thus, the hidden selection 
that tends to bias vg,l upward would also act to bias estimates of p2 downward. 

The difficulties imposed by pleiotropy may well preclude accurate predic- 
tions concerning mutation-selection balance for polygenic traits. However, it is 
important to recognize that, if P2 is large, as seems likely, the true equilibrium 
genetic variance, Vg,l, is generally overestimated by Vg,l, the univariate predic- 
tion based on the empirically estimable realized intensity of selection, gs,1. 
Thus, the house-of-cards predictions noted above, h2 0.29-0.44, should be 
viewed as upper bounds based on the parameter estimates given. As demon- 
strated in the previous section, the extent of overestimation depends on the 
details of pleiotropic selection, correlation patterns and the model used. Be- 
cause of the number of alleles needed to approximate accurately a two-dimen- 
sional continuum of effects, the multivariate continuum-of-alleles model seems 
highly implausible. Thus, the overestimates predicted by the continuum-of- 
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alleles model should be regarded as conservative. Conversely, the rigid con- 
straints imposed by the five-allele model probably inflate the overestimates 
unrealistically. Nevertheless, there seems to be no reason to doubt that vg,l 
may overestimate Vg,, by five- to ten-fold as seen in Tables 7-9. If this is taken 
into account, the range of “explained” heritabilities is reduced from h 2  E 0.29- 
0.44 to h2  E 0.04-0.14. Hence, without additional data to support the gaussian 
approximation or additional insight to circumvent the pleiotropy-induced prob- 
lems raised here, LANDE’S (1 975) mutation-selection hypothesis for extant her- 
itable variation must remain an appealing but unsubstantiated conjecture. 

Finally, the artificiality of the models analyzed should be acknowledged. The 
complexity of the predictions from these simple models makes it very unlikely 
that robust predictions based on empirically estimable quantities will emerge 
from more realistic models. However, one of the central mathematical results 
may be artifactual. The house-of-cards prediction that increasing intensity of 
pleiotropic selection drives the equilibrium genetic variance downward depends 
critically on the assumption that stabilizing selection acts on every aspect of 
the phenotype affected by loci contributing variation to the character of inter- 
est. Following the tradition of ROBERTSON (1956), GILLESPIE (1984) has co- 
gently criticized this assumption. He has shown that, if pleiotropic effects in- 
volve balancing selection rather than phenotypic stabilizing selection, pleio- 
tropy can be a potent force maintaining additive variance. Similarly, ROSE 
(1 982) has shown that opposing directional selection on pleiotropically con- 
nected traits can also maintain variation. The punchline is obvious. Sorting out 
the mechanisms responsible for observed levels of heritability will be no simpler 
than explaining protein polymorphisms. 

Comments from N. BARTON, M. G. BULMER, B. CHARLESWORTH, J. GILLESPIE, W. G .  HILL, A. 
A. HOFFMANN, M. KIRKPATRICK, R. LANDE, M. SLATKIN and J. B. WALSH greatly improved the 
development and presentation of these ideas. 1 am particularly grateful to J. B. KELLER for his 
advice concerning the approximation of (2.1). This research was supported by National Institutes 
of Health grant GM22221. 
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APPENDIX 1 

Suppose the allelic effects at each of n loci are independent and identically distributed. Assuming 
only additive genetic effects, we want to assess how well the distribution of phenotypes approxi- 
niates a gaussian. A simple index is the kurtosis. According to the gaussian model, the kurtosis of 
the distribution of effects at  individual loci satisfies KL = E(X4)/3[E(X2)I2 = 1 (for simplicity, I’ve 
assumed E(X)  = 0). According to the house-of-cards approximation KL > 1, with typical values on 
the order of 10. It is easy to show that according to model (l),  if a trait has heritability h2,  the 
kurtosis of its phenotypic distribution satisfies 

Kp - 1 = h4(K,5 - 1)/2n. (1.1) 

The  simple fact that the kurtosis (and skewness) of the phenotypic distribution approach their 
gaussian expectations as n-’ was observed by FISHER (1918). Note that h2 5 $4, KL d 10 and n 2 
10 yield KP d 1.1 1. Thus, relatively few loci are needed to produce a gaussian-like distribution for 
phenotypes even if the allelic effects are markedly nongaussian. 

APPENDIX 2 
When approxirnation (23) holds, the genetic quantities of interest can be obtained from an 

approximate evaluation of 
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for at least one of j = 1, 2 .  Without loss of generality, assume that (2 .2 )  holds with j = 1 for all 
loci that affect both characters. A messy change of variables transforms ( 2 . 1 )  into 

with 

K ,  = (fi,(m.,/ml,,Y [2V,,l(l - P ~ ) ] ( ~ / ' ~ ~ + " + ~ )  l /(2mT,,) ,  

a, = V,,1(1 - pf)/m:,,,f(B) = bl., (cos 0)' + bz,, cos 0 sin 0 + bs., (sin 0)', 

b, = (V,.lm%.,/v,.2m:.l)'/2, bl,, = 1 - 2pm,s,8, + ~9,,8f, 

bz,, = 2(1  - P ~ . J ' / ~  B ( P m , S *  - PA and bs,, = (1 - P&) Bf. 
Condition (2 .2 )  implies that c in ( 2 . 3 )  is approximately 1 and a, is very large so that the inner 
integral can be approximated by the first term of the Watson's lemma expansion (cf: chap. 6 of 
CARRIER, KROOK and PEARSON 1966) for 

exp(-air2)rm+"+'dr 
1 - exp[-r2f(o)] (2 .4 )  

as a, + m. Thus, ( 2 . 3 )  can be approximated by 

I,, = K' lZX (COS 0)" (p,,,,, cos 0 + (1 - sin 0)./f(0)d0, ( 2 . 5 )  

with K '  = %Kr[%(m + n)]a;(1/2Km+"), r[ .] denoting the 
(2.3). The  integral in ( 2 . 5 )  can be explicitly evaluated to obtain 

function, and the remaining terms as in 

(2.6a) g.l rr - 2P2V,,l/(1 + 83 
if p,,,.; = ps  = 0, or 0; = 1 and pm,; = p, ,  and 

@i = ~ ; V ~ . i ( l  - pf)A, [2(bi,; - bs,;) + BiC;'] (2.6b) 

otherwise, with Ai = [b'& + (bl , ;  - bs.i)2]-1, B, = b;,, + 2bs.i (bs,; -* b1J ,  and C; = &[(l - pfJ 
(1 - P?)]"'. Note that for a given value of p, ,  V,,Z, m?,i and m3.i enter @!I only through 0;. Similarly, 
(2.5) yields 

e(i) - fiiV8,ipsmz/mi (2.7a) 

if pn,, = p, and b, = 1 ,  and 

6") - p V , , (1 - ~ ~ ) ( ~ z , i / m i . ; ) A . I ~ m , . , [ 2 ( b i , ~ -  bs,;) +B,Crl] + b , i (  1 - ~ 9 , ; ) ~ / ~ [ 2  -(bs,;+ bi,JCrl]l (2.7b) 

otherwise. T h e  final bivariate house-of-cards approximations, cg.l (HC) and cs,l (HC), follow from 
( l l ) ,  (15), (2.6) and (2.7). 

APPENDIX 3 
Let pj.l with j =: (jl,j2) denote the frequency of allele At!,* among zygotes in generation t. If we 

ignore linkage disequilibrium and assume selection is sufficiently weak that each locus experiences 
approximately the genotypic fitness function ( 4 ) ,  the dynamics of & with j i  = f l ,  j p  = 21  can be 
approximated by 

with 
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approximate the equilibrium, we can mimic the mutation and selection assumptions used in the 
house-of-cards approximation for the continuum-of-alleles, i . e . ,  

pz << cP,JV$,, << I for j = 1 or 2 (3.2) 

[cf: (2.2)]. This implies that mutation is weaker than selection, so we expect the equilibrium to 
satisfv f i f )  << 1 for j # 0. Thus, the equilibrium of (3.1) may be approximated by 

fit) ( 1  - p,)fi34j1~1,~, j2c2,1) + ,.$j for j z 0. (3.3) 

Note that the same approximation applies if we replace (3 .1)  by the analogous haploid model 
Equation (3 .3)  produces the simple approximation 

J!j/[l - (1 - P i ) w ~ l c l , z ,  jscz,,)l. (3.4) 

Using the linkage equilibrium approximation, this implies 

(3.5b) 

To obtain expressions analogous to those derived for the continuum-of-alleles model, the p2 in the 
denominator of (3.4) can be ignored and the fitness term can be approximated using e" 1 - x 
if we assume relatively weak selection on both characters, i . e . ,  

in addition to (3.2). This yields the somewhat cruder five-allele approximations 

( 3 . 7 4  

(3.7b) 

Here, as in the continuum-of-alleles model, 6; = Vs,~c f ,8 /Vs ,~c~ , ,  measures the relative intensity of 
selection at pleiotropic loci attributable to Pe us. PI. Also, once ps is fixed, V,,2, e;,, and enter 

Corresponding to (3.5) and (3 .7) ,  there are two approximate single-character extrapolations 
only through @,. 

cg,l. The  more precise approximation corresponding to (3.5) is 

with j ?  = %~, / [1  - ( 1  - p,) exp(-!hc?,JcS,~)] and 6$,1 given by (11)  with (3.5) used to compute 
cov(P1, P2) and var(PI). The  analogous approximation corresponding to (3.7) is 

with c,,1(5) computed via (1  1 )  and (3.7).  

APPENDIX 4 

Given values for the parameters P ,  m:, mf, pm, w?, wf, pm and p e ,  the gaussian approxima- 
tions Cgg.l(G) and cgg,2(G) were computed from (18). Based on four additional parameters, Sdl ,  
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Sdz, NI and NZ with NI and NP integers, a grid was established for allele effects, denoted (at, a,) 
with -(NI + N2) 5 i, j 5 NI + NP, by first setting 

s, = Jmax(pr,,(G), m:) for i = 1, 2, then (4.1) 

h,,l = sSdl/N1 and h,.2 = s, (SdP - SdI)/NP. (4.2) 

Values of a, were assigned according to 

a; = ihl.1 for 0 5 lil 5 NI - 1, (4.3a) 

aN, = -a+ = Nlhl.~ + 'h(hl.2 - hl,l)  and (4.3b) 

a, = Nlhl.1 + (i - N1)hI.P for NI + 1 5 )il 5 NI + Ne. 

Thus, alleles range in effect on PI from - S I S ~ P  to sISd2 with different spacings between the effects 
of alleles near the origin us. near the extremes. Values for a, were assigned as above with hl, ,  
replaced by hz,. Letting N = N I  + NP, K = 1 + 2N is the number of different effects considered 
for each character and K 2  is the total number of alleles. For all of the calculations presented in 
Tables 1-5, Sdl = 0.5, Sdz = 2.5, NI = 3 and N2 = 2 so that K z  = 121. These values were chosen 
by trial and error to produce reasonable agreement between the predicted and observed results 
over the range of parameter values used. 

(4.3c) 

After allele effects were assigned allele (a,, a,) was assigned fitness 

WIJ = w(a,, a,) (4.4) 

using the genetic fitness function (4). Last, the mutation rate from (a,, a,) to (a,,, a,,) was determined 
from 

and m(xl, xP) the gaussian mutation density as in (16). This mutation scheme is a cruder approxi- 
mation than that used in TURELLI (1984). It results in an appreciable discrepancy (up to 10%) 
between the input variance and correlation parameters and the actual variances and correlation 
of mutant effects. In Tables 1-5, the actual variances and correlation associated with mutants 
from (0, 0) are given. For the parameters used in the calculations, (4.5) also generally produces 
slightly platykurtic ( i .e . ,  K = E(X4)/3[E(X2)]' < 1) distributions of mutant effects, instead of the 
gaussian K = 1. Despite its limitations, this algorithm produces equilibria that agree well with both 
the gaussian and house-of-cards predictions for appropriate parameter values. Finally, the discre- 
tization introduces a discrepancy between the mutation rates relevant to the gaussian and house- 
of-cards predictions [see (4.5) of TURELLI 19841. For the parameters used, they differ by less than 
0.5% and only the house-of-cards mutation rate is given in the tables but both were used in 
calculating the predicted equilibria. 


