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ABSTRACT 
We define and establish the interrelationships of four components of statistical association between 

a diploid nuclear gene and a uniparentally transmitted, haploid cytoplasmic gene: an allelic (gametic) 
disequilibrium ( D ) ,  which measures associations between alleles at the two loci; and three genotypic 
disequilibria (Ill, Dp, Os), which measure associations between two cytotypes and the three respective 
nuclear backgrounds. We also consider an alternative set of measures, including D and the residual 
disequilibrium (d). The dynamics of these disequilibria are then examined under three conventional 
models of the mating system: (1 )  random mating; (2a) assortative mating without dominance (the 
“mixed-mating model”); and (2b) assortative mating with dominance (“O’DONALD’S model”). The 
trajectories of gametic disequilibria are similar to those for pairs of unlinked nuclear loci. The 
dynamics of genotypic disequilibria exhibit a variety of behaviors depending on the model and the 
initial conditions. Procedures for statistical estimation of cytonuclear disequilibria are developed and 
applied to several real and hypothetical data sets. Special attention is paid to the biological interpre- 
tations of various categories of allelic and genotypic disequilibria in hybrid zones. Genetic systems for 
which these statistics might be appropriate include nuclear genotype frequencies in conjunction with 
those for mitochondrial DNA, chloroplast DNA, or cytoplasmically inherited microorganisms. 

ECAUSE mitochondrial DNA (mtDNA) is cyto- B plasmically housed, and maternally inherited in 
most animals and many plants, it can be discussed as 
an asexual, haploid genome within otherwise sexually 
reproducing, diploid species (AVISE 1986; BIRKY, MA- 
RUYAMA and FUERST 1983; NEIGEL and AVISE 1986; 
TAKAHATA and SLATKIN 1983). Other cytoplasmic 
genomes include chloroplast DNA in diploid plants 
(BIRKY, MARUYAMA and FUERST 1983; CURTIS and 
CLEGG 1984; DEWEY, LEVING and TIMOTHY 1986), 
and certain intracellular microorganisms in metazoa 
(WADE and STEVENS 1985; HOFFMAN, TURELLI and 
SIMMONS 1986). Frequencies of nuclear and cyto- 
plasmic genotypes (e.g., from restriction site maps) are 
currently being gathered for many organisms. It is 
important to ask under what biological conditions 
departures from random association between nuclear 
and cytoplasmic genotypes might exist, and to develop 
statistics to describe such disequilibria. Although we 
will specifically couch discussion in terms of mtDNA 
(because more is known about this cytoplasmic ge- 
nome), most statements or results should also apply to 
other cytoplasmic-nuclear associations. 

Apart from historical sampling of gametes in finite 
populations, two other classes of phenomena could in 
principle generate genetic disequilibria between nu- 
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clear and cytoplasmic genotypes: 
1. Epistatic effects onfitness. Functionally, the nuclear 

and mitochondrial genomes are interdependent in 
complex ways (BROWN 1983; GRIVELL 1983; MULLER 
et al. 1984). Most of the structural and functional 
proteins of mitochondria are encoded by nuclear 
genes, including more than 90 proteins required to 
form mitochondrial ribosomes, the RNA subunits of 
which are encoded by mtDNA (O’BRIEN et al. 1980). 
Probably all mitochondrially encoded proteins form 
components of metabolic pathways or enzyme com- 
plexes whose remaining constituents are nuclear-en- 
coded (BROWN 1983; CHOMYN et al. 1985). As noted 
by GRIVELL (1983), “the mitochondrial genetic system 
is maintained only through a considerable investment 
on the part of the nucleus and the cell’s own protein- 
synthesizing machinery.” In return, mitochondria are 
the sites of oxidative phosphorylation, the main source 
of cellular energy. The varied interactions between 
products of nuclear and mitochondrial genotypes 
could provide many opportunities for epistatic inter- 
actions on fitness, and hence for cytonuclear disequi- 
libria. 

2. Nonrandom mating. For mtDNA and nuclear 
DNA, which often exhibit uniparental and biparental 
transmission, respectively, to what extent can nonran- 
dom mating generate cytonuclear disequilibria? For 
example, some secondary hybrid zones represent 
rather extreme situations of nonrandom mating in 
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which various degrees of association between nuclear 
and mitochondrial genotypes have been observed (AV- 
ISE et al. 1984; FERRIS et al. 1983; LAMB and AVISE 
1986; SPOLSKY and UZZELL 1984). Furthermore, it is 
of interest to consider the effects on disequilibria of 
directionalities in hybridization-that is, situations in 
which hybrid mating propensities are different for 
males and females of a given species (LAMB and AVISE 
1986). 

Much attention has previously been given to the 
description of disequilibria between nuclear genes 
(e.g., CHARLESWORTH and CHARLESWORTH 1973; 
CLEGG, KIDWELL and HORCH 1980; HILL 1974; 
LANGLEY, TOBARI and KOJIMA 1974; SMOUSE 1974; 
WEIR 1979), and some progress has also been made 
in the mathematical analysis of cytonuclear interac- 
tions ( W A T S O N ~ ~ ~  CASPARI 1960; CLARK 1984,1985; 
GREGORIUS and ROSS 1984; ROSS and GREGORIUS 
1985). Here we define and examine the properties of 
several additional disequilibrium measures for hap- 
loid-diploid genome associations, and present their 
application to some real and hypothetical data sets. 
This treatment will lay the foundation for later anal- 
yses of the dynamical behavior of cytonuclear dis- 
equilibria in special situations. 

MEASURES OF CYTONUCLEAR DISEQUILIBRIA 

There are a number of ways by which the statistical 
association between a nuclear and cytoplasmic locus 
could be measured (WEIR and WILSON 1986). We 
introduce several measures which arise naturally in a 
wide class of biological models. Consider a diploid 
population, which has two alleles A and a at a nuclear 
locus and two other alleles M and m at, for example, 
a mitochondrial locus. There are six possible geno- 
types with frequencies as given in Table 1. 

The mitochondrial genotypes M and m have fre- 
quencies x and y;  the nuclear locus has genotype 
frequencies U ,  v ,  and w .  At the level of genotypes, 
nuclear-cytoplasmic disequilibria can be measured by 
the departures of genotypic frequencies from expec- 
tations under random association. Define the genotypic 
disequilibrium for AAIM to be D1 = freq. (AAIM) - 
freq.(AA)freq.(M), or equivalently, D1 = u1 - ux. Al- 
together there are three such measures 

D1 = U ]  - U X ;  

0 2  = V I  - V X ;  

0 3  = ~1 - W X .  

The frequencies of genotypes can then be written 
in terms of these three genotypic disequilibria as in 
Table 2. Since the genotypic disequilibria must allow 
the genotypic frequencies to sum to the marginal 
values U ,  U ,  w ,  x ,  and y, then 

( 1 4  

(1b) 

( I C )  

0 3  = -(DI + Dz), (2) 

TABLE 1 

Genotypic frequencies 
~~ 

Nuclear genotype 

Cytoplasm AA Aa aa Total 

M 211 V I  W I  X 

m U9 U? w9 Y 

Total U V W 1 .o 

TABLE 2 

Genotypic disequilibria 

AA Aa aa Total 

Total U V W 1 .o 

and there is no need to explicitly define disequilibria 
for the m genotypes. For valid genotypic frequencies 
(nonnegative and no more than one), there are addi- 
tional bounds on the genotypic disequilibria: 

-UX I D1 5 UY;  

-VX I D2 I ~ y ;  

-WX 5 0 3  I wy. 

It is also possible to measure cytonuclear associa- 
tions at the level of alleles. In the population there 
are four possible allelic combinations AIM, A l m ,  a / M ,  
and alm.  Denote their frequencies by e l ,  e2, e3, and e4 ,  
respectively. These can be defined in terms of the 
genotypic frequencies as in Table 3. Here, p and 4 are 
the frequencies of alleles A and a .  In the absence of 
selection, e l ,  e 2 ,  e3 ,  and e4 represent gametic frequen- 
cies (in the sex transmitting the cytoplasmic gene) and 
for simplicity will be referred to as such in what 
follows. 

The allelic association between cytoplasmic and 
nuclear markers can be described by the gametic dis- 
equilibrium parameter D, which measures the depar- 
ture of gametic frequencies from expectations under 
random association (HEDRICK 1983). Define D as 
freq.(A/M) - freq.(A)freq.(M), or equivalently, D = 
u1 + % V I  - p x .  The gametic disequilibrium can also 
be defined as: 

D = e l  - p x  (3) 
or D = e1e4 - e2e3. This is a traditional measure of 
gametic disequilibrium, and the one introduced by 
CLARK (1 984) in the context of nuclear-cytoplasmic 
relationships. Gametic frequencies can then be ex- 
pressed in terms of the allele frequencies and the 
gametic disequilibrium as in Table 4. From these 
relationships the following constraints on the gametic 
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TABLE 3 

Frequencies of allelic combinations 

Nuclear allele 

Cytoplasm A a Total 

M el = U, + %U] eS = w l  + %U] X 

m e2 = uq + !huq e4 = wp + %v2 Y 

Total P 9 1 .o 

TABLE 4 

Gametic (allelic) disequilibrium 

A a Total 

Total P 9 1 .o 

disequilibrium can be derived: 

-Px, -qy 5 D 5 pr, qx.  (4) 
The gametic and genotypic disequilibria are closely 

related since: 

D = Di + 1/2D2 = -D3 - $4202  = $ 4 2 0 1  - ?hD3. ( 5 )  
The allelic association thus can be partitioned into 
(any) two genotypic components. Furthefmore, equa- 
tions (2) and (5) show that the values of any two 
disequilibria determine all four, and that if any two 
of the disequilibria equal zero, then all are zero. Thus, 
all possible interrelationships between gametic and 
genotypic disequilibria can be grouped into the follow- 
ing six categories: 

D = 0, D1 = 0,  D2 = 0, D3 = 0;  

Di = 0 ,  D = %D2 = - ‘ /zD~ # 0; (6b) 

( 6 4  

0 2  = 0, D = D1 = -D3 # 0; (64 

D3 = 0,  D = 1/20, = - ’ / z D ~  # 0; (6d) 
I 

D = 0 ,  D1 = D3 = -%D2 # 0;  (6e) 

D # 0,  D1 # 0,  D2 # 0, D3 # 0. (6f) 

This set of measures has practical utility for several 
reasons, For instance, one central application in stud- 
ies of mitochondrial-nuclear associations has been to 
exploit the maternal inheritance of a cytoplasmic gene 
to infer the directionality of matings in hybrid zones. 
The genotypic disequilibrium D2 can be a direct mea- 
sure of the directionality of matings. Furthermore, as 
shown in the DISCUSSION, the various categories of 
disequilibria listed in (6) allow simple biological inter- 
pretations in terms of the mating system within a 
hybrid zone. The allelic-genotypic disequilibrium 
measures also arise as the natural coordinates in a 
variety of models of the mating system and selection. 

TABLE 5 

Alternative set of disequilibrium measures“ 

AA Aa ao Total 

M ux + 2pD + d 
m uy - 2pD - d 

ux + Z(9-p)D - 2d 
uy - P(9-p)D + 2d 

w x  - 29D + d 
wy + 2 9 0  - d 

x 

y 
U V W 1 .o 

Compare with Table 2.  

They serve to decouple and/or linearize a model’s 
dynamical behavior. The  genotypic disequilibria also 
serve to partition the gametic disequilibrium as in (5), 
and thereby explain the allelic disequilibrium. 

Nonetheless, as discussed in WEIR and WILSON 
(1 986), a given parameterization of the genotypic 
frequencies in terms of disequilibrium measures must 
be entered into delicately. There are several alterna- 
tive parameterizations. One such set of disequilibrium 
measures motivated by B. S. WEIR and C. C. COCK- 
ERHAM (unpublished results) involves the gametic dis- 
equilibrium D,  as defined in (3), and the residual 
disequilibrium, d ,  defined by v1 = vx + 2 ( q  - p)D - 
2d ,  or 

d = ( 4  - P)D - %(vi - V X )  

(7) 
= ( 4  - P)D - 1/2D2. 

The analog of Table 2 is given in Table 5. 
While the biological interpretation of this particular 

parameterization is unclear, its statistical interpreta- 
tion is quite simple. The gene frequencies can be 
viewed as linear effects on the genotypic frequencies, 
and the disequilibria D and d can be viewed as the 
interaction effects. The  allelic disequilibrium corre- 
sponds to a linear x linear interaction, and the residual 
disequilibrium to a linear X quadratic interaction. 
This pair of measures generates an alternative classi- 
fication of the pattern of disequilibria: (i) D = d = 0; 
(ii) d = 0, D # 0; (iii) D = 0, d # 0; or (iv) D Z 0, d # 
0. 

DYNAMICS OF CYTONUCLEAR DISEQUILIBRIA 

In this section, we describe and compare the dy- 
namics of these measures of cytonuclear disequilibria 
under three conventional deterministic models of the 
mating system: (1) random mating; and (2) positive 
assortative mating: (a) without dominance (the 
“mixed-mating” model); and (b) with dominance 
[O’DONALD’S (1 960) model]. In each case, the cyto- 
plasmic locus is assumed to be uniparentally inherited, 
and the genotypic frequencies in the two sexes are 
assumed equal. All models considered are “neutral” 
in that there are no fitness differences among geno- 
types, nor do allele frequencies change at either the 
nuclear or cytoplasmic locus. 

Random mating: The  dynamics of gametic dis- 
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equilibrium have been derived by CLARK (1984). T o  
develop some notation useful for later models, we 
present a slightly different derivation of the dynamics 
of D, and extend results to a consideration of the 
genotypic and residual disequilibria. The latter results 
are new. 

Consider an AIM gamete produced by an individual 
in the next generation. This gamete is equilikely to 
arise in two ways: (i) both its alleles are inherited from 
the mother of the individual, who carries A and M 
with probability e l ;  or (ii) the A allele is inherited from 
the father, and the M cytotype from the mother of 
the individual, independently with probabilities p and 
x ,  respectively. Putting these possibilities together and 
repeating the arguments for the other three gametes 
yields, after one generation: 

el' = 1/21] + 1/2px; 

e2' = Y2e2 + %py; 
e3' = %e3 + Y2qx; 

e4' = $4e4 + %qy. 

Addingtogetherp' = e l f  +e2 '  =pandx'  = e l '  +e3'  
= x establishes the constancy of allele frequencies. We 
can thus treat p ,  q, x,  and y as parameters. 

Any expression in (8) can be used to derive the 
recursion for gametic disequilibrium D ' in the next 
generation in terms of its value in the current gener- 
ation, D .  For example, subtract p x  from both sides of 
the recursion for el ': 

(8) 

el'  - p x  = Y2(e1 - p x ) .  

From (3), this result shows that: 

(9) D ( f )  = Y2D(t-I) = (V2)tD(0), 

where t is time in generations. The departure D from 
gametic equilibrium is halved in each generation of 
random mating. Gametic disequilibrium thus decays 
geometrically, at the same rate as for two unlinked, 
nuclear genes. 

Using (9) and Table 4 we can then write explicit 
solutions for the trajectories of gametic frequencies: 

e l ( ' )  = p x  + (%YD(O); 

(10) 
e2(t) = p y  - ( ' / 2 ) " ~ ( 0 ) ;  

e3( t )  = qx - ( I , L ~ ) ~ D ( O ) ;  

e4(') = qy + ( % I ~ D ( O ) .  

Gametic frequencies cease to change once gametic 
equilibrium ( i e . ,  D = 0) is obtained. 

The behavior of the genotypic disequilibria is also 
readily obtained. By reasoning similar to that leading 
to the gametic recursions in (S), it is possible to derive 
the genotypic frequencies in the next generation: 

U ] '  = e$; u2' = e2p; 

v l '  = e& + e lq;  v2' = e 4  + e2q; 

w1' = e3q; wp' = e4q. 

(1 1) 

Using Table 3, one can verify the consistency of these 
recursions with those of the gametic frequencies in 
(8). More importantly, we can obtain recursions for 
the genotypic disequilibria. By definition, from (la), 
we have 

D1' = ul' - u'x' = u1' - u'x. 

After one generation, Hardy-Weinberg equilibrium is 
achieved at any nuclear locus, so U ' = p 2  for all time. 
The expression for D 1  ' reduces to: 

(1 2) 

D1' = U ] '  - p 2 x  = el$ - p2x ,  ( 1  3) 

where we have substituted ul' = e lp  from ( 1  1). By 
rearrangement of terms, 

D1' = p ( e l  - p x )  = PD. (14) 

The dynamics of the genotypic disequilibria are then: 

D 1 ( f )  = pD(t-1) = $(?42)'-'D(O); (1 5 4  

Dg(f )  = -qD("-') = -Q(L/~)~-~D(O). (15c) 

Dp(') = ( q  - p)Dct-') = ( q  - P)(%)L-'D(O); (1 5b) 

[Notice that the recursion for D can also be derived 
from (1 5 )  using (5).] 

The genotypic disequilibria are all coupled to the 
gametic disequilibrium in the previous generation. 
After Hardy-Weinberg equilibrium is achieved in the 
first generation, the signs of the genotypic disequi- 
libria are fixed by the initial D .  When D(') # 0, the 
signs of D 1  and 0 3  are always opposite. When p < 0.5, 
D 1  and 0 2  have the same sign; when p > 0.5, D3 and 
0 2  are of the same sign; and when p = 0.5,02 is zero 
thereafter. 

Since JDI decays monotontically to zero by 1/2 per 
generation, it follows from (1 5 )  that I D 1  1, ID2 1, and 
I D3 I do so also after one generation. Another feature 
of the random mating model is that all disequilibria 
are either decaying, or all are fixed at 0. Thus, (i) D 
= 0 if and only if any Di = 0; and (ii) gametic equilib- 
rium implies complete genotypic equilibrium, and vice 
versa. These will not be features of all other models. 
There is an exception to the results in this paragraph 
when p = 0.5 in which case D2 E 0. 

From the recursions for the allelic and genotypic 
disequilibria and definition (7) we may also deduce 
the dynamics of the residual disequilibrium: 

d' = (4 - p)D' - 1/202' 

= %(q - p ) D  - %(q - P)D = 0. 
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Thus, after the first generation the residual disequilib- 
rium is zero for all time under random mating. 

Positive assortative mating without dominance 
(the “mixed-mating” model): Many hermaphroditic 
animals and plants can self-fertilize as well as outcross. 
The well-known mixed-mating model (CLEGG 1980) 
considers such situations by distinguishing the mating 
events due to self-fertilization (with probability a), 
from those due to random outcrossing (with probabil- 
ity (Y = 1 - a). As noted by ENDLER (1977, p. 143), 
the mixed-mating model can also be applied to hybrid 
zones (or other situations) in which mating prefer- 
ences are influenced by all genotypes (AA,  Aa,  a a )  at 
a diallelic nuclear locus under consideration. In this 
context, a is the probability that an individual in 
the population prefers to mate with like nuclear geno- 
type, while the probability of mating at random is Ci! 
(= 1 - a). Additional assumptions of this “narcissistic” 
model of assortative mating are: (1) the fraction a is 
constant across individuals, (2) no fertility or viability 
differences exist among matings, (3) the hybrid pop- 
ulation is closed to further outside recruitment from 
parental species’ gene pools, and (4) all individuals 
mate so that a 1:l sex ratio is maintained. Here we 
will examine the nuclear-cytoplasmic disequilibria un- 
der this assortative mating model. 

As before, consider an AIM gamete in a population. 
This is carried by progeny from random matings 
(probability (Y), by (8), with probability Yzel + Yzpx. 
AIM is carried by progeny from assortative matings 
(probability a) with probability e l .  Combining these 
possibilities, and repeating the argument for the other 
gametes, yields: 

el’ = ael  + GIYzel + %px] ;  

e2’ = aep + G[%e2 + Yzpy]; 
e3’ = ae3 + G[l/,e3 + Yzqx]; 

e4’ = ae4 + G[Y2e4 + Yzqy]. 

As under random mating, allele frequencies remain 
constant over time. 

By the same argument used for the random mating 
model, we can derive the trajectory of D: 

D(‘) = [Yz(l + CX)]D(~-’) = [%(l + a)]‘D(o). (17) 

The qualitative behavior of D is identical to that under 
random mating, that is, a geometric rate of decay to 
zero. However, the decay rate is decelerated relative 
to the random mating model, and is the same as that 
for gametic disequilibrium between two unlinked, nu- 
clear loci (WEIR, ALLARD and KAHLER 1972). The 
reduction in frequency of heterozygotes under posi- 
tive assortative mating results in a lessened opportu- 
nity for recombination which generates the decay in 
disequilibrium. 

T o  obtain the dynamics of the genotypic disequi- 

(16) 

libria, we need recursions for the genotypic frequen- 
cies: 

ul ’  = a(el - % V I )  + 6elp; 

upf  = a(e2  - %up) + t ie$; 

V I ’  = %au1 + 4 e 3 p  + e1q); (18) 
up’ = Yzavp 

w l ’  = .(e3 - %U]) + 
+ G(e,p + e2q); 

&q; 

wp’ = a(e4 - %up) + 6e4q. 

These can be derived by reasoning analogous to that 
leading to (16). By adding together U I ’  + up’ etc., we 
recover the usual one-locus mixed-mating model 
(HEDRICK 1983, p. 90): 

U ’  = a(p - %U) + 6pZ; 

U’ = Yzav + 62Pq; (19) 
w’ = a(q - %U) + Gq? 

As under the random mating model, the genotypic 
equations (18) can be used with Table 3 to derive the 
gametic recursions (16). The recursions for the gen- 
otypic disequilibria are: 

D1’ = (a + Gp)D - % d p ;  (204 

(204  

Dzf = Cr(q - P)D + Y~cxD~; 

D3’ = - (a + iq)D - %aDp. 

If we set a = 0, the dynamics reduce to those of the 
random mating model (equations 15a, 15b, and 15c), 
and we can recover the recursion for D in (17) using 

Explicit solutions for the behavior of genotypic 
disequilibria through time can be obtained from equa- 
tions (1 7) and (20): 

(5 ) .  

Dl(‘) = D(”[l/,(l + CX)]’-’[CX + Crp - %&(q - p ) ]  
(214 + (I/2a)‘[cy(q - p ) L P  - 1/2D2(0)]; 

+ (!/za)(D2(0); 

+ (L/2a)‘[G(q - p ) P  - L/2Dp(O)]. 

D2“) 2D(0){[l/,(1 + a)]‘ - (‘/‘2(~)Ll6(q - p )  
(21b) 

DP) = D‘o’[’/2(1 + a)]‘-’[-a - Gq - ‘/2aG(q - p ) ]  
(2 1 c) 

Two qualitative points can be made in comparing 
these results to those of the random-mating model. 
First, unlike under random mating, I D1 I, ID2 1, and 
I D3 I do not approach zero monotonically from all 
starting conditions under the mixed-mating model (0 
< a < 1). Second, under the mixed-mating model it 
is possible to be in gametic phase equilibrium (D“) 
0 for all t) while all genotypic disequilibria remain 
nonzero until equilibrium is achieved. 



760 M. A. Asmussen, J. Arnold and J. C. Avise 

Using (7), (1 7) ,  and (20) the recursion for the resid- 
ual disequilibrium is 

d ’ = a(q  - P)D - MaDp = %a(q - P)D + Gad. 

The trajectory for d‘” can be obtained from (1 7) using 
(2 1 b). 

Positive assortative mating with dominance: This 
is the classic assortative mating model introduced by 
O’DONALD ( 1  960) and treated subsequently in several 
texts [e.g., HEDRICK (1983), pp. 11 3-1 161. All as- 
sumptions of the mixed-mating model are in place, 
except that nuclear allele A is dominant to a, and the 
mating rules are changed to be as follows: (1) with 
probability a, the aa genotype prefers to mate with 
aa, and A -  genotypes prefer to mate with A-; (2) with 
probability 6 = 1 - a, matings take place at random. 

As in the previous models, consider an A/M gamete. 
This is carried by progeny from random matings 
(probability Ly),  by (8), with probability 3/26] + %px. 
Alternatively, AIM is carried by progeny from assor- 
tative matings (probability a)  with (i) probability 1 in 
AA/M progeny and (ii) probability ‘/2 in Aa/M progeny. 
Now, AA/M offspring have two possible assortative 
mating sources. They are produced by: (la) AA/M ? 
x A- C? matings with probability p/(u + v ) ,  the mating 
having (conditional) probability ul; or  (lb) Aa/M ? X 
A- 8 matings with probability !/2p/(u + v), the mating 
having (conditional) probability vl. Similarly, Aa/M 
progeny are produced by (2a): AA/M Q X Aa 8 matings 
with probability 3/2,  the mating having (conditional) 
probability uIv/(u + v); or (2b) Aa/M 9 X A- 8 matings 
with probability Y2, the mating having (conditional) 
probability v l ,  Putting these cases together and re- 
peating the arguments for the other gametes yields: 

el’ = cY[1/2eI + 54~x1 

e4‘ = &[!he4 + Y‘qy] 

In the above equations, and below, we have substi- 
tuted p + ?4v for U + v .  

As under the earlier models, allele frequencies re- 
main constant over time. Using expression (31, we can 
derive the recursion for D :  

Unlike the random- or mixed-mating models, the 
dynamics of the gametic disequilibrium directly in- 
volve a genotypic disequilibrium. 

To obtain the dynamics of the genotypic disequi- 
libria, we can either use the reasoning used in the 
previous models or a table of all two-locus mating 
combinations and offspring produced, similar to that 
in HEDRICK (1 983, Table 3.14). Both approaches lead 
to the following recursions for the genotype frequen- 
cies: 

r 7 

+ w 1 ;  1 w l ’  = Ge34 + a[----- %v1v 
p + Y2v 

w2‘ = Ge4q + a [ ___ + -.I. p + Y2v 

If  the nuclear genotypic frequencies are summed (e.g., 
U’ = U]’ + up’), we recover O’DONALD’S model. These 
expressions can also be used to calculate directly the 
gametic frequencies just given in (22). 

We obtain the recursions for the genotypic disequi- 
libria in the usual way by working with the definitions 
such as D1’ = u1’ - U ’x. We find: 

D3‘ = 

From these expressions we can also obtain another 
derivation of (23) using D ‘  = D1‘ + %Dz‘. 

The derivation of the recursion for the residual 
disequilibrium is totally analogous to that in the pre- 
vious two models: 
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TABLE 6 

Qualitative results on the dynamics of nuclear-cytoplasmic 
disequilibria under various mating models 

Assortative mating 

Random Without With 
Behavior mating dominance dominance 

D alone sets sign of: DI' NO Di' DI' 
D2' L1 
DS' 

D can change sign No No Yes 
D, can change sign No Yes Yes 
D = 0 iff D I ,  D2, and Ds = 0 Yesb No No 
D must decay monotonically Yes Yes No' 

Di's must decay monotoni- Yesb No" No' 

Dynamics of D and Di inde- Yes Yes No 

to zero 

cally to zero 

pendent of U, U, and w 

a In conjunction with p .  
* This statement holds only from the first generation on. 
c Sometimes decays monotonically. 

d' = * { [ q ( q  - p )  - ?&ID + p d ) .  p + %U 
The O'DONALD model shares some features with 

both the random- and mixed-mating models. As with 
the other two models, all the disequilibria ultimately 
decay to zero (0 < a < 1). The sign of D sets the sign 
of D1 in the next generation, as for random mating, 
whereas the genotypic and residual disequilibria are 
not necessarily monotonic, as for mixed-mating. A 
distinctive feature of the O'DONALD model is that D 
itself can behave nonmonotonically . 

Some of the major qualitative results concerning 
the dynamics of disequilibria are summarized in Table 
6 for the random mating and positive assortative 
mating models. Examples of the dynamics of cytonu- 
clear disequilibria are plotted in Figure 1. Points of 
particular interest include the following: (i) deceler- 
ated decay of disequilibria under assortative mating, 
and (ii) change of sign of 0 2  under O'DONALD'S model. 

With the exception of complete assortative mating, 
a common feature of all three models above is the 
ultimate decay to zero of all disequilibria (see e.g., 
Figure 1). It is natural to ask under what conditions 
disequilibria can be permanently nonzero. This would 
of course necessitate a joint nuclear and cytoplasmic 
polymorphism. We have suggested in the introduction 
that selection may be one mechanism to maintain 
disequilibria. This is precluded in the cytonuclear 
viability selection models of CLARK (1984), for they 
have no stable interior equilibria (unless there is a 
limit cycle). But, in the models of fertility selection in 
a partially selfing, gynodioecious population of ROSS 
and GREGORIOUS (1 985), stable interior equilibria are 
found associated with permanent disequilibria. In par- 
ticular, all the disequilibria along the trajectories 

GENERATION 

FIGURE 1 .-Examples of the dynamics of cytonuclear disequi- 
libria under the random mating, mixed-mating, and O'DONALD 
models of mating systems. Initial genetic conditions were those 
actually observed (see Table 9) in a hybrid population of treefrogs: 
DI = 0.190; D2 = -0.063; i = 0.479; 3 = 0.213; 3;. = 0.465. For the 
mixed-mating and O'DONALD models, an assortative mating rate of 
a = 0.9 was utilized. Each model displays a qualitatively different 
kind of behavior for the allelic-genotypic disequilibria. The dynam- 
ics of d (not shown) are qualitatively indistinguishable for the two 
assortative mating models; d'" first decreases below zero, then 
increases to zero. 

shown in Figure 1 of their paper are permanently 
nonzero. 

As a cautionary note, if stable disequilibria are 
observed, it would be tempting to invoke selection as 
the explanation. This inference is weakened by the 
fact that in extensions to the mating system models of 
this section, large transient disequilibria are observed 
lasting several hundred generations. T o  distinguish 
permanent disequilibria from the slowly changing, 
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transient disequilibria under some mating systems will 
prove difficult. 

STATISTICAL INFERENCE ABOUT 
CYTONUCLEAR DISEQUILIBRIA 

Our major concern is to select the pattern of dis- 
equilibria in (6) most descriptive of a data set, and 
secondarily to ascertain the magnitudes of the dis- 
equilibria. Each category in (6) determines a statistical 
hypothesis, which can be fitted to the data by the 
method of maximum likelihood. Because tests of 
goodness of fit depend on the maximum likelihood 
estimates (MLEs) obtained, we first describe the esti- 
mation of disequilibria and then the selection of a 
category which best fits the data. 

Suppose an individual drawn at random from a 
population has one of the six genotypes in Table 1 
with probabilities listed in the vector q = (u1, V I ,  w1, 
up, v2, w#, where the T means transpose. These 
genotypic probabilities can be expressed (using Table 
2) in terms of the independent parameters required 
for any of the six categories (6a-6f) listed earlier. The 
number of independent parameters varies from three 
(U, v ,  x for (6a)) to five (U, v ,  x, D1,  Dp for (6f)), 
depending on which disequilibria are zero. The in- 
dependent parameters are written in the column vec- 
tor /3 for each category. 

In a population survey, sampling is repeated N times 
to generate a list of the six genotypic counts, N = 
(NI1, N12,  Nls, N p l ,  Nz2, N23)T. The probability of  a 
particular list of genotypic counts is multinomial and 
proportional to: 

ulN" vlN12 . . . u2N23* (26) 

Denote this probability by Pr(N I a). We fix the expres- 
sion Pr(N 1 a) at the observed counts, N and consider 
Pr(N 18) as a function of the parameters a, thus yield- 
ing the likelihood function L(@ I N). The MLEs are the 
values of the parameters (8) which maximize the like- 
lihood function. 

One method of finding MLEs involves solving the 
likelihood equations 13 In L/d& = 0 for each parameter 
Pi, or simply d In L/d@ = 0. Using the chain rule, these 
become: 

These equations can be solved in a variety of ways, 
including the traditional numerical method of maxi- 
mum likelihood scoring. We use this method as a 
springboard to a novel approach, which involves re- 
writing the likelihood equations as normal equations 
to a weighted, least squares regression problem 
(GREEN 1984; BURN 1982). The new approach allows 
us to (i) relax easily the multinomial sampling assump- 
tion; (ii) make use of standard statistical packages (e.g., 

BMDP or GLIM) to do the computing; (iii) use resist- 
ant and robust methods of fitting; (iv) shed ourselves 
of the computational burden of repeated matrix in- 
version; (v) enlarge the domain of convergence; and 
(vi) utilize well known techniques for accelerating 
convergence in least squares problems. 

Maximum likelihood scoring usually begins with the 
calculation of the derivatives of the genotypic fre- 
quencies with respect to the parameters 8. For each 
of the six categories, a derivative matrix X = aq/a@ is 
presented in Table 7. We also define a score vector 
S, which is the derivative of the loglikelihood with 
respect to the genotypic frequencies, where for each 
category in (6): 

In L = NI1 In u1 + N12 In V I  

+ . . . + Np3 In w2. 
(28) 

The score vector S = d In L/dq can be written as S = 
(NlJu1, . . . , N z ~ / w ~ ) ~ .  With the derivative matrix X 
and the score vector S, we can more simply write the 
likelihood equations in (27) as: 

xTs = 0. (29) 

The derivative matrix X summarizes the particular 
structure of each category in (6). 

Maximum likelihood scoring and ultimately the 
compu!ation of the variance-covariance matrix for the 
MLEs require two information matrices: 

A =  [ ; w l . "  j (30) 

w;' , 

which summarizes the information in the sample 
about the genotypic frequencies; and 

I = XTA X, (31) 
which summarizes information _about the parameters 
8. Given a provisional estimate 8, the likelihood equa- 
tions (29) can be solved iteratively for an updated 
estimate b* according to: 

NI b* = N ( X T  A X)b* = XT(S + N A X a), (32) 

where N is the sample size. 
We depart from maximum likelihood scoring in 

realizing (32) is a set of normal equations solving a 
weighted regression problem. The regression prob- 
lem has Y = S + NA X 8 as the provisional dependent 
variable; X as the design matrix; and A as the weight 
matrix. The computation of MLEs is obtained by: (i) 
using the current estimates 8 to evaluate S, X, A, and 
Y; (ii) solving the normal equations (32) of this 
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TABLE 7 

Derivative matrices for various categories (models) of disequilibria" 
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XT 

Category* Parameter U1 VI WI U2 UP W2 

0 -X Y 
X -X 0 
V W -24 

-Jc. Y 
0 -X 0 

V -1 0 
X W -U 

~~ 

0 -Y 
Y -Y 

-U -W 

0 -Y 
Y -Y 

-1 1 
-U -W 

1 

X 

V X 

X U V W -U -U -W 

Y 0 -Y 
0 Y -Y 

DI 1 0 -1 -1 0 1 

Y 0 -Y 
-X 0 Y -Y 

DI 1 -1 0 -1 1 0 

Y 0 -Y 
0 Y -Y 

D1 1 -2 1 -1 2 -1 

Y 0 -Y 
0 Y -Y 

DI 1 0 -1 -1 0 1 
D2 0 1 -1 0 -1 1 

(64 U 0 -X 

0 -X 

U X 

V X 

X U V W -U -U -W 

( 6 4  0 -X 

0 

X 

V X 

X U V W -21 -U -W 

(64  U 0 -X 

0 -X 

U X 

V X 

X U V W -U -U -w 

(6f) 0 -X 

0 -X 

a If one of the genotype frequencies vanishes in the information matrix A, then the corresponding row and column must be deleted and 
the derivatives in the X-matrices above, recomputed subject to the constraint of the observed frequency being zero. Because of the lost 
de ree of freedom, attention must be restricted to the categories (6a)-(6e). ' Refers to equations (6a)-(6f) in the text. 

weighted regression problem for the new estimate a* 
?nd (iii) cycling back to (i) until convergence of 8* - 
8 to zero is achieved. As a caveat, it is computationally 
useful to note that S = A N and that at the end of this 
Cerative procedure the variance-covariance matrix of 
8 is approximately I-'/N. 

The procedure above must be performed separately 
for each category's derivative matrix in Table 7, 
where at each iteration S, X,A, and Y are evaluated 
using the current estimates together with Table 2 
and the appropriate entry in (6). Note that the MLEs 
of genotypic frequencies under (sa) and (6f) are ob- 
tained simply from observed genotypic frequencies, 
$1 = NlI/N, etc., where G = GI + 62, G = G I  + $2, and 
2 = 41 + GI + GI. Under (6f) the MLEs for the 
disequilibria are computed by the formulas in Table 
9, also using the observed frequencies. 

It remains to determine which of the six categories 
best fits the data. While the associated standard errors 
can provide a rough guide to the significance of 
disequilibria, the G-statistic (FIENBERG 1977) is likely 
to provide a better test of goodness of fit._This is done 
for each category by: (i) using its MLEs f l  with Table 

2 and (6) to compute the expected number of each 
genotype: E = (El1, E12, - -, E23) = NG, and (ii) 
comparing these expected counts E with the observed 
counts N through: 

G = ~ [ N I I  WNIIIEII) + N121n(N12/E12) 
+ . + &s~~(Nzs/E~s)].  

(33) 

If the category reflects the true state of the population, 
G will have an approximate x2 distribution with d.f. 
= 5 - (no. of independent parameters). 

In order to compare the categories by their fit, it is 
helpful to arrange them in order of their complexity 
as in Figure 2. Starting at the top of the hierarchy 
(6f), we move sequentially down until the loss of 
a parameter results in a significant decrease in fit. 
The decrease in fit by moving from category A to B 
(dfA < dfB) is measured by Ge - G A .  This difference 
has a x2 distribution on dfe - dfA degrees of freedom. 
When GB - G A  is significant, we accept A as providing 
a parsimonious fit to the data. Categories on the same 
tier are not comparable by this method. 

If the measures D and d were used to describe 
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FIGURE 2. Categories of cytonu- 
clear disequilibria arranged as a se- 
ries of hypotheses about mating pat- 
terns in a hybrid zone. The disequi- 
libria indicated for the nonrandom 
mating hypothesis ( H M )  are those 
empirically observed in the Hyla tree- 
frog hybrid population (see Table 9); 
disequilibria under the random-mat- 
ing hypothesis (HR) are those ob- 
served in the hybrid population in- 
volving subspecies of bluegill sunfish 
L. macrochirus (see Table 10); dise- 
quilibria for the middle tier of hy- 
potheses were calculated from the 
hypothetical data sets in Table 11. 
All disequilibria and their standard 
errors were calculated as in Table 9. 
The data in this figure is a composite 
summary of six such figures. All the 
disequilibria presented for each dis- 
tinct data set were computed as if (Sf) 
were true for the sake of comparabil- 
1ty. 

M. A. Asmussen, J. Arnold and J. C .  Avise 

H~~ 

6 2  = -0.063f0.001 
b3= -0.127 fO.010 
0 = 0.159f0008 

HD HI H3 

t 

pz = 0.133 f0.016 

D = -0.067f0.016 
D3= 0.0 

Dl = 0.133+-0.016 

D3 = -0.133 f 0.016 6,. -0.133f0.016 
D = 0.067f0.016 6 = 0.133t0.013 

pz = 0.133-+ 0.016 0,; 0.0 
5, = -0.067f0.019 
b2= 0.133f0.016 
D3= -0.067f0.019 
6 = 0.0 

6, = 0008f0.016 
F2 = 0.033f0.020 
C = - 0.040 f0.017 
D = 0.024f0.013 

cytonuclear associations, the hierarchy of six cate- 
gories in (6) would simplify to four categories: (i) D = 
d = 0; (ii) d = 0, D # 0; (iii) D = 0, d # 0; (iv) D # 0, 
d # 0. As stressed by B. S. WEIR and C. C. COCKERHAM 
(personal communication), it is important to consider 
the higher order disequilibrium d as well as the allelic 
disequilibrium D in describing departures from the 
no association hypothesis (i). This can be done via the 
procedure above, with the derivatives of the genotypic 
probabilities with respect to D,  and 0 2  in the deriva- 
tive matrix X replaced by the derivatives of the gen- 
otypic probabilities with respect to D and d. (In the 
case of category (i) or (iv), the maximum likelihood 
estmates f i  are simple functions of the observed fre- 
quencies of genotypes). Using G-tests, one would at- 
tempt to move down the new hierarchy from (iv), 
until loss of fit is significant. 

DISCUSSION 

We have introduced and analyzed the dynamical 
behavior of four measures of disequilibria between a 
nuclear and a cytoplasmic gene. One set of measures 
decomposes departures from a no-association model 
into an allelic (gametic) component, D, and three 
genotypic components, D 1 ,  D2, and Ds. The other set 
decomposes associations into a linear X linear com- 
ponent, D, and a linear X quadratic component, d.  
Departures from random associations, as indicated by 
the signs and magnitudes of the disequilibrium meas- 
ures, could arise from any of several evolutionary 
forces, including founder effect and genetic drift, 
epistatic selection, and nonrandom mating. The same 
measures could be extended to a broader context of 
haplo-diploid systems or to associations in the het- 

erogametic sex between a sex-linked gene and an 
autosomal locus. 

T o  illustrate the calculation and conceptual appli- 
cation of these disequilibrium statistics to real and 
hypothetical data sets involving nuclear and cyto- 
plasmic genes, we will now consider D and Di values 
in a class of commonly encountered evolutionary set- 
tings-secondary hybrid zones. As noted by WEIR, 
ALLARD and KAHLER (1972), the mating system itself 
can often provide parsimonious hypotheses about ge- 
netic disequilibria. In this spirit, we ask what kinds of 
nonrandom mating are sufficient to explain various 
patterns of cytonuclear disequilibria in a hybrid pop- 
ulation. 

Cytonuclear disequilibria in hybrid zones: Table 
8 summarizes possible explanations involving the mat- 
ing system for various categories of relationships be- 
tween allelic and genotypic disequilibria. For example, 
all disequilibria could be significantly different from 
zero, and this might arise if there were directional 
and strong assortative mating in a hybrid population 
of fairly recent origin. At the other end of the contin- 
uum, all disequilibria could be zero, if the hybrid 
population was random mating and fairly old. 

LAMB and AVISE (1986) provide an empirical ex- 
ample of the former situation. The treefrogs Hyla 
cinerea and Hyla gratiosa hybridize in a series of arti- 
ficial ponds near Auburn, Alabama. Normally, these 
species are behaviorally isolated, in part: because of 
mating call site preferences. H.  cinerea males typically 
call from elevated perches in shoreline vegetation, 
while H.  gratiosa males call from the water surface. At 
the Auburn site, frequent mowing of the pond perim- 
eters has eliminated the preferred perches for H.  
cinerea, and as a consequence many males call at 
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TABLE 9 TABLE 8 

Hypotheses about nuclearcytoplasmic disequilibria in a hybrid 
population 

H p t h e -  
s1s Disequilibria Possible explanation“ 

HNR D#O;D1#O;D,# 
0; D3 # 0 

Random mating; fairly old 

Estimation of disequilibria between the nuclear albumin locus 
and mitochondrial genotypes in a hybrid population of 

treefrog 

Albumin 

chondria AA Aa aa Total 
Mito- 

Strong directionality to inter- 
specific matings; hybrids pref- 
erentially backcross to less 
discriminating species 

Species mate assortatively; no 
directionality to interspecific 
matings 

Strong directionality to inter- 
specific matings; hybrids pref- 
erentially backcross to less 
discriminating species 

Nuclear allele frequencies iden- 
tical in the two cytotypes; 
mixed-mating 

Nonrandom mating; direction- 
ality to interspecific matings; 
fairly young 

M cl = 0.413 6 ,  = 0.036 I& = 0.016 f = 0.465 
m Ziq = 0.066 5 9  = 0.177 6 2  = 0.292 j = 0.535 

& = 0.479 5 = 0.213 13 = 0.308 1.000 
f = & + %$ = 0.585; 4 = 1 - fi  = 0.415 

DI = & I  - Zii  = 0.413-0.223 = 0.190 f 0.009 
6 2  = 31 - Gf = 0.036-0.099 = -0.063 f 0.01 1 6 - 1  

j - W I  - $2 = 0.016-0.143 = -0.127 f 0.010 
6 = 61 + %GI - $i = 0.413-0.273 = 0.159 f 0.008 

(check: 6 = El + !h6, = 0.159) 

Standard Errors (SE) 

I - 1 1 ~  = (XTAX)-’/N. 

U 6 X 61 & 
0.00082 -0.00033 0.00062 0.00003 -0.00003 Zi 

0.00055 -0.00021 -0.00003 -0.00012 5 
0.00082 0.00004 -0.00001 f 

0.00009 -0.00005 61 
0.000 12 69 

a The listed explanations are by no means exhaustive or defini- 
tive. 

ground level. Gravid females of both species approach 
the ponds from surrounding woods to mate. The 
expectation is that males of H. cinerea would intercept 
H .  gratiosa females, while crosses in the opposite di- 
rection (H. gratiosa d X H.  cinerea 0) would seldom 
take place. LAMB and AVISE (1 986) tested this hypoth- 
esis by simultaneously surveying protein products of 
five diagnostic nuclear loci, and the mitochondrial 
genotypes M of H. cinerea and m of H. gratiosa, in 305 
individuals. As a test of our reasoning, we can apply 
our measures of cytonuclear association to their data. 
Methods of calculating gametic and genotypic dis- 
equilibria and their standard errors under category 
(6f) are exemplified in Table 9, and results for the 
five nuclear loci are summarized in Table 10. None 
of the other categories fits the data by the G-test. All 
nuclear-mitochondria1 disequilibria are thus highly 
significant. Results are consistent with the hypothesis 
of nonrandom mating (limited hybridization) with 
strong directionality such that those interspecific mat- 
ings which do occur involve primarily H. cinerea males 
with H. gratiosa females. 

An empirical example more closely approximating 
a random mating situation involves two geographic 
subspecies of bluegill sunfish (Lepomis macrochirus 
macrochirus and L.  m. purpurescens) which hybridize 
in parts of Georgia. In one small north-Georgia lake, 
a sample of 151 bluegill was assayed for allozyme 
genotype at two unlinked and diagnostic nuclear loci, 
and for the distinctive macrochirus and purpurescens 

eStSE(t1) = (var(Q)” = (O.OOOO~)% = 0.009 
estsE(e2) = (Var(e,))” = (0.0p012)’h = O.?I 1 
estsE(D3) = (Var(Dl) + Var(D2) + 2 Cov (DI, 62))” 

eStSE(6) = (Var(&) + % Var(62) + 212 COV(D~,  f ix))” 
= (0.00009 + 0.00012 - 2(0.00005))‘ = 0.010 

= (0.00009 + %(0.00012) - 0.00005)” = 0.008 

The body of the table consists of genotype frequencies in 305 
individuals [from Lamb and Avise (1986)l. AA/M is characteristic 
of “pure“ H. cinerea; aa/m of H. gratiosa. 

mitochondrial genotypes (AVISE et al. 1984). Nuclear- 
mitochondrial disequilibria calculated from these data 
are summarized in Table 10. The Es-3 and Got-2 loci 
showed small but marginally significant values of 0 2  

and Ds, respectively. Overall, in G-tests of goodness- 
of-fit to the random-mating expectations (6a), proba- 
bility levels were 0.05 and 0.06 for the two loci. Thus 
neither locus provides strong evidence against the 
random-mating hypothesis. 

The remaining categories of disequilibria listed in 
Table 8 require other forms of nonrandom mating. 
We know of no real nuclear-cytoplasmic data sets 
available to exemplify these outcomes, but hypotheti- 
cal cases can be imagined. For example, in a hybrid 
zone in which AA/M is characteristic of one species 
and aa /m of the other, we might realistically observe 
partial assortative matings of parentals and no direc- 
tionality to those interspecific crosses which do occur. 
Then 0 2  alone would be zero, under the appropriate 
initial conditions. It is also possible that females of one 
of the species have developed strong premating isolat- 
ing barriers, while females of the other species mate 
nearly at random, and furthermore, that hybrids pref- 
erentially backcross to the less discriminating species. 
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TABLE 10 

Empirical nuclear-cytoplasmic disequilibria in hybrid populations of Hyla treefrogs" and Lepomis macrochirus sunfishb 

Nuclear-cytoplasmic disequilibria 
Nuclear 

Taxa locus D DI D2 Ds 

H. canerea/H. gratiosa hybrid population Alb 0.159 f 0.008 0.190 f 0.009 -0.063 f 0.011 -0.127 f 0.010 
pgi 0.187 f 0.007 0.221 f 0.007 -0.067 f 0.011 -0.154 f 0.010 
Ldh 0.176 f 0.008 0.202 f 0.009 -0.053 f 0.011 -0.150 f 0.010 
pep 0.178 f 0.008 0.210 f 0.008 -0.063 f 0.011 -0.147 f 0.010 
Mdh 0.172 f 0.007 0.206 f 0.008 -0.067 f 0.011 -0.139 f 0.005 

L. macrochirus macrochirus/L. m. purpurescens Es-3 -0.001 f 0.014 -0.026 f 0.016 0.050 f 0.020 -0.024 f 0.018 
hybrid population Got-2 0.024 f 0.013 0.008 f 0.016 0.033 f 0.020 -0.040 f 0.017 

Data from LAMB and AVISE (1986). 
Data from AVBE et al. (1 984). 

TABLE 11 

Hypothetical examples of data structures producing other 
categories of disequilibrium outcomes 

Mito- 
chondrial 

Disequilibria genotype 

Nuclear genotype 

AA Aa aa 

25 45 5 
25 5 45 
45 25 5 

5 25 45 
5 45 25 

45 5 25 
15 45 15 
35 5 35 

The body of each table consists of genotypic counts in samples 
of 150 individuals, in which x = y = 0.5, and U = v = w = 0.33. 
Actual disequilibria and their standard errors are presented in 
Figure 2. 

Then we conjecture that only D1 (or DS) and 0 2  might 
be large in magnitude. Finally, a situation could arise, 
in principle, in which genotypic disequilibria exist but 
gametic disequilibrium is zero. This would arise under 
the mixed-mating model if nuclear allele frequencies 
were identical in the two cytotypes. Numerical exam- 
ples of these various possibilities are presented in 
Table 11. 

The categories of disequilibria listed in Table 8 can 
thus be viewed as a series of hypotheses about the 
mating system in hybrid zones. As pictured in Figure 
2, there is a natural hierarchy to these hypotheses, 
beginning with the simplest of random mating, and 
ending with nonrandom mating in which females of 
only one species tend to hybridize. For each hypoth- 
esis, a G-test of goodness-of-fit can be computed (FIEN- 
BERG 1977). For example, under HR there are five 
independent counts and three independent parame- 
ters estimated, leaving two degrees of freedom. For 
H N R ,  there are no degrees of freedom because five 
parameters are estimated from the genotypic counts. 
For the middle tier of hypotheses, there is one degree 

of freedom (four parameters estimated from geno- 
typic counts). Thus, taking the differences of G-statis- 
tics between tiers of hypotheses (and differences in 
their corresponding degrees of freedom) allows se- 
quential testing of the hypotheses by their complexity. 
Such a conceptual design parallels that developed for 
selection component analysis by CHRISTIANSEN and 
FRYDENBERG (1973). 

Other considerations about cytonuclear disequi- 
libria: Although static descriptions of cytonuclear dis- 
equilibria may lead to inferences about the evolution- 
ary forces, including mating system responsible, it 
must also be remembered that the magnitudes (and 
in some cases signs) of the allelic and genotypic dis- 
equilibria can change in time-dependent fashion un- 
der a given set of evolutionary forces (Figure 1). Thus 
for example, D and Di could all be near zero in a very 
young, random-mating hybrid swarm, or in a much 
older hybrid population with very strong but imper- 
fect positive assortative mating. Furthermore, the dy- 
namical behavior of the cytonuclear disequilibria are 
to a considerable extent influenced by the particular 
models assumed for the genetic basis of the mating 
system. In the case of hybrid zones, additional relevant 
concerns (which we will pursue elsewhere) include the 
pattern of disequilibria at the outset of hybridization, 
whether the hybrid population was closed to new 
recruitment from the parental species, and whether 
differential viability and/or fertility selection were also 
at work. 

In general, associations between nuclear and cyto- 
plasmic genotypes will be generated continually as 
gene pools differentiate, either among spatially sub- 
divided conspecific populations, or among species. 
Epistatic selection involving interactions between par- 
ticular nuclear genes and the cytoplasm may further 
contribute to disequilibria. The effects on disequi- 
libria of gene pool differentiation due to drift or 
historical considerations, or to mating patterns, might 
in principle be distinguishable from effects due to 
epistatic selection per se-the former would be ex- 
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pected to generate concordance in the patterns of 
cytonuclear disequilibria for many unlinked (and func- 
tionally unrelated) nuclear genes (as in our Hyla ex- 
ample; Table lo), while the latter might generate 
consistent disequilibrium involving only the target 
nuclear gene (and loci linked to it) with particular 
cytotypes. Nonetheless, epistasis and gene pool differ- 
entiation may seldom provide mutually exclusive ex- 
planations for observed disequilibria. 

On the other hand, as is true for pairs of unlinked, 
nuclear genes, cytonuclear disequilibria will also tend 
to decay, at rates that are importantly influenced by 
the pattern of extinction and recolonization of popu- 
lations in subdivided species, and by the mating system 
in populations or species exchanging genes. Conse- 
quently, at any point in time, observed cytonuclear 
associations will depend on the particular blend of 
forces acting to generate and decay disequilibria. 
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