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ABSTRACT 
We determined the nucleotide sequence of a 4.6-kb EcoRI fragment containing 70% of the rosy 

locus. In combination with information on the 5' sequence, the gene has been sequenced in entirety. 
rosy cDNAs have been isolated and intron/exon boundaries have been determined. We find an open 
reading frame which spans four exons and would encode a protein of 1335 amino acids. The 
molecular weight of the encoded protein (xanthine dehydrogenase), based on the amino acid 
translation, is 146,898 daltons which agrees well with earlier biophysical estimates. Characteristics of 
the protein are discussed. 

HE rosy locus (ry: 3-52.0) in Drosophila melano- T gaster is of particular interest from two view- 
points. First, it has been the subject of intensive fine 
structure genetic analysis by those interested in gene 
structure and regulation (CHOVNICK et a l .  1977). Elec- 
trophoretic variants and null rosy mutants have served 
to delimit the structural boundaries of the gene 
(MCCARRON, GELBART and CHOVNICK 1974; GEL- 
BART, MCCARRON and CHOVNICK 1976). Two puta- 
tive control variant sites have been genetically mapped 
to the 5' region of the gene (CHOVNICK et a l .  1976). 
Recently this genetic analysis has been extended to 
the molecular level using molecular mapping of inser- 
tion/deletion mutants (COTE et al. 1986) and DNA 
sequence analysis of putative control mutants (LEE et 
a l .  1987). 

Quite independently of studies of gene structure 
and regulation, the rosy locus became a focus of inter- 
est for population and evolutionary genetics. The 
encoded protein, xanthine dehydrogenase, is highly 
polymorphic in natural populations of all species of 
Drosophila where it has been studied. BUCHANON and 
JOHNSON (1983) found 15 electromorphs in 62 ge- 
nomes sampled from a single population of D. melan- 
ogaster. KEITH et a l .  (1985), in a survey of 184 ge- 
nomes from two California populations of Drosophila 
pseudoobscura, revealed 20 electromorphs, and COYNE 
(1 976) revealed 23 electromorphs in 60 genomes sam- 
pled from a single population of D. persimilis. 
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Considering the extent of protein polymorphism, it 
is of interest to know what amino acid changes cor- 
respond to these electromorphs, whether this varia- 
tion is confined to certain domains of the protein, and 
how important recombination may be in generating 
the variation. In addition, the ratio of silent site pol- 
ymorphism to amino acid substitutions for such a 
polymorphic gene can be compared to that found at 
the Adh locus (KREITMAN 1983), which has a much 
lower level of protein polymorphism. Finally, se- 
quence comparisons between species of Drosophila can 
show the rate of evolution of silent sites and intron 
positions for this highly polymorphic gene as com- 
pared to the rate obtained from Adh (S. SCHAEFFER 
and C. AQUADRO, unpublished data) It will be of 
interest to determine whether there is a correlation 
between the level of amino acid substitution and the 
level of overall DNA polymorphism observed. 

Because of the interest of both molecular and pop- 
ulation geneticists in the expression and evolution of 
Xdh, it is desirable to provide the complete DNA 
sequence of this locus. In this paper we present an 
overview of the structure of the rosy locus, its DNA 
sequence and predicted amino acid sequence. In ad- 
dition, some of the characteristics of the protein, XDH, 
are discussed. 

MATERIALS AND METHODS 
DNA plasmids and fragments: The rosy locus was cloned 

by BENDER, SPEIRER and HOCNESS (1983) from a Canton-S 
stock ofD. melanogaster. We subcloned into pBR322 a 4.6- 
kb EcoRI fragment (Figure 1) from the original 8.1-kb Sal1 
fragment kindly provided by C. S. LEE and W. BENDER. 
The sequence of the contiguous 5' region, from the PstI 
site at -2920 kb to the EcoRI site at 0 kb (Fi ure l), has 
been sequenced by LEE et al. (1987) from a ?+' laboratory 
stock and is presented in this issue of GENETICS. 
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FIGURE 1 .-The rosy transcriptional unit: a genomic restriction map for the region of the rosy gene is pictured in the second line, with 
coordinates in kilobases shown above. The coordinate of 0 kb is placed at the EcoRI site near the center of the gene. The RNA structure 
shown on the third line is a composite deduced from partial cDNAs. The locations of the seven rosy cDNAs we have isolated are given below 
the composite picture. The DNA sequence reported in this paper extends from the 4.6-kb EcoRI site at 0 kb to the EcoRI site at +4.6 kb. 

DNA sequencing: The 4.6-kb EcoRI fragment was self- 
ligated and sonicated, and random fragments of approxi- 
mately 600 bp were subcloned.into M13 strain MP8 (NOR- 
ANDER, KEMPE and MESING 1983) according to the BAN- 
KIER and BARREL (1  983) protocol. The clones obtained were 
sequenced according to the methods of SANCER, NICKLEN 
and COULSON (1977, 1980) on TBE buffer gradient gels 
(BIGCIN, GIBSON and HONC 1983). Sequenced fragments 
were overlapped into a single sequence using the programs 
of STADEN (1982, 1984). Confidence in the sequence was 
obtained by repeatedly sequencing the same region on both 
strands wherever possible. On average, a specific nucleotide 
was covered six times by independent clones. One percent 
of the EcoRI fragment was sequenced only once. In addition, 
696 bp were sequenced on only one strand but these regions 
were repeatedly covered by four to six independent clones. 

cDNA isolation: cDNA libraries made from D. melano- 
gaster early and late third instar larval RNA in the vector 
lambda gtlO were kindly provided by L. KAUVAR, B. DRESS, 
S. POOLE and T. KORNBERC (POOLE et al. 1985). cDNA 
phage were plated onto bacterial strain KH802, and 
700,000 plaques were screened using nick-translated rosy 
4.6-kb EcoRI fragment, or a nick-translated fragment ex- 
tending from the BclI site at - 1837 kb to the EcoRI site at 
0 kb (Figure 1). After plaque purification of phage contain- 
ing rosy cDNAs, the cDNA inserts were cloned into pEMBL 
vectors (DENTE, CESARINI and CORTESE 1983). Convenient 
restriction sites were used to subclone smaller fragments of 
the cDNAs into pEMBL, and sequence was determined by 
the Sanger dideoxy method (SANCER, NICKLEN and COUL- 
SON 1977). 

Protein analysis: The translated sequence of XDH was 
analyzed for amino acid composition and hydrophobicity 
using the programs from International Biotechnologies In- 
corporated (IBI) written by JAMES PUSTELL. Secondary 
structure predictions of the protein were determined using 
the method of CHOU and FASMAN (1978). 

GENERAL STRUCTURE OF THE GENE 

Extensive genetic (CHOVNICK, BALLANTYNE and 
HOLM 197 1 ; GELBART, MCCARRON and CHOVNICK 

1979; CLARK et al. 1984) and molecular (COTE et al. 
1986) mapping of rosy mutants indicated that most or 
all of the XDH protein coding sequences were con- 
tained within a single 4.6-kb EcoRI fragment (Figure 
1). Alignment of the genetic and molecular maps 
placed rosy cis-acting control sites to the left of this 
EcoRI fragment and suggested that the entire gene 
was contained within an 8.1-kb Sal1 fragment (COTE 
et al. 1986). Transformation experiments have shown 
that a 7.3-kb Hind111 fragment (Figure 1) contains all 
sequences necessary to  rescue the rosy mutant pheno- 
type (RUBIN and SPRADLINC 1982). Insertions into the 
PstI site at -2.9 kb have no effect on rosy expression 
(CLARK and CHOVNICK 1986), which further limits the 
extent of the putative control region. We therefore 
were confident that the PstI to Hind111 fragment 
(-2.9 to +4.2) contained all of the rosy sequence. Our 
laboratory sequenced the 4.6-kb EcoRI fragment con- 
taining the majority of the structural gene. That se- 
quence and the accompanying protein translation is 
presented in Figure 2. LEE et al. simultaneously se- 
quenced the contiguous 2.9-kb PstI-EcoRI fragment 
(Figure 1) and that sequence is presented in the ac- 
companying paper (1 987). The PstI-EcoRI fragment 
was obtained from a ryC5 laboratory stock, whereas 
the 4.6-kb EcoRI fragment came from a Canton-S 
stock. The ry+5 sequence was extended 200 bp beyond 
the EcoRI site at 0 kb to ensure that no small EcoRI 
fragments were lost at the junction. In that overlap, 
there is one silent polymorphism, a G in Canton-S vs. 
a T in 7y+5 at position +74 in the DNA sequence. 

The rosy gene is transcribed from left to right, as 
determined by hybridization of single stranded probes 
to the rosy message (COTE et al. 1986). Examination 
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of the complete sequence reveals a long open reading 
frame in the correct orientation which begins at the 
ATG at -1407 in the first exon, sflces across three 
introns and terminates at the TAA codon at +3’760 
in the fourth exon. Analysis of rosy point mutations 
supports our belief that the -1407 ATG is the trans- 
lational start site (LEE et al. 1987). 

In order to determine the precise limits of the 
transcribed regions of the rosy gene, we searched for 
rosy cDNA clones. From the Oregon-R early and late 
third instar cDNA libraries of POOLE et aZ. (1985) we 
isolated seven partial rosy cDNAs. Two of these, 14- 
14 and 14-18, appear identical, although they were 
isolated in separate screenings. The cDNA clones 
overlap as diagramed in Figure 1, and when combined 
they cover nearly the entire gene. There is a gap in 
the coverage of 158 bases, at the EcoRI site. T w o  
cDNAs end near or at this site, which is probably an 
artifact of the construction of the libraries (if the 
double stranded cDNA were not completely methyl- 
ated at internal EcoRI sites, or if restriction enzyme 
contaminated the methylase preparation, these sites 
would be cut). Since the rosy open reading frame 
continues uninterrupted through this region, it is 
unlikely that any additional introns are located within 
this 158-bp gap. 

The cDNAs reveal the positions of the four exons 
and three introns in the rosy gene (Figure 1). The 
intron/exon splice junction sequences agree well with 
the consensus sequences derived by MOUNT (1 982) 
and KELLER and NOON (1985). Although the cDNAs 
were not sequenced in entirety, mapping with 4-base- 
recognition enzymes shows that there are no addi- 
tional introns in the regions covered by the cDNA 
clones. The 5’ cDNA clone 14-31 extends 132 bp 5’ 
of the AUG codon at -1407 which initiates the rosy 
long open reading frame, but we have not determined 
if the cDNA is complete at its 5’ end. 

A total of 2676 bp of the cDNAs was sequenced. 
There were seven nucleotide substitutions between 
the Oregon-R cDNA sequence and the Canton-S ge- 
nomic sequence, all conservative third position 
changes (data not shown). rosy mRNA is polyadenyl- 
ated (COVINGTON, FLEENOR and DEVLIN 1984). The 
cDNA 14-8, 14-14 and 14-18 all depart from the rosy 
genomic sequence at the same base (+3859) and this 
base is followed in the cDNAs by poly-A tracts of 19- 
20 residues. At 19 bp preceding the site of poly-A 
addition is the sequence AATTAAA, a variation of 
the conserved polyadenylation signal AATAAA (re- 
viewed by BIRNSTIEL, BUSSLINGER and STRUB 1985). 
Base pair +3859 is apparently the 3’ boundary of the 
rosy mature mRNA. 

There is an additional open reading frame of 115 
codons within the sequence, beyond the 3‘ end of 
rosy. This frame reads in the opposite orientation from 
rosy. It begins at the right boundary of our sequence, 

so the full size of the reading frame is unknown. The 
next characterized gene 3‘ to rosy is snake, but this 
open reading frame does not correspond to the snake 
gene. A rosy null mutation, rySo6, is a 3.4-kb deletion 
beginning at about +l .  1 kb and extending into the 
next distal EcoRI fragment, (+4.6 to +5.3 kb, Figure 
1) (COTE et al. 1986), and this deletion has no snake 
phenotype. In addition, snake cDNAs have been iso- 
lated and do not extend into the 4.6-kb EcoRI frag- 
ment (DELOTTO and SPIERER 1986). 

PROTEIN PROPERTIES 

The translated polypeptide (xanthine dehydrogen- 
ase EC 2.1.37) is predicted to be 1335 amino acids 
long. The  xanthine dehydrogenase amino acid se- 
quence shows no discernible homologies with any of 
the proteins in the Protein Identification Resource 
Database (March 1986; National Biomedical Research 
Foundation). The program searches for 40% homol- 
ogy over 40 amino acids or seven consecutive amino 
acids between two proteins. An additional protein 
homology search was performed using the LIPMAN 
and PEARSON fast protein homology search programs 
contained in the MBCRR distributed Molecular Biol- 
ogy Analysis Programs. With a possible score of 6661 
for 100% homology for this protein, the highest score 
produced in this search was 59 in a comparison with 
baker’s yeast histone H3. As xanthine dehydrogenase 
is both a dehydrogenase and a molybdenum binding 
enzyme it was of particular interest to compare the 
amino acid sequence in more detail with other dehy- 
drogenases and molybdenum binding enzymes, in or- 
der to search for limited regions of homology that 
may be related to the proteins structural require- 
ments. No dehydrogenases or molybdenum binding 
proteins included in the database were shown to have 
even short regions of homology with the XDH se- 
quence. 

The amino terminus of the protein has been ex- 
amined for indications of a signal sequence. HEIJNE 
(1 985) describes three well-defined functional do- 
mains that are highly conserved in all eukaryotic signal 
sequences examined to date. These include a short, 
positively charged n-terminal region, a strongly hy- 
drophobic region, and a short polar stretch terminat- 
ing in a cleavage site. XDH begins with three polar 
residues, followed by six hydrophobic amino acids, 
followed by a polar region including a potential signal 
sequence cleavage site between amino acids 12 and 
13. The n-terminal region and the cleavage site se- 
quence fall within the limits for eukaryotic signal 
sequences. However, the hydrophobic region is one 
residue shorter than the shortest example in a large 
survey of signal sequences (HEIJNE 1985). Thus we 
are uncertain if the amino terminus of XDH can 
function as a secretion signal. 

XDH has been characterized as a soluble protein. 
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IGtATCIC~IC~MICIWICGI~A~IC~ACAICCGA~IG~~GCIAICAIIIGGAIAC~IIIGCIIIIffiffiIICGICIIMIIIC~GII~I~IICGIAICGGC 

4331 4343 6355 43bl 6379 6391 160.3 (Clal) bb15 4421 6639 
AGMtMllGllGClAlCKll~CAllAllACMlAOlAl~~A~lGCGCCll~GCAG~G6ClCCAlCGlAlCTAlC~ll~AlClK~llGc~CCKG 

4151 1663 4475 U 8 7  hh9? 6511 1523 6 3 5  6517 L559 
A T C G T C C ~ I O l I G G l M G I G I G I G c ~ I A C G I ~ A ~ I ~ A I I f f i I ~ C A I G c ~ ~ I G C ~ C ~ I ~ A C C A C I K I C I ~ I C C G I C A I C G I ~ C ~ I ~ I I ~ I I I ~ I G I C  

6571 4583 1595 1687 6619 
W I C ~  ~ l K l l G l l G C C G C C ~ C C f f i C A l C l C ~ G ~ G M C ~ l G c G l A l ~  

FIGURE 2.-The DNA sequence of the 4.6-kb EcoRI fragment containing 70% of the rosy locus: the sequence is numbered as in LEE et al. 
(1987) (1+ is underlined). Selected restriction sites of six-base recognition enzymes are indicated above the DNA sequence. The predicted 
XDH protein sequence is shown below the DNA sequence. cDNA boundaries are underlined and the numbers noted above the DNA 
sequence. Intron boundaries are noted below the DNA sequence. The TAA stop codon is underlined. 

Consistent with that, we do not find any transmem- 
brane-like stretches of amino acids. This feature was 
examined according to the procedure outlined by 

KYTE and DOOLITTLE (1982). Each hydrophobic 
stretch of 19 amino acids was assigned an average 
hydropathy value. None of these averages were equal 
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to or above the value of 1.6, which is the lower limit 
value associated with transmembrane amino acid se- 
quences (KYTE and DOOLITTLE 1982). 

The functional protein is a homodimer with a sub- 
unit molecular weight of 146,898 daltons as deter- 
mined from the translated sequence. This is in good 
agreement with the subunit weight of 150,000 previ- 
ously estimated by SDS gel electrophoresis (EDWARDS 
and CANDIDO 1977). 

DISCUSSION 

We have determined the sequence of the rosy locus 
to serve as the basis for subsequent sequence compar- 
isons. Both the genomic and cDNA sequences, re- 
ported in this paper, have helped define the limits of 
the mature mRNA. This information will help direct 
a search for &-acting control regions of the gene (LEE 
et al. 1987). 

In addition, structural features of Xdh described in 
this paper make it an interesting locus for population 
and genetic studies. Since the gene is composed of 
both introns and exons, it allows the comparison of 
different functional regions. The large size of the 
locus permits more powerful statistical analyses of 
these comparisons than were possible in the smaller 
loci analyzed to date, including Hsp82 (BLACKMAN 
and MESEUON 1986) and Adh (SCHAEFFER and 
AQUADRO 1987). We plan to focus future work on a 
sequence comparison of different XDH alleles isolated 
from natural populations (KEITH et al. 1985). These 
data will provide information on the distribution and 
type of amino acid substitutions permitted in the 
molecule and on the origin and maintenance of ge- 
netic variation at this locus. 

We thank DOREEN LEWIS for assistance with fly food. This work 
was supported by grants from the National Institutes of Health to 
R.C.L. 
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