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ABSTRACT 

Within-population variation at the DNA level will rarely be studied by se- 
quencing of loci of randomly chosen individuals. Instead, individuals will usually 
be chosen for sequencing based on some knowledge of their genotype. Data 
collected in this way require new sampling theory. Motivated by these observa- 
tions, we have examined the sampling properties of a finite population model 
with two mutation processes and with no selection or recombination. One mu- 
tation process generates new alleles according to an infinite-alleles model, and 
the other generates polymorphisms at sites according to an infinite-sites model. 
A sample of n genes is considered. The stationary distribution of the number 
of segregating sites in a subsample from one of the allelic classes in the sample 
conditional on the allelic configuration of the sample is studied. A recursive 
scheme is developed to compute the moments of this distribution, and it is shown 
that the distribution is functionally independent of the number of additional 
alleles in the sample and their respective frequencies in the sample. For the case 
in which the sample contains only two alleles, the distribution of the number of 
segregating sites in a subsample containing both alleles conditional on the sample 
frequencies of the alleles is studied. The results are applied to the analysis of 
DNA sequences of two alleles found at the Adh locus of Drosophila melanogaster. 
No significant departure from the neutral model is detected. 

EVERAL biochemical methods now exist with which genetic diversity can S be studied at the molecular level. Three of the more common types of 
molecular data are electrophoretic data, restriction enzyme data and nucleotide 
sequence data. Electrophoretic data are the easiest of the three to obtain, and 
consequently, this method is useful for surveying large samples. However, this 
type of data provides only information on protein variation, and even these 
data are of a limited nature. Restriction enzyme data provide more information 
about DNA variation, but only a small fraction of the DNA is studied. The  
best data for determining DNA variation are sequence data, but at present, 
the amount of work required to sequence a region as small as 1 kb is formi- 
dable. 

Because of the difficult nature of DNA sequencing methods, the sequencing 
of large random samples of genes from natural populations is not feasible. A 
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practical alternative, which will certainly be frequently employed for studying 
DNA variation in natural populations, is a stratified sampling approach. For 
example, a large sample of genes would first be surveyed electrophoretically 
in order to identify the electrophoretic alleles at a locus. Random subsamples 
of genes from all or some of the allelic classes would then be studied in more 
detail, either by restriction mapping or by DNA sequencing. A scheme such 
as this was recently used by KREITMAN (1 983) to study the alcohol dehydrogenase 
(Adh) locus in Drosophila melanogaster. It is well known that there are two 
common electrophoretic alleles at the Adh locus: fast ( F )  and slow (S). KREIT- 
MAN sequenced a 3-kb region including the Adh locus of five chromosomes 
bearing the F-allele and six chromosomes bearing the S-allele. 

T o  study statistical properties of the stratified sampling scheme just de- 
scribed, we suppose that there are two ongoing mutational processes, one 
giving rise to electrophoretic variation and the other to nucleotide variation 
that is not electrophoretically detectable. It is assumed that the region of DNA 
under study is fully linked and that the evolution of the electrophoretic vari- 
ation can be modeled with a selectively neutral infinite-alleles model. For the 
electrophoretically undetectable nucleotide variation, a neutral infinite-sites 
model without recombination is assumed. The question of how to properly 
connect the infinite-alleles model and the infinite-sites model for analyzing data 
obtained by stratified sampling is studied in this paper. 

The major focus of this investigation is to determine the stationary distri- 
bution of the number of segregating sites in a random subsample of genes 
from one or several allelic classes conditioned on the allelic configuration of 
the larger sample. It does not seem possible to find a formula for this distri- 
bution, but a set of recursion relations can be established with which one can 
rapidly compute its moments for any choice of parameters. If the subsample 
of genes is from one allelic class, then the recursive scheme is particularly 
simple since the conditional distribution is functionally independent of the 
number of other allelic classes and their respective sizes. 

We now outline the rest of the paper. The first part of the THEORY section 
contains an analysis for samples of two genes. Even though this case is not of 
practical interest, its simplicity is useful for demonstrating the kind of results 
we prove and the method of proof. In the second part of the THEORY section, 
samples of n genes ( n  > 2) are studied. Essential to our analysis is the coalescent 
process for the sample as defined by KINCMAN (1982a,b; see also T A V A R ~  
1984); thus, a short discussion of this process is included for completeness. 
Some typical calculations are presented in the NUMERICAL RESULTS. An analysis 
of KREITMAN’S data in light of our results is also discussed. Finally, the DIS- 
CUSSION contains some comments on our assumptions and also some possible 
applications of our results. 

THEORY 

Samples of two genes: In this section we study a sample of two genes. This 
case is the simplest to analyze because there is only one topology for the 
genealogy of the sample back to the most recent common ancestor (Figure la). 
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A, alleles A2 alleles 

FIGURE 1.-a, The history of a sample of two genes. The time, T(2), is the time back to the 
most recent common ancestor of the two genes. b, An example of a tree representing the history 
of a sample of 12 genes. The single type I mutation, A2 + A I ,  is indicated by a small circle. The 
allelic configuration is {a} = (a), ...., a,?) where 015 = a7 = 1 and all the other a, = 0. Type I1 
mutations are indicated by the small bars on the tree. If the four tips indicated by dots were 
subsampled for DNA sequencing, then three sites would be segregating in the subsample of four 
genes. In this case, n = 12, kl = 7, Ra = 4. The total length of the part of the tree drawn in bold 
lines is f&). 

Furthermore, for the neutral Wright-Fisher sampling scheme, the stationary 
distribution of T(2), the time to the most recent common ancestor of the two 
genes, is approximately negative exponential with parameter 1, when measured 
in units of 2N generations and where 2N is the population size (KINGMAN 
1982a,b). The n-coalescent introduced by KINGMAN (1982a,b), which describes 
the genealogical process for a random sample of n genes, is a more complicated 
process and is considered in the next section. 

We consider two distinct mutation processes. Type I mutations give rise to 
new electrophoretically detectable alleles distinct from all alleles currently seg- 
regating in the population. Type I1 mutations give rise to electrophoretically 
silent nucleotide variation, and each type I1 mutation is assumed to occur at a 
site not currently segregating in the population. The random numbers of type 
I and I1 mutations that occur in each gene in each generation are assumed to 
be stochastically independent Poisson distributed random variables with means 
p1 and p2, respectively. It follows from these assumptions that, in any individual 
line of descent, the times between successive type 1 (type 11) mutations are 
independent random variables, and if time is measured in units of 2N gener- 
ations, then their distributions are approximately negative exponential with 
parameter 01/2(02/2), where 61 = 4Np1(62 = 4NpJ .  

Let S1 and S:! denote the number of type I and type I1 mutations in the 
lines of descent of the two genes since their most recent common ancestor. It 
follows from the assumptions of the model that conditional on T(2) = t ,  SI and 
S p  are independent Poisson variables with means O l t  and O p t ,  respectively. The 
unconditional distribution of SI(&), therefore, is a compound Poisson (JOHNSON 
and KOTZ 1969, chapter 8) that has a compounding distribution that is a 
negative exponential with parameter l/O1( 1/62),  i.e., 
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If S I  = 0, then the two genes in the sample belong to the same allelic class 
and thus there is one allelic class of size 2. We denote this allelic configuration 
by (0, 1). Alternatively, if SI > 0, then necessarily there are two allelic classes 
of size 1, and we denote this allelic configuration by (2). 

The calculation of the probabilities of the allelic configurations (0, 1) and 
(2)  follows directly from (1). Indeed, 

1 
1 + 8 ] '  

P((0 ,  1))  = 1 - P ( ( 2 ) )  = P(S1 = 0) = - 

The distribution of Sp conditional on the allelic configuration of the sample 
being (0, 1) is also straightforward to calculate. For a n y j  2 0, 

P(S2 = j l { O ,  1)) = P(S2 = j l S ,  = 0) 

- E(P(S2 = j I T(2))P(SI = 0 1 T(2))) - 
P(SI = 0) 

-U j (01 + 1)u e U (0, + 1) -7 =l Fe, e du. 

The distribution of S2 conditional on the allelic configuration being {O, 1) is 
therefore a compound Poisson for which the compounding distribution is neg- 
ative exponential with parameter (1 + 81)/&. In exactly the same way, one can 
show that the distribution of S2 conditional on the allelic configuration being 
(2)  is also a compound Poisson for which the compounding distribution has 
the density 

The fact that in both cases the conditional distribution of S2 is compound 
Poisson with only the compounding distribution changing is a direct conse- 
quence of the assumption that the two mutational processes are stochastically 
independent. Conditioning on the allelic configuration of the sample (an event 
associated with the type I mutation process) only gives information about the 
type I1 mutation process by providing information about T(2). Thus, in both 
cases, the compounding distribution is just the distribution of &T(2) conditional 
on the configuration of the sample. 

Samples of n genes: We now consider the general problem for a sample of 
n genes. To begin, we define the n-coalescent that describes the genealogical 
process of the sample. For a formal discussion of this process, one should 
consult the papers by KINGMAN (1982a,b) or the recent review paper by TA- 
V A R ~  (1984). It is appropriate for our purposes to think of a realization of the 
n-coalescent as a binary tree having a node at the top and n tips at the bottom. 
Each of the n tips is identified with one of the genes in the sample; thus, as 
we move up the tree, tracing the lineages of the ancestors of the sample, time 
is measured from the present into the past. There are n - 1 nodes in the tree 
that we label from 1 to n - 1, going from the most recent node to the most 
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ancient node. A node is interpreted as a time point in the history of the sample 
when the most recent common ancestor of two or more genes in the sample 
occurred. Let T ( j )  denote the time between the (n - j)th and (n - j + 1)th 
node (2 r j  5 n), measured in units of 2N generations. (For convenience, we 
define any of the tips to be the 0th node.) KINCMAN (1982a,b) has shown that, 
for Wright-Fisher sampling, the (T( j ) )  are independent random variables, and 
for large N ,  the stationary distribution of T( j) when measured in units of 2N 

generations is approximately negative exponential with parameter . To 

complete the description of the n-coalescent, it is necessary to specify which 
pairs of branches of the tree coalesce at the different nodes. Since the sampling 
is neutral, all pairs of branches are equally likely to coalesce; therefore, at the 

j th node any pair of branches has probability of 1 /(" - i + 1) of coalescing. 

It follows from the assumptions of the model that, conditional on the lengths 
of the branches of the tree, the random numbers of type I and I1 mutations 
on different branches are stochastically independent. Furthermore, the condi- 
tional distributions of the numbers of type I and I1 mutations on a branch of 
length t are Poisson with means 01t/2 and &t/2, respectively. KINGMAN (1982a) 
has recently shown that, if genes in the sample are grouped so that any two 
in a group are descended from a single gene, and no type I mutations have 
occurred in their line of descent, then the stationary distribution of the number 
of groups and their respective sizes is given by EWENS' (1972) well-known 
sampling distribution. (This result requires the standard assumption that N 3 

03, pl 4 0 and 4NpI converges to OI.) Let (a) = ( a l ,  e - . ,  a,) represent the 
allelic configuration of a sample of size n, where ai denotes the number of 
allelic classes of size i. EWENS (1972) showed that, at stationarity, 

6) 

n!dj 
p(b)) = 1a12a2 . . . +al! . . . anB,(&) 

where 
n 

k = 

n = 

ai is the number of alleles in the sample, 

iai is the size of the sample, 

i= 1 

th 1 

and 

Suppose that the allelic configuration of the sample is (a) and that a random 
subsample of ko genes is taken from one of the allelic classes which we assume 
without loss of generality is of size kl(ko 5 kl). Our goal is to study the distri- 
bution of the number of type I1 mutations in the random subsample of size 
ko, conditional on the allelic configuration of the sample being (a) and that 
the random subsample is chosen from an allelic class of size kl. For notational 
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purposes we let SZ(k0, k l ,  a) denote a random variable that has this conditional 
distribution. 

Let f ( K o )  denote the total time in the history of the subsample of k,, genes. 
This random time can be determined from the tree by tracing the lineages of 
the genes in the subsample and finding the first node where all of these 
lineages coalesce (see Figure lb). In view of our remarks at the end of the 
previous section, the distribution of & ( K O ,  kl, a) is a compound Poisson for 
which the compounding distribution is the distribution of B 2 f ( K o ) ,  conditional 
on the allelic configuration of the sample being (a) and that the random 
subsample is chosen from an allelic class of size kl. For notational purposes we 
let T(Ko, kl, a) denote a random variable that has the conditional distribution 
of f ( k 0 ) .  

Let T* denote the time of the most recent event in the tree regardless of 
whether it is a most recent common ancestor event ( i . e . ,  a node) or a type I 
mutation. It follows from the construction of the tree that T* is the minimum 
of T(n) and the time to the most recent type I mutation, which, because the 
mutation rate is assumed to be constant, has a negative exponential distribution 
with parameter nB1/2. I~ Thus, T* itself has a negative exponential distribution 

with parameter + nBl/2. Furthermore, if B denotes the set of trees where 13 
the most recent event is a most recent common ancestor, then 

n 
2 n - 1  - - P(B) = 

The most recent event in the tree is important because one can use it to 
decompose the set of trees for which the allelic configuration is {a), i .e.,  those 
trees for which type I mutations result in the allelic configuration (a). For any 
a, define 

A(a) = (set of trees for which the allelic configuration is (a)). 

Then, clearly, 

X[A(&)I = X[A(4IX[Bl + X [ A ( ~ ) l X [ ~ l .  
For any set of trees C, is its complement, and x[C] is its indicator function, 
i .e. ,  x[C] is a function defined on the set of all trees such that, if a tree belongs 
to C, then x[C] = 1, and if a tree does not belong to C, then x[C] = 0. On 
the set B,  (a*}, the allelic configuration of the ancestors of the sample just 
before T* can equal { a p ! ,  {as!, . . ., or (an), where 

(a,) = {al, ..., ai-l + 1, CY, - 1 ,  e . . ,  a%!, 2 I i I n. 
Thus, 

n 
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where Bi denotes the set of trees where a* = ai, 2 I i I n. Equation (2) is 
the basic result from which the recursions for the distribution of T(k0, kl, a) 
are derived. Before we do this, however, it is necessary to compute the expec- 
tations of each term on the right in (2). It follows from the strong Markov 
property of the n-coalescent and the stationarity of the genealogical process 
that x[B] and x[Bi] are stochastically independent and that E(x[Bi]) = P( {ai)). 
Thus, 

E(x[B]x[Bi]) = P(B)P((aij), 2 I i I n. 

Also, if the most recent event in the tree is a most recent common ancestor 
and a* = ai, then for the allelic configuration of the sample to be (a), it is 
necessary that the most recent common ancestor of the two genes that coalesce 
at T* is one of the (i - + 1) ancestral genes that belong to an allelic 
class of size i - 1 .  Therefore, 

and so 

It is a straightforward matter to check that, if the most recent event on the 
tree is a mutation, then the allelic configuration of the other n - 1 ancestors 
immediately preceding T* must be {al), where 

{all = (a1 - 1 ,  a2, ..., a,). 

Thus, 

This last result is also a direct consequence of the work of GRIFFITHS (1980) 
concerning the lines of descent process (see also T A V A R ~  1984). It follows 
from (2), (3) and (4) that for any a, 

where x[ai 2 11 = 1 if ai 2 1 and zero otherwise. One should note that all 
the P ( { a i ) )  on the right of ( 5 )  are for samples of n - 1 genes; therefore (5) 
can be used to derive EWENS’ distribution inductively. 

We now turn to the distribution of T(k0, K1, a). Suppose i # kl. It follows 
from the strong Markov property of the genealogical process that, on the set 
of trees where x[B]x[A(a)]x[Bi] = 1 ,  

T(k0, kl, a) = koT* + T’(k0, k1, ai) (6) 
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where T’(ko, k l ,  ai) is stochastically independent of T* and has the same dis- 
tribution as T(k0, k,, ai). Similarly, where x[B]x[A(a ) ]  = 1, 

T(k0, k1, a) = koT* + T’(k0, k1, a1) (7) 
where T’(ko, k l ,  a l )  is stochastically independent of T* and has the same dis- 
tributions as T(ko, k l ,  a1). If i = k l ,  then it is possible that the two genes 
associated with the branches that coalesce belong to the allelic class that is 
subsampled, and also to the subsample itself. If C denotes the former event 
and D the latter, then 

and 

The first probability states that any of the allelic classes of size k1 are equally 
likely to be subsampled, and the second probability is the chance that the two 
branches that coalesce are among the lineages of K O  genes that were subsampled 
from an allelic class of size kl.  It follows once more from the strong Markov 
property that when X[B]X[A(a)]X[Bk,] = 1, 

(8)  T(k0, kl ,  a) = koT* + T’(k0, k1, a k , ) X [ q  

+ T’(k0 - 1, kl  - 1, akl )x[c lx[Dl  + T’(kot kl - 1, ~ k l ) X [ C 1 X [ ~ I  

where T’(ko, kl, ak,), T’(ko - 1, kl - 1, ak,) and T’(k0, kl - 1, ah,) are stochast- 
ically independent of T * ,  x [ C ]  and x [ D ]  and have the same distribution as 
T(ko, kl ,  ah,), T(ko - 1, kl - 1, ah,) and T(k0, kl  - 1, ak,), respectively. 
Let 

WO, k l ,  a) = E(e ) -sT(ko,k 1 .a) 

denote the moment generating function of T(k0, k1, a). It follows from (2), (6), 
(7) and (8) that 

~ 1 ,  a) = E(~-’~J*)[P(B)(Q~ + ~ z >  + ~ ( B ) Q ~ I  (9) 
where 

r 
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The right-hand side of (9) can be simplified since 

and 
(i - 1) (ai-1 + l)P((ai]) - iacj 

n - 1 P({a)) n' P(B) 

Thus, (9) can be written as 

H(k0, kl, a) = E(e-"OT*) ') H(k0, kl, a k l )  
ki(akl - 1 !E! H(k0, kl, ai) + 

i#kl n n ! 
The recursion for H(k0, kl, a) in (10) can be simplified even further. It is 
straightforward to show that, for a sample of four genes, 

H ( 2 ,  2, {2,11) = H(2,  2, IO,  2)). 

This demonstrates that, in this special case, H depends only on ko, k1 and n 
and not on the allelic configuration of the other n - kl genes in the sample. 
We now show by induction that this property holds in general. Suppose that, 
for samples of size less than or equal to n - 1, H(k0, k1, a) only depends on 
ko,  k1 and the sample size, i.e., it does not matter how many other allelic classes 
there are in the sample and what their respective sizes are. In particular, it 
follows that the H(ko, kl, ai) are all equal to, say, H,,-l(ko, k1). Thus, equation 
( 10) becomes 

r 

+:(m (9 H,-l(kO - 1, kl - 1) + (1 - 8) H,-l(k0, kl  - 91. 
Equation (11) shows that, for samples of size n, H(k0, kl, a) also depends only 
on ko,  k1 and n. 
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Differentiating both sides of (1 1) leads to recursions for the moments of 
T(kO, k l ,  a). The moments of Sp(ko, k1, a)  follow directly from properties of the 
compound Poisson distribution, i .e. ,  

and 

(1 3) 
82 0; 

Var(&(ko, k l ,  a)) = - E(T(ko, k l ,  a)) + - Val-(T(ko, h,  a)). 2 4 

Let 

M(k0, k l ,  n)  = E(T(k0, k1, a>) 

and 

L(ko, k1, n)  = E(P(ko,  k1, a)) 

denote the first and second moments of T(k0, k l ,  a). It follows from (11) that 

k i  + -  
n 

and 

Equations (1 4) and (1 5 )  can be solved recursively using the initial conditions 
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M(1, k l ,  n) = 0 and L(1, k l ,  n) = 0 ,  n 2 2, k l  L 1. Several sample calculations 
are presented in the next section. 

If 81 is set equal to zero in (14), then it is straightforward to check that the 
solution of the resulting system of equations is 

Thus, if O1 is small, 

There does not appear to be any such simple approximation for L(ko, k l ,  n). 
The approximation in (16) can be interpreted in the following way. If K O  

genes are sampled at random, then the expected value of the total time in the 
history of the sample is 

(WATTERSON 1975). Thus, when 81 is small, M(ko, k l ,  n) is approximately equal 
to the expected value of the total time in the history of a random sample of 
KO genes from a population of size 2Nkl /n .  

Until now, we have studied the behavior of a subsample from a particular 
allelic class. The methods developed for dealing with this problem can also be 
used when one subsamples from different allelic classes. In order to demon- 
strate the ideas, we consider the following case. Suppose in the sample, there 
are exactly two allelic classes of size k1 and lI and that subsamples of size ko 
and Zo are randomly picked from each allelic class. If there are just two allelic 
classes in the sample of size kl and Zl(n = k1 + 11), then it is easier to denote 
the allelic configuration by (k1, l 1 ) .  

Let T(ko, k l ,  lo, 11) denote a random variable for which the distribution is 
the distribution of the total time in the history of the two subsamples condi- 
tional on the allelic configuration of the sample being {kl, 1 1 )  and that subsam- 
ples of size ko and lo are randomly chosen from each allelic class. We now 
develop a system of recursions for K(ko,  k1, lo ,  l l ) ,  the moment generating 
function of T(k0, kl, lo, Zl). There are three cases to consider. 

Case 1: k l  > 1, 1, > 1. The method used to derive (9) is directly applicable. 
T o  simplify notation, we shall only indicate which arguments of K change, e.g., 
K(k1 - 1) K(ko, kl - 1, lo, I t ) .  Therefore, we have 
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r 

+ X[Eo > 11(# K(Zo - 1, El - 1) + (l - 8) K(E1 - '))I. 
Case 2: kl = 1, E l  > 1 or  kl > 1 and 1 1  = 1. For definiteness we assume that 

K 1  = 1 and E l  > 1. The analogue of (2) is 

x[A(1, 11)3 = x[B]x[A(~, ZI)]X[~* = (1, 11 - 111 (18) 
+ x[B]x[A(~, LI)]x[~* (11 + I)] + x[B]x[A(l, E I ] X [ ~ *  = (1, El)]. 

It follows from (1 8) and arguments similar to those employed earlier that 

K ( I ,  I ,  E O ,  1 1 )  = E(e-s('+'o)T*) [x[lo = l]K(ZI - 1) 

1 
K(1, 1, l o ,  El) * H(lo + 1,El + 1) + ~- 81 + E ]  El + 1 J 1 1 01 1 +-- 

81 + 1 1  E ]  + 1 

An interesting feature of (1 9) is that H(Zo + 1, E l  + 1) must be evaluated. This 
term arises when one considers the behavior of T(1, 1, lo ,  E l )  on the set where 
x[g]x[A( 1, Zl)]x[a* = (El + l)] = 1. Another point to note is that the coefficients 
on the right side of (19) involve 81. 

Case 3: ko = kl = Eo = 11 = 1. This case was dealt with earlier in this section 
when we considered a sample of two genes, and so we are done. 

Typical calculations of the mean and variance of T(ko, kl, lo ,  E l )  are given in 
the next section. 
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k, = 3 k, = 4 

0 
0 0.5 1 0 0.5 1 0 0.5 1 

i, /n 

k, = 5 k, = 6 k, = k, 

k l h  k,/n 

FIGURE P.--M(ko, k1, n), the expectation of T(k0, kl, a), plotted as a function of kI/n for several 
values of ko and 81. The solid curves (-) are for 81 = 0.02, the long-dash (- - -) curves 
for = 0.3, the short-dash (- - - -) curves for 8 ,  = 1, and the dotted curves ( -  . . .) for Or = 5. 
In every case, n = 100. 

One interesting consequence of the results of this section is that the condi- 
tional mean of the number of segregating sites in the subsample which distin- 
guish the two allelic classes can also be computed. Segregating sites which 
distinguish the two allelic classes are those which are not segregating within 
the allelic classes but between them. It is not difficult to check that the con- 
ditional expectation of the size of the region of the tree in which such muta- 
tions must occur equals E(T(ko, k l ,  lo ,  Z1)) - E(T(ko, k l ,  { k l ,  Zl))) - E(T(lo, ZI, 
{kl, I ,  I)). Thus, the conditional mean of the number distinguishing mutations 
can be computed. Its variance, however, cannot be computed directly because 
we have not considered the joint distributions of T(k0, kl, 10, ZI), T(k0, kl, {kl, 11)) 
and T(Z0, Zl, @ I ,  1 1 ) ) .  It is possible to develop a system of recursions for the 
moments of the number of distinguishing mutations by using arguments similar 
to those presented here, but we shall not pursue this issue. 

NUMERICAL RESULTS AND AN APPLICATION 

In Figure 2, values of M(k0, k l ,  n), the expectation of T(k0, k1, a), obtained 
by solving the recursion (14), are plotted as a function of k l / n ,  for n = 100 
and several values of ko and 01. It can be seen from this figure that, for 0, less 
than 0.3, the simple approximation given by (16) is quite good. The ratio of 
the standard deviation to the mean of T(k0, kl, a) is plotted as a function of 
kl/n in Figure 3. We note that these ratios are large, typically greater than 
0.5. Larger values of ko result in lower values of this ratio. In Figure 4 the 
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FIGURE 3.-The coefficient of variation of T(ko, k , ,  a) plotted as a function of hl/n for several 
values of k ,  and 8 , .  In every case, n = 100. 

E( T(ko*k,J0*4) 1 
81 

4 1  I I I I 1 
0 0.2 0.4 0.6 0.8 1 

k, /n 
FIGURE 4.--E(T(ko, k,, lo ,  E , ) )  plotted as a function of kJn for several values of 81.  The expected 

time in the history of a completely random sample of 1 1  genes is 5.86. The horizontal line shows 
this value for comparison with the conditional expected times. 

expectation of T(Ko, K I ,  E O ,  E l )  is plotted as a function of k l / n ,  for K O  = 5 ,  Eo = 6, 
and several values of 81. The expected time in the history of a completely 
random sample of size 1 1  is also shown for comparison. The conditional ex- 
pected time has a maximum at intermediate values of Kl/n .  For d1 = 0.1 and 
Kl/n near 0.5, the conditional expected time is about 20% greater than the 
unconditional expected time. For K O  = 3, and Eo = 8, the curves are similar, 
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TABLE 1 

Mean and standard variation of the time in the history of a subsample of genes 

5 6 0.1 0.1 0.41 0.41 3.93 3.94 5.90 5.93 

0.2 0.02 0.83 0.83 3.62 3.62 6.74 6.74 

0.1 0.82 0.82 3.50 3.51 6.56 6.59 

0.3 0.79 0.79 3.26 3.27 6.17 6.21 

(0.54) (0.51) (2.18) (2.18) 

(0.93 (0.90) (2.23) (2.22) 

(0.89) (0.86) (2.10) (2.09) 

(0.81) (0.79) (1.85) (1.84) 

(1.17) (1.15) (1.99) (1.98) 
0.3 0.1 1.22 1.22 3.08 3.08 6.96 6.99 

The standard deviations of the times are in parentheses under the mean times. 

except that the left end of the curves are somewhat higher and the right ends 
are lower. 

The curves shown in Figures 2, 3 and 4 were generated with n equal to 
100. Similar curves were generated with n equal to 30, and the resulting curves 
were almost indistinguishable from those shown in Figures 2, 3 and 4. This 
suggests that, given k,/n, the mean and variance of T(ko, kl, a) and the mean 
of T(ko, kl, lo ,  1 1 )  are nearly independent of n. This point is further illustrated 
in Table 1 ,  where values of M(k0, kl, n), the variance of T(k0, k l ,  a), and the 
expectation of T(k0, kl, lo, 1 1 )  are given for several values of 01, kl /n,  and for 
n = 50 and f i  = 200. The values of these quantities are nearly the same with 
n = 50 as with n = 200. 

T o  illustrate the use of our results, we consider the set of DNA sequences 
of the Adh locus of D. melanogaster obtained by KREITMAN (1983). The Adh 
locus of D. melanogaster has two common alleles, F and S. KREITMAN chose to 
sequence five chromosomes bearing the F-allele, and six chromosomes bearing 
the S-allele. The  chromosomes were obtained from a variety of locations world- 
wide. The frequency of the F-allele in natural populations has been found to 
vary with latitude (OAKESHOTT et al. 1981). This clinal pattern may be due to 
population subdivision and drift, founder effects or selection. 

To calculate the expected numbers of segregating sites within each allelic 
class and distinguishing the two classes, we must first estimate Oz. Equation (12) 
suggests the following estimator of 02: 

8 2  = 2S/E(T(ko, A i ,  lo ,  I ] ) ) ,  

where S equals the observed number of segregating sites in the sample. In 
order to calculate the expectation of T(k0, k1, lo ,  l l ) ,  it is necessary to specify 
values for 01, k1 and n. 

Table 1 indicates that the value of E(T(ko, k l ,  lo, I ] ) )  is not very sensitive to 
the value of O1 providing 81 is small, or to the value of n providing n is 
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TABLE 2 

Comparison of observed and expected numbers of segregating sites in the samples of Adh 
sequences 

Segregating sites 

Within F-allelic Within S-allelic Distinguish- 
k, In $2 class class ing 

Expected“ 0.1 14.2 2.9 (4.0) 28.0 (16.4) 11.1 
0.2 12.7 5.2 (5.9) 22.3 (14.1) 14.5 
0.3 12.0 7.3 (7.4) 18.5 (12.6) 16.2 

Observed’ 15 30 2 
Observed (adjusted)b 10 26 6 

a The expected numbers of segregating sites in each category are calculated as described in the 
NUMERICAL RESULTS with n = 200. The standard deviation of the number of segregating sites is 
in parentheses. 
’ The observed numbers are for the data of KREITMAN (1983). The observed (adjusted) numbers 

were obtained from the same data as described in the NUMERICAL RESULTS. 

reasonably large. Thus, we assume that 8, = 0.1, which is an average estimate 
of this mutational parameter from electrophoretic data for enzyme loci such 
as Adh (LEWONTIN 1974), and we assume that n = 200. Estimates of d2 were 
calculated for three representative values of kl/n: 0.1, 0.2 and 0.3. These 
estimates of 82, as well as the expected numbers of sites segregating among 
the F-allelic class, among the S-allelic class and the expected number of distin- 
guishing sites between the two classes are given in Table 2. The observed 
numbers of segregating sites in each of these categories are also given in Table 
2. It is clear from the table that these values do not agree very well with the 
corresponding predictions. 

Since five of the polymorphic sites segregate both within the F-alleles and 
within the S-alleles, at least one of our assumptions is violated. Under the 
infinite-site model without recombination, sites cannot segregate within two 
different allelic classes. Either back mutations, recurrent mutations or recom- 
bination events have occurred. KREITMAN (1 983) described two inferred re- 
combination events, and HUDSON and KAPLAN (1985) demonstrated that many 
more recombination events probably took place. For illustrative purposes only, 
we now attempt to “undo” two putative recombination events to obtain se- 
quences less influenced by recombination. Suppose that the adult intron of the 
sequence, designated by KREITMAN as F1-2S, was introduced into this sequence 
by recombination or conversion and that, before the recombination event, the 
adult intron was like that of any of the other S-allele adult introns. Similarly, 
suppose that the 5’ end of Fl-F was derived from a recombination event with 
an S-allele and that, before that recombination event, the 5’ sequence of Fl-F 
was like that of any of the other F-allele sequences. By undoing these two 
putative recombination events, the number of sites segregating within both 
allelic classes is zero. The resulting numbers of segregating sites in the three 
categories are shown in Table 2 on the line labeled “observed (adjusted).” This 
adjustment improves the agreement between the observed and predicted val- 
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ues. Given the high variances of these quantities (see Figure 3), it is unlikely 
that the differences between these observed and predicted numbers of sites 
are significant. It is interesting to note that, whether adjusted or not, the 
observed numbers differ from the expected by having too many sites segre- 
gating within the allelic classes, and not enough sites distinguishing the two 
allelic classes. It is, of course, possible that a proper analysis of the model with 
recombination would lead to a different conclusion. 

DISCUSSION 

With the advent of new molecular techniques for DNA sequencing and 
restriction-site mapping, additional data about DNA variation within and be- 
tween electrophoretic allelic classes are becoming available. Since these new 
methods are laborious when compared to electrophoresis, it is natural to study 
genetic variation in populations with a stratified sampling scheme. For exam- 
ple, one might first survey a large sample of genes electrophoretically and then 
sequence or determine restriction enzyme maps for random subsamples from 
the different allelic classes. In this paper we have developed for a strictly 
neutral model with no recombination, a recursion scheme that allows us to 
study properties of the stationary distribution of the number of segregating 
sites in a subsample from a single allelic class conditional on the allelic config- 
uration of the larger sample. We find that, for a subsample from a single allelic 
class, the number of segregating sites in the subsample depends on the fre- 
quency (k l /n)  of that allele in the full sample, but not on the number of other 
alleles or their frequencies. If 81 is small, a remarkably simple approximation 
is quite accurate; namely, the expected number of segregating sites in a sub- 
sample of size K O ,  from an allelic class of frequency kl /n in the full sample, is 
kJn times the expected number of segregating sites in a random sample of 
size K O .  The conditional distribution of the number of segregating sites in 
random subsamples from more than one allelic class is much more difficult to 
study; therefore, we have only dealt with the case in which there are two 
alleles in the large sample. This case is of interest because it is suitable for 
analyzing the data of KREITMAN (1 983) as discussed below. 

Whether the genetic variation detected by protein electrophoresis is primar- 
ily the result of mutation and drift of selectively neutral alleles, or is a conse- 
quence of selective forces, is a question that has remained essentially unan- 
swered despite nearly two decades of effort to resolve it. In the past the only 
available information for answering this question was the number of alleles 
and their frequencies at different loci in various samples from populations, and 
consequently, methods were developed to test the neutral model based on these 
quantities (see FUERST, CHAKRABORTY and NEI 1977; WATTERSON 1978; 
EWENS 1979). These tests do not have great power and so the results have 
been ambiguous. The methods that we have developed here to analyze se- 
quence data and restriction enzyme map data in conjunction with electropho- 
retic data do not, in themselves, provide a formal statistical procedure for 
testing the neutral model. They are, however, useful in making an informal 
assessment of the fit of the data to predictions under the neutral model and 
predictions under certain alternative selective models. 
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A,alleles 

L.rz -- 
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FIGURE 5.-Two histories illustrating the effects of selection. a, If the two alleles, A I  and A2, 

have been maintained for a long time by some form of balancing selection, the number of nu- 
cleotide site differences between an A I  allele and an A2 allele would be very large compared to 
the number of sites differing between two A I  alleles or two A2 alleles. b, If a newly arisen allele 
(A2) rises to high frequency rapidly due to selection, there would be very few nucleotide site 
differences between A2 alleles. 

We consider two alternative hypotheses to the neutral model. Under the 
first it is assumed that two alleles are maintained in a population by some form 
of balancing selection. Unless selection is very weak or the population size 
small, such a polymorphism is expected to last indefinitely, as long as the 
selection forces are maintained. In this case a genealogy of a sample of genes 
is probable, such as that shown in Figure 5a, and so the number of segregating 
sites that distinguish the two alleles would be expected to be large compared 
to the numbers of sites that segregate within each allelic class. Another alter- 
native hypothesis to neutrality is that one of the two alleles in the population 
arose recently by mutation and was rapidly driven to moderate or high fre- 
quency by selection. The genealogy of a sample in this case would probably 
look like that in Figure 5b, and consequently, one would expect few segregat- 
ing sites within the subsample of genes from the new allelic class. These two 
alternative hypotheses are overly simple and perhaps naive, but they do give 
some idea of the effect that selection can have. 

To illustrate these ideas we consider the set of 1 1  DNA sequences obtained 
by KREITMAN (1983). In Table 2, the observed, the observed (adjusted) and 
the predicted numbers of segregating sites are presented for sequences within 
the F-allelic class, within the S-allelic class and distinguishing the two classes. 
The number of differences distinguishing the classes is less than the expected 
number under the neutral model, and the number of segregating sites within 
each class is greater than or nearly equal to the expected number under the 



DIVERGENCE IN NESTED SUBSAMPLES 1075 

neutral model. Thus, the departures from the neutral predictions are, in fact, 
in the opposite directions from the departures expected under both of the 
alternative hypotheses described above. 

It is possible that additional recombination events could obscure the effects 
of selection (HUDSON and KAPLAN 1985). If we study a shorter region around 
the F-S polymorphism, then recombination should be less important. Hence, 
we consider just intron 3, exon 4 and the 3' untranslated region. In this region 
there are 15 polymorphic nucleotide sites, not counting the F-S polymorphism, 
and so our estimate of 82 for this region is 2(15)/(6.6) = 4.55, assuming kl/n 
= 0.2 (see NUMERICAL RESULTS). For O2 = 4.55, the expected numbers of 
segregating sites within the F-allelic class, within the S-allelic class and distin- 
guishing the classes are 1.90, 7.93 and 5.17, respectively. The observed num- 
bers are 2, 11 and 2, respectively. Thus, in this case too, there is no indication 
that the numbers of segregating sites within the F-allelic class is too small, nor 
that the number of sites that distinguish the two classes is too large. 

In conclusion, we are unable to detect any significant departure from sta- 
tionary neutral expectations in the sample of Adh sequences. We do not find 
that the F-allele sequences are too similar to each other, nor do we find that 
the F-allele sequences differ too much from the S-allele sequences. It is, of 
course, possible that a more refined analysis could provide the power to do 
so. Thus, our analysis suggests that Adh is not a locus with two very old alleles 
maintained in the population by some form of balancing selection. We note 
that the possibility of three or more alleles being maintained by selection has 
not been rejected. (In this case, however, at least one of the alleles would have 
to be identical, at the protein level, to one of the other alleles.) Clearly, it 
would be desirable to characterize properties of sample genealogies under 
models with recombination, as well as more realistic models with selection. 
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